ДАЛЬНИЙ И БЛИЖНИЙ ПОРЯДКИ В МОНОКЛИННОЙ СВЕРХСТРУКТУРЕ Рd₆В И РОДСТВЕННЫХ СВЕРХСТРУКТУРАХ M₆X₅ И M₆X

А. И. Гусев*

Институт химии твердого тела Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

Поступила в редакцию 13 декабря 2010 г.

Проведен симметрийный анализ моноклинной (пространственная группа C2/c) сверхструктуры Pd_6B , образующейся в кубическом (со структурой B1) твердом растворе бора в палладии, PdB_y . Образование этой сверхструктуры происходит как фазовый переход первого рода по каналу перехода беспорядок-порядок, включающему девять неэквивалентных сверхструктурных векторов четырех звезд $\{k_{10}\}$, $\{k_4\}$, $\{k_3\}$ и $\{k_0\}$. Для моноклинной (пр. гр. C2/c) сверхструктуры Pd_6B рассчитана функция распределения атомов бора и определена область допустимых значений параметров дальнего порядка. Показано, что найденный канал перехода совпадает с каналом, по которому образуется моноклинная (пр. гр. C2) сверхструктура M_6X , и потому сверхструктуру Pd_6B можно с той же точностью описать в пространственной группе C2. Более высокая симметрия моноклинной (пр. гр. C2/c) модели позволяