АНТИФЕРРОМАГНИТНЫЙ РЕЗОНАНС И ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА РЕДКОЗЕМЕЛЬНЫХ ФЕРРОБОРАТОВ В СУБМИЛЛИМЕТРОВОМ ДИАПАЗОНЕ ЧАСТОТ

А. М. Кузъменко^а, А. А. Мухин^{а*}, В. Ю. Иванов^а,

А. М. Кадомцева^b, С. П. Лебедев^a, Л. Н. Безматерных^c

^а Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

^b Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

^с Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

Поступила в редакцию 10 декабря 2010 г.

Выполнены исследования магниторезонансных и диэлектрических свойств ряда кристаллов нового семейства мультиферроиков — редкоземельных ферроборатов RFe₃(BO₃)₄ с R = Y, Eu, Pr, Tb, Tb_{0.25} Er_{0.75} в субмиллиметровом ($\nu = 3-20$ см⁻¹) диапазоне частот. В ферроборатах с R = Y, Tb, Eu обнаружены скачки диэлектрической проницаемости при температурах соответственно 375 K, 198 K, 58 K, обусловленные структурным фазовым переходом $R32 \rightarrow P3_121$. В области антиферромагнитного упорядочения ($T < T_N = 30-40$ K) во всех исследованных ферроборатах, имеющих либо легкоплоскостную (Y, Eu), либо одноосную (Pr, Tb, Tb_{0.25}Er_{0.75}) магнитную структуру, обнаружены моды антиферромагнитного резонанса (AФMP) подсистемы ионов Fe³⁺. Выявлена сильная зависимость частот AФMP от магнитной анизотропии редкоземельного иона и его обменного взаимодействия с Fe-подсистемой, определяющих тип магнитной структуры, знак и величину эффективной константы анизотропии. Определены основные параметры магнитных взаимодействий исследованных ферроборатов и проанализирован магнитоэлектрический вклад в АФМР.

1. ВВЕДЕНИЕ

Редкоземельные ферробораты RFe₃(BO₃)₄ (R = Y, La–Lu) привлекают в последнее время значительный интерес в связи с обнаружением в них мультиферроэлектрических явлений [1, 2], а также интересных магнитных, оптических и других свойств, обусловленных обменным взаимодействием между железной и редкоземельной магнитными подсистемами [3, 4]. При достаточно высоких температурах все редкоземельные ферробораты имеют нецентросимметричную тригональную структуру, принадлежащую пространственной группе R32 [5, 6], которая в ряде ферроборатов с большим ионным радиусом R-иона (La–Sm) сохраняется вплоть до низких температур. В ферроборатах с меньшим ионным радиусом R-иона (Eu–Er, Y) с понижением температуры происходит фазовый переход в более низкосимметричную тригональную кристаллическую структуру симметрии P3₁21 [7, 8].

При температурах ниже $T_N = 30-40$ К в ферроборатах происходит антиферромагнитное упорядочение в подсистеме ионов железа, спины которых в зависимости от типа R-иона ориентируются либо в *ab*-плоскости кристалла (R = Nd, Sm, Eu, Er, Y) [4,9,10], либо вдоль тригональной *c*-оси (R = Pr, Tb, Dy) [11–14]. При этом в редкоземельной подсистеме также индуцируется магнитный порядок за счет R–Fe-обмена, который играет важную роль в стабилизации легкоплоскостной или одноосной магнитной структуры, а роль весьма слабого R–R-взаимодействия при этом несущественна.

^{*}E-mail: mukhin@ran.gpi.ru

О сильном влиянии анизотропии редкоземельной подсистемы на магнитную структуру, спонтанные и индуцированные магнитным полем фазовые переходы свидетельствуют недавние исследования замещенных ферроборатов $Tb_{1-x}Er_xFe_3(BO_3)_4$ [15], $Nd_{1-x}Dy_xFe_3(BO_3)_4$ [16] с конкурирующими обменными R-Fe-взаимодействиями.

Очевидно, что эти особенности взаимодействующих Fe- и R-подсистем должны проявляться не только в статических магнитных и магнитоэлектрических свойствах, но и в высокочастотных магниторезонансных явлениях, которые в ферроборатах исследованы пока сравнительно мало. В частности, проведенные недавно магниторезонансные исследования в миллиметровом диапазоне частот ферроборатов системы $Y_{1-x}Gd_xFe_3(BO_3)_4$ обнаружили моды AФMP спинов ионов железа и заметное влияние Gd-подсистемы на их частоту и энергию магнитной анизотропии [17].

В данной работе представлены результаты исследований антиферромагнитного резонанса и диэлектрических свойств ферроборатов $RFe_3(BO_3)_4$ (R = Y, Eu, Pr, Tb, $Tb_{0.25}Er_{0.75}$) в субмиллиметровом диапазоне частот (3–20 см⁻¹). Основная цель работы — выяснить зависимость частот A Φ MP от характера магнитной анизотропии редкоземельных ионов и определить их вклад в эффективную энергию анизотропии кристалла, а также изучить поведение диэлектрической проницаемости, в частности, при структурном фазовом переходе.

2. ЭКСПЕРИМЕНТ

Монокристаллы ферроборатов размером до 1 см были выращены методом кристаллизации из расплава на затравках [18]. Образцы для квазиоптических исследований были приготовлены в форме плоскопараллельных пластинок *a*-среза (R = Y, Eu, Tb, Tb_{0.25}Er_{0.75}) и *c*-среза (R = Pr) толщиной 0.5–1 мм. Поляризационные измерения спектров пропускания $T(\nu)$ были выполнены с помощью техники квазиоптической ЛОВ-спектроскопии (ЛОВ — лампа обратной волны) [19] в диапазоне частот 3–20 см⁻¹ при температурах 3–300 К.

Примеры температурной эволюции спектров $T(\nu)$ для легкоплоскостного ферробората EuFe₃(BO₃)₄ и легкоосного TbFe₃(BO₃)₄ приведены соответственно на рис. 1 и 2. Характерной особенностью всех спектров является наличие осцилляций, обусловленных интерференцией излучения в плоскопараллельном образце. На фоне

Рис. 1. Эволюция спектров пропускания и высокочастотной АФМР-моды, обозначенной стрелками, в легкоплоскостном $\operatorname{EuFe}_3(\mathrm{BO}_3)_4$ в поляризации $h \parallel b, e \parallel c$. Точки — эксперимент, линии — теория

таких осцилляций в области антиферромагнитного упорядочения ($T < T_N = 35$ –40 K) обнаружены резонансные линии поглощения, которые наблюдались только в поляризации переменного магнитного поля перпендикулярно оси c и идентифицированы как АФМР-моды Fe-подсистемы (см. ниже). Полученные спектры моделировались с помощью формул Френеля для плоскопараллельного слоя с учетом дисперсии магнитной проницаемости вблизи линии резонансного поглощения

$$\mu(\nu) = 1 + \sum_{k} \Delta \mu_{k} \nu_{k}^{2} / (\nu_{k}^{2} - \nu^{2} + i\nu \Delta \nu_{k}),$$

где ν_k , $\Delta \nu_k$ и $\Delta \mu_k$ — соответственно частота, ширина линии и вклад АФМР-моды в магнитную проницаемость. В результате такой обработки спектров $T(\nu)$ были получены температурные зависимости комплексной диэлектрической проницаемости ε (рис. 3) и параметров АФМР-мод (рис. 4, 5).

Рис.2. Спектры пропускания легкоосного $\mathrm{TbFe_3(BO_3)_4}$ в поляризации $h \parallel b, e \parallel c,$ иллюстрирующие температурное поведение АФМР-моды при H = 0 (a-e). Нижний спектр d демонстрирует расщепление резонансной линии в небольшом магнитном поле $H \parallel c$. Точки — эксперимент, линии — теория

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рассмотрим сначала диэлектрические свойства. Как видно на рис. 3, на температурных зависимостях действительной части диэлектрической проницаемости ε' ферроборатов YFe₃(BO₃)₄, TbFe₃(BO₃)₄, EuFe₃(BO₃)₄ наблюдается сильная анизотропия вдоль и перпендикулярно тригональной оси *c*. Наблюдающиеся в виде скачков аномалии ε'_c и $\varepsilon'_{\perp c} \equiv \varepsilon'_b$ соответствуют переходам из высокотемпературной структурной фазы *R*32 в фазу *P*3₁21 с более низкой симметрией. Значения температур структурного перехода *T_s* составляют 375 К в YFe₃(BO₃)₄, 198 К в TbFe₃(BO₃)₄ и 58 К в EuFe₃(BO₃)₄, что хорошо согласуется с данными, полученными из теплоемкости в работах [6,13]. Наиболее заметные скачки диэлектрической про-

Рис.3. Температурные зависимости действительной части диэлектрической проницаемости на частоте 13 см⁻¹ (390 ГГц) вдоль c-оси (a) и в перпендикулярном направлении (δ) ферроборатов с R = Y, Eu, Pr, Tb, $Tb_{0.25}Er_{0.75}$. Стрелками указаны температуры структурного фазового перехода

ницаемости наблюдались вдоль тригональной оси. С понижением температуры зависимость $\varepsilon'_c(T)$ меняет характер ниже точки структурного перехода T_s и становится убывающей, тогда как выше T_s возрастет или практически не изменяется. В составе $Tb_{0.25}Er_{0.75}Fe_3(BO_3)_4$ поведение ε'_c соответствует низкотемпературной фазе P3₁21 уже при $T \leq 300$ K, что свидетельствует, по-видимому, о наличии структурного фазового перехода выше комнатной температуры. Величина $\varepsilon'_{\perp c}$ слабо меняется с температурой, имеет небольшой скачок при структурном переходе и для всех исследованных составов лежит в пределах $12 < \varepsilon'_{\perp c} < 14$. Что касается частотной зависимости диэлектрической проницаемости в исследованном диапазоне частот (2-16) см⁻¹, то она практически отсутствовала или

Рис.4. Температурные зависимости резонансных частот ν , вкладов мод в магнитную проницаемость $\Delta \mu_b$ и ширин линий $\Delta \nu$ высокочастотных АФМР-мод ($h \parallel b$) в легкоплоскостных ферроборатах YFe₃(BO₃)₄ и EuFe₃(BO₃)₄. Точки — значения, полученные из спектров пропускания, линии теория

была весьма слабой. Мнимая часть диэлектрической проницаемости (рис. 3δ) для всех исследованных ферроборатов имеет величину менее 0.1-0.2 при комнатной температуре и заметно уменьшается с понижением температуры, претерпевая небольшие аномалии при структурных фазовых переходах. Подобный характер температурных зависимостей диэлектрической проницаемости наблюдался и при низких (радио) частотах [4, 7].

Обратимся теперь к магниторезонансным свойствам. В легкоплоскостном антиферромагнитном состоянии имеются две АФМР-моды [20]: низкочастотная, в которой колебания вектора антиферромагнетизма L происходят в легкой *ab*-плоскости и возбуждаются полем, параллельным оси *c*,

$$\left(\frac{\omega_1}{\gamma}\right)^2 \approx H^2 + 2H_E H_{A6}^{\rm Fe} \cos 6\varphi, \qquad (1)$$

и высокочастотная, — соответствующая колебани-

134

Рис.5. Температурные зависимости резонансных частот ν , вкладов мод в магнитную проницаемость $\Delta \mu_b$ и ширин линий $\Delta \nu$ АФМР-моды в одноосных $\Pr Fe_3(BO_3)_4$, $TbFe_3(BO_3)_4$ и $Tb_{0.25}Er_{0.75}Fe_3(BO_3)_4$. Точки — значения, полученные из спектров пропускания, линии — теория

ям антиферромагнитного момента L с отклонением от базисной (легкой) плоскости и возбуждаемых полем, перпендикулярным оси *с* и вектору L,

$$\left(\frac{\omega_2}{\gamma}\right)^2 \approx 2H_E H_A^{\rm Fe} \equiv \frac{K_{\rm Fe}}{\chi_\perp}.$$
 (2)

В выражении (1) внешнее магнитное поле лежит в базисной плоскости и при $H \gg H_{A6}^{\rm Fe}$ определяет ориентацию L в этой плоскости, задаваемую углом φ (H \perp L), χ_{\perp} — поперечная восприимчивость антиферромагнитно упорядоченных спинов железа, M_0 — намагниченность их подрешеток, $H_E = M_0/2\chi_{\perp}$ — поле изотропного Fe–Fe-обмена, $H_A^{\rm Fe} = K_{\rm Fe}/M_0$ — поле анизотропии железной подсистемы, стабилизирующее легкоплоскостное состояние, $H_{A6}^{\rm Fe} \ll H_A^{\rm Fe} \ll H_E$), γ — гиромагнитное отношение.

В легкоплоскостных ферроборатах $YFe_3(BO_3)_4$ и $EuFe_3(BO_3)_4$ обнаруженные моды, которые возбуждаются полем, параллельным оси *b*, идентифицированы как высокочастотные AФMP-моды ионов Fe³⁺ (рис. 1). В YFe₃(BO₃)₄ с немагнитным Y полученные значения частоты $\nu_2 = \omega_2/2\pi$ и вклада $\Delta\mu$ (рис. $4a, \delta$) определяются лишь подсистемой железа. Величина вклада высокочастотной моды, возбуждаемой переменным магнитным полем **h** вдоль любого направления **n** в базисной плоскости, определяется выражением (H = 0)

$$\Delta \mu_n = 4\pi \chi_{\perp} \left[1 - \langle (\mathbf{L} \cdot \mathbf{n})^2 \rangle \right] = 4\pi \chi_{\perp} / 2, \qquad (3)$$

где проведено усреднение по всем направлениям векторов L с учетом равномерного распределения в *аb*-плоскости по шести направлениям естественной анизотропии. (Это выражение справедливо также и для непрерывного распределения L в плоскости за счет случайных упругих напряжений, если их магнитоупругий вклад в наведенную энергию анизотропии в базисной плоскости превышает естественную анизотропию $H_{A6}^{\rm Fe}$). Такое распределение подтверждается анизотропией статической магнитной восприимчивости YFe₃(BO₃)₄, где восприимчивость в базисной плоскости в два раза меньше, чем вдоль оси с [4]. Отметим также, что полученная величина вклада (рис. 4б) практически не зависит от температуры в полном соответствии с формулой (3). Полученное значение вклада моды ν₂ позволяет определить статическую восприимчивость $\chi_{\perp} \approx (1.2-1.3) \cdot 10^{-4} \text{ см}^3/\text{г}$ и соответствующее обменное поле $(H_E = M_0/2\chi_{\perp} = 680 \text{ к}\Theta)$, которые хорошо согласуются с результатами статических измерений [4]. Значение частоты этой моды ν_2 позволяет получить величину константы анизотропии $K_{\rm Fe} = 2.7 \cdot 10^5$ эрг/г железной подсистемы, согласующееся с данными [17]. Наблюдаемую температурную зависимость частот $\nu_2(T)$ (рис. 4*a*) удалось описать, используя приближение молекулярного поля для намагниченности подрешеток железа.

Вторая (низкочастотная) мода A Φ MP, определяемая анизотропией в легкой *ab*-плоскости, имеет намного меньшую частоту, не проявляясь в исследованном диапазоне. Частота этой моды возрастает при приложении внешнего магнитного поля $H \perp c$, благодаря чему она наблюдалась в работах [17] на фиксированной частоте с разверткой по полю.

При анализе ферроборатов с магнитными редкими землями нужно рассматривать, вообще говоря, две взаимосвязанные магнитные подсистемы, динамика которых существенным образом зависит от соотношения собственных резонансных частот подсистем. В случае исследуемых ферроборатов, когда характерные частоты электронных переходов в редкоземельной системе ω_R значительно больше частот АФМР Fe-подсистемы, ω_{Fe} , можно полагать, что динамические переменные R-подсистемы на частотах порядка ω_{Fe} мгновенно следуют за спинами ионов железа и определяются соответствующими эффективными полями. Это позволяет исключить переменные R-подсистемы и описывать их вклад с помощью эффективного термодинамического потенциала, зависящего только от переменных Fe-подсистемы, что использовалось при анализе динамических свойств других подобных систем, например, ортоферритов [19, 21]. Если обменное расщепление (сдвиг) уровней R-ионов за счет R-Fe-взаимодействия значительно меньше характерных расстояний между уровнями R-иона $\hbar\omega_R$ в кристаллическом поле, то свободную энергию можно представить в виде

$$\Phi \approx \Phi_{\rm Fe} - \frac{1}{4} \sum_{\alpha=\pm} \mathbf{H}_{eff}^{\alpha} \hat{\chi}^R \mathbf{H}_{eff}^{\alpha}, \qquad (4)$$

где $\hat{\chi}^R$ — тензор статической магнитной восприимчивости редкоземельного иона в кристаллическом поле, $\mathbf{H}_{eff}^{\pm} = \mathbf{H} + \mathbf{H}_{ex}^{\pm}$, $\mathbf{H}_{ex}^{\pm} \approx \pm (\lambda_{\perp} L_x, \lambda_{\perp} L_y, \lambda_{\parallel} L_z)$ — поле R–Fе-обмена, в котором опущен вклад, пропорциональный ферромагнитному моменту M Fe-подсистемы; так как $M \ll L$, знаки « \pm » соответствуют двум R-подрешеткам. Энергию анизотропии в этом случае можно описать эффективной константой анизотропии K_{eff} , включающей как анизотропию подсистемы,

$$\Phi_{A} = \frac{1}{2} K_{\rm Fe} L_{z}^{2} - \frac{1}{2} (\chi_{\parallel}^{R} \lambda_{\parallel}^{2} - \chi_{\perp}^{R} \lambda_{\perp}^{2}) L_{z}^{2} \equiv \frac{1}{2} K_{eff} L_{z}^{2}.$$
 (5)

Такой подход может быть использован для анализа $A\Phi MP$ в EuFe₃(BO₃)₄, поскольку основное состояние иона Eu^{3+} является немагнитным (J = = 0) и отделено от возбужденных мультиплетов значительным энергетическим интервалом $\Delta^{\mathrm{Eu}} \approx$ $\approx 400 \text{ см}^{-1}$ [22], а его магнитные свойства определяются примешиванием возбужденных состояний (ван-флековский магнетизм) [23]. Наблюдаемое увеличение частоты ν_2 в EuFe₃(BO₃)₄ по сравнению с YFe₃(BO₃)₄ (рис. 4*a*) свидетельствует о дополнительном вкладе ионов Eu³⁺ в энергию анизотропии. Полагая, что этот вклад связан в основном с анизотропией ван-флековской магнитной восприимчивости иона $\mathrm{Eu}^{3+},$ для которой, согласно данным [4], $\chi^{VV}_{\perp c} > \chi^{VV}_c$, получаем естественное объяснение возрастания эффективной константы анизотропии $K_{eff} = K_{\rm Fe} + (\chi^{VV}_{\perp c} - \chi^{VV}_c) H^2_{\rm Eu-Fe}$ за счет положительного вклада от европиевой подсистемы, где $H_{\text{Eu-Fe}}$ — поле изотропного Eu-Fe-обмена. Используя полученные выше значения частоты и

вклада моды ν_2 , данные по анизотропии магнитной восприимчивости EuFe₃(BO₃)₄ [4], а также найденное выше значение $K_{\rm Fe}$, можно определить $H_{\rm Eu-Fe} \approx 140$ кЭ. Наблюдаемая температурная зависимость частоты ν_2 качественно не отличается от аналогичной для ферробората иттрия и также описывается в приближении молекулярного поля (рис. 4*a*).

В легкоосном антиферромагнитном состоянии (L || с), которое реализуется в других исследованных ферроборатах $PrFe_3(BO_3)_4$ [12], $TbFe_3(BO_3)_4$ [10, 13, 24] и $Tb_{0.25}Er_{0.75}Fe_3(BO_3)_4$ [15], в поляризации $h \perp c$ возбуждаются две АФМР-моды [20], частоты которых при $H \parallel c$ равны

$$\omega^{\pm} \approx \gamma \left(\sqrt{2H_E H_A^{eff}} \pm H \right), \tag{6}$$

где $H_A^{eff} = -K_{eff}/M_0 - эффективное поле анизотро$ пии, которое стабилизирует легкоосное состояние $при <math>K_{eff} < 0$. В отсутствие поля резонансные частоты вырождены, $\omega_0 = \omega^+ = \omega^-$, и наблюдается одна линия поглощения в поляризации $h \perp c$ (рис. 2); величина ее вклада определяется поперечной восприимчивостью спинов железа $\Delta \mu_{\perp c} = 4\pi \chi_{\perp}$.

Согласно оптическим данным [11],в $\Pr Fe_3(BO_3)_4$ основное состояние иона \Pr^{3+} в кристаллическом поле является синглетом, \mathbf{a} энергия следующего возбужденного уровня соответствует 48 см⁻¹, что позволяет проанализировать АФМР в железной подсистеме на основе эффективного термодинамического потенциала (4) и энергии анизотропии (5). Величина вклада наблюдаемой моды в магнитную проницаемость (рис. 5 δ) дает значения χ_{\perp} и H_E , близкие к соответствующим параметрам для $YFe_3(BO_3)_4$. Частота наблюдаемой моды (рис. 5а) и полученное значение H_E позволяют определить константу $K_{eff} = -2.7 \cdot 10^5$ эрг/г и соответствующее поле спин-флоп-перехода $H_{sf} = [-K_{eff}/\chi_{\perp}]^{1/2} \approx 48$ кЭ, что хорошо согласуется с данными, полученными из низкотемпературных кривых намагничивания [12]. Согласно магнитным измерениям, восприимчивость ионов Pr сильно анизотропна, причем $\chi_c^{\mathrm{Pr}} > \chi_{\perp c}^{\mathrm{Pr}}$, что, по-видимому, является основной причиной изменения знака эффективной константы анизотропии и стабилизации одноосного состояния. В то же время нельзя исключать и вклада от анизотропной части Pr-Fe-обмена, выявленного из анализа оптических данных [11].

В ферроборате $\text{TbFe}_3(\text{BO}_3)_4$ обнаружено значительное возрастание частоты $A\Phi MP$ -моды (рис. 5*a*), которое свидетельствует не только об изменении знака эффективной константы анизотропии K_{eff} , но и ее большой величине за счет анизотропного вклада ионов Tb³⁺, поляризованных вдоль их изинговской оси, совпадающей с тригональной осью кристалла. Легкоосный характер магнитного упорядочения в TbFe₃(BO₃)₄ подтверждается тем фактом, что AΦMP-мода, наблюдаемая в поляризации $h \perp c$, при приложении внешнего магнитного поля H расщепляется на две моды (рис. 2*d*) в соответствии с выражением (6). Основным состоянием иона Tb³⁺ в кристаллическом поле является квазидублет, расщепление которого практически полностью определяется обменным полем [13, 15]

$$2\Delta_{\mathrm{Tb}} = 2\mu_{\mathrm{Tb}}^{z}H_{\mathrm{Tb-Fe}}^{z} = 2\mu_{\mathrm{Tb}}^{z}(\lambda_{\parallel}L_{z}),$$

а вклад в свободную энергию равен

$$\Phi_{\rm Tb} \approx -NTk_B \ln 2 \operatorname{ch}(\Delta_{\rm Tb}/k_B T),$$

где N — число ионов Tb. Учитывая большую величину этого обменного расщепления ($2\Delta_{\rm Tb} \approx 30 \, {\rm cm^{-1}}$ [13, 15]) по сравнению с наблюдаемыми частотами AФMP (рис. 5*a*), можно рассчитать последние на основе уравнений Ландау—Лифшица с учетом редкоземельного вклада $\Phi_{\rm Tb}$ в полный термодинамический потенциал системы. Это дает для резонансных частот выражение, совпадающее по форме с (6), в котором эффективная константа анизотропии содержит отрицательный вклад Tb,

$$K_{eff} \equiv K_{\rm Fe} - N\Delta_{\rm Tb} \operatorname{th}(\Delta_{\rm Tb}/k_B T) < 0.$$

Значения поля H_E и χ_{\perp} для TbFe₃(BO₃)₄, определяемые вкладом AΦMP-моды в магнитную проницаемость $\Delta \mu_{\perp c}$ (рис. 56), оказались близки к соответствующим значениям в остальных рассмотренных ферроборатах. Используя эти данные, а также значение частоты AΦMP ω_0 при низкой температуре и значение $K_{\rm Fe}$, найденное для ферробората иттрия, можно непосредственно определить величину обменного расщепления

$$2\Delta_{\rm Tb} = \left[\chi_{\perp} (\omega_0/\gamma)^2 - K_{\rm Fe}\right]/N \approx 30 \ {\rm cm}^{-1}$$

и соответствующего обменного поля $H^c_{\rm Tb-Fe} \approx 35$ кЭ, которые хорошо согласуются с результатами статических исследований [13,15], в частности, со значением поля спин-флоп-перехода [15,24]. Отметим, что из-за изинговского характера иона Tb³⁺ прямое наблюдение резонансных переходов основного квазидублета невозможно.

Подтверждением рассмотренной выше карформирования тины магнитной анизотро- $TbFe_3(BO_3)_4$ наблюдаемое пии в является поведение $A\Phi MP$ в разбавленной системе Tb_{0.25}Er_{0.75}Fe₃(BO₃)₄. Обнаруженное в ней уменьшение в два раза частоты АФМР (рис. 5а) подтверждает превалирующий вклад ионов Tb³⁺ в эффективную анизотропию даже при их четырехкратном разбавлении. Вклад ${\rm Er}^{3+}$ здесь не очень существен из-за меньшего обменного расщепления, составляющего по данным работы [10] около 1.9 см⁻¹.

Приведенный выше анализ магниторезонансных свойств ферроборатов проведен без учета магнитоэлектрического взаимодействия, поскольку нам не удалось обнаружить проявления соответствующих магнитоэлектрических явлений в исследованном диапазоне частот. Тем не менее, ниже мы кратко обсудим эти интересные тонкие эффекты и проанализируем условия их наблюдения.

Магнитоэлектрический вклад от Fe-подсистемы в термодинамический потенциал имеет вид [1,2]

$$\Phi_{ME} = -c_1 \left(P_x L_y L_z - P_y L_x L_z \right) - \\ - c_2 \left[P_x (L_x^2 - L_y^2) - 2P_y L_x L_y \right] - \\ - c_6 P_z L_x L_z (L_x^2 - 3L_y^2), \quad (7)$$

где \mathbf{P} — электрическая поляризация, $c_{1,2,6}$ — константы. Добавляя Φ_{ME} , а также диэлектрическую часть $\Phi_E = -\mathbf{P} \cdot \mathbf{E} + (1/2)\mathbf{E}\hat{\chi}^E\mathbf{E}$ к полному термодинамическому потенциалу и используя уравнения движения для динамических переменных \mathbf{M} , \mathbf{L} и \mathbf{P} , можно определить полный линейный отклик системы на переменное магнитное и электрическое поле:

$$\mathbf{m} = \hat{\chi}^m \mathbf{h} + \hat{\chi}^{me} \mathbf{e}, \quad \mathbf{p} = \left(\tilde{\hat{\chi}}^{me}\right)^* \mathbf{h} + \hat{\chi}^e \mathbf{e},$$

где $\hat{\chi}^m$, $\hat{\chi}^e$, $\hat{\chi}^{me}$ — соответственно магнитная, электрическая и магнитоэлектрическая восприимчивости системы. В одноосном состоянии восприимчивости являются диагональными и имеют резонансный вклад:

$$\chi^m_{xx,yy} \equiv \chi^m_{\perp} = \chi_{\perp} R(\omega),$$

$$\chi^e_{xx,yy} \equiv \chi^e_{\perp} = \chi^E_{\perp} + \Delta \chi^e_{rot} R(\omega),$$

$$\chi^m_{xx,yy} = i \chi^m_{\perp} \equiv \frac{i\omega}{\omega_0} \sqrt{\chi_{\perp} \Delta \chi^e_{rot}} R(\omega),$$

где $\Delta \chi^e_{rot} = P_1^2/|K_{eff}|$ — магнитоэлектрический вклад вращения в электрическую восприимчивость, $P_1 = c_1 \chi^E_{\perp} L^2_{zo}, \ \chi^E_{\perp} = (\varepsilon_{\perp} - 1)/4\pi$ — решеточная часть электрической восприимчивости, $R(\omega) = \omega_0^2/(\omega_0^2 - \omega^2 + i\omega\Delta\omega)$, а ω_0 и $\Delta\omega$ — соответствен-

но частота и ширина АФМР-моды. Наиболее интересным следствием, обусловленным магнитоэлектрической восприимчивостью, является появление двух собственных право- и левоциркулярно поляризованных электромагнитных мод, характеризуемых показателем преломления, $n_{\pm} = n_0 \pm 4\pi \chi_{\perp}^{me}$, при их распространении вдоль оси с, где n_0 = $=\sqrt{\varepsilon_{\perp}\mu_{\perp}}, \ \varepsilon_{\perp} = 1 + 4\pi\chi_{\perp}^e, \ \mu_{\perp} = 1 + 4\pi\chi_{\perp}^m.$ Это приводит к вращению плоскости поляризации волны на угол $\Delta \theta_{me} = (\omega d/c) 4\pi \chi_{\perp}^{me}$ при прохождении слоя толщиной d, где c — скорость света. Ориентируясь на данные магнитоэлектрических исследований PrFe₃(BO₃)₄ [12] и TbFe₃(BO₃)₄ [15], которые позволяют оценить $P_1 = (1-10) \text{ мкKл/м}^2$ (0.3-3 ед. СГСЕ), получим для магнитоэлектрического вклада в диэлектрическую и магнитоэлектрическую проницаемости $4\pi\Delta\chi^e_{rot}=1.1(10^{-6}\text{--}10^{-4})$ и $4\pi \sqrt{\chi_{\perp} \Delta \chi^e_{rot}} = 0.88(10^{-4} - 10^{-3})$ для $\Pr Fe_3(BO_3)_4$. В результате оценка значения резонансного угла вращения плоскости поляризации при частоте АФМР около 4 см $^{-1}$ дает $\Delta \theta_{me} = 0.5^{\circ} - 5^{\circ}$ при толщине 0.5 мм. Проведенные нами квазиоптические исследования PrFe₃(BO₃)₄ с-среза в скрещенных поляризаторах, к сожалению, не выявили вращения плоскости поляризации, видимо, из-за сравнительно небольшой величины эффекта и недостаточно высокой чувствительности спектрометра.

В легкоплоскостном состоянии также имеется резонансный вклад в электрическую и магнитоэлектрическую восприимчивости, который в области высокочастотной (квазиантиферромагнитной) АФМР-моды также определяется восприимчивостью вращения $\Delta \chi^e_{rot}$ и приводит к электроактивности этой моды (т. е. возбуждению электрическим полем), а также к эллиптической поляризации соответствующих собственных электромагнитных мод в кристалле и вращению плоскости поляризации распространяющейся волны. Однако в отличие от предыдущего случая все эти эффекты оказываются квадратичными по малой магнитоэлектрической константе с1, чем, видимо, и осложняется возможность их наблюдения. Более реалистичным представляется проявление магнитоэлектрического вклада в области низкочастотной АФМР-моды, анализ которого является предметом отдельного рассмотрения. Отметим также, что поскольку в ряде ферроборатов редкоземельная подсистема может давать значительный вклад в магнитоэлектрическое взаимодействие (поляризацию), можно ожидать более сильного проявления рассмотренных выше динамических эффектов в области соответствующих редкоземельных мод, обусловленных

Рис.6. Температурные зависимости эффективных констант анизотропии легкоплоскостных (R = Y, Eu) и легкоосных (Pr, Tb) ферроборатов. Точки — значения, полученные из пересчета экспериментальных значений частот АФМР и вкладов, линии — теория

переходами между энергетическими уровнями R-иона.

4. ЗАКЛЮЧЕНИЕ

Проведенные квазиоптические исследования монокристаллов редкоземельных ферроборатов $RFe_3(BO_3)_4$ с R = Y, Eu, Pr, Tb и $Tb_{0.25}Er_{0.75}$ в субмиллиметровом диапазоне ($\nu = 3-20 \text{ см}^{-1}$) позволили определить анизотропную диэлектрическую проницаемость ε' , выявить ее аномалии при структурных фазовых переходах, а также обнаружить и изучить АФМР в подсистеме ионов железа. Установлено сильное влияние на частоты АФМР магнитной анизотропии и характера основного состояния редкоземельного иона в кристаллическом и обменном полях. Из полученных данных для частот АФМР и вкладов мод в магнитную проницаемость определе-

ны основные параметры магнитных взаимодействий исследованных ферроборатов (поле Fe-Fe-обмена, H_E , и эффективная константа анизотропии K_{eff} , эффективные поля R–Fe-обмена, $H_{\rm R-Fe}$, и обменное расщепление основного состояния редкоземельного иона). Показано, что значения обменного поля H_E близки для всех исследованных составов, тогда как эффективные константы анизотропии, температурные зависимости которых приведены на рис. 6, значительно отличаются для составов с разными R-ионами. Найденные значения параметров обмена, анизотропии и расщепления основного состояния редкой земли хорошо согласуются с данными статических и оптических измерений. Показано, что учет магнитоэлектрического взаимодействия приводит к ряду новых интересных эффектов, обнаружение которых требует дополнительных экспериментальных усилий.

Работа выполнена при финансовой поддержке РФФИ (грант № 10-02-00846).

ЛИТЕРАТУРА

- А. К. Звездин, С. С. Кротов, А. М. Кадомцева и др., Письма в ЖЭТФ 81, 335 (2005).
- А. К. Звездин, Г. П. Воробьев, А. М. Кадомцева и др., Письма в ЖЭТФ 83, 600 (2006).
- **3**. А. Н. Васильев, Е. А. Попова, ФНТ **32**, 968 (2006).
- А. М. Кадомцева, Ю. Ф. Попов, Г. П. Воробьев и др., ФНТ 36, 640 (2010).
- J. A. Campá, C. Cascales, E. Gutiérrez-Puebla et al., Chem. Mater. 9, 237 (1997).
- Y. Hinatsu, Y. Doi, K. Ito, M. Wakeshima, and A. Alemi, J. Sol. St. Chem. 172, 438 (2003).
- D. Fausti, A. A. Nugroho, P. H. M. van Loosdrecht et al., Phys. Rev. B 74, 024403 (2006).
- 8. M. N. Popova, J. Rare Earths 27, 607 (2009).
- Е. А. Попова, Н. Тристан, Х. Хесс и др., ЖЭТФ 132, 121 (2007).
- 10. M. N. Popova, E. P. Chukalina, T. N. Stanislavchuk, and L. N. Bezmaternykh, J. Magn. Magn. Mater. 300, e440 (2006).
- M. N. Popova, T. N. Stanislavchuk, B. Z. Malkin, and L. N. Bezmaternykh, Phys. Rev. Lett. 102, 187403 (2009); M. N. Popova, T. N. Stanislavchuk, B. Z. Malkin, and L. N. Bezmaternykh, Phys. Rev. B 80, 195101 (2009).

- **12**. А. М. Кадомцева, Ю. Ф. Попов, Г. П. Воробьев и др., Письма в ЖЭТФ **87**, 45 (2008).
- E. A. Popova, D. V. Volkov, A. N. Vasiliev et al., Phys. Rev. B 75, 224413 (2007).
- 14. E. A. Popova, N. Tristan, A. N. Vasiliev et al., Eur. Phys. J. B 62, 123 (2008).
- А. К. Звездин, А. М. Кадомцева, Ю. Ф. Попов и др., ЖЭТФ 136, 80 (2009).
- 16. Ю. Ф. Попов, А. М. Кадомцева, Г. П. Воробьев и др., Письма в ЖЭТФ 89, 405 (2009).
- 17. А. И. Панкрац, Г. А. Петраковский, Л. Н. Безматерных, В. Л. Темеров, ФТТ 50, 77 (2008); А. И. Панкрац, Г. А. Петраковский, Л. Н. Безматерных, О. А. Баюков, ЖЭТФ 126, 887 (2004).
- A. D. Balaev, L. N. Bezmaternykh, I. A. Gudim et al., J. Magn. Magn. Mater. 258-259, 532 (2003).

- 19. Субмиллиметровая диэлектрическая спектроскопия твердого тела, под ред. Г. В. Козлова, Труды ИОФАН, Т. 25, Наука, Москва (1990); G. V. Kozlov and A. A. Volkov, Topics in Applied Phys. 74, 51 (1998).
- 20. А. Г. Гуревич, Магнитный резонанс в ферритах и антиферромагнетиках, Наука, Москва (1973).
- 21. А. М. Балбашов, А. А. Волков, С. П. Лебедев, А. А. Мухин, А. С. Прохоров, ЖЭТФ 88, 974 (1985).
- 22. G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, John Wiley and Sons Inc., New York (1969).
- 23. К. Тейлор, М. Дарби, Физика редкоземельных соединений, Мир, Москва (1974), с. 37.
- 24. C. Ritter, A. Balaev, A. Vorotynov et al., J. Phys.: Condens. Mat. 19, 196227 (2007).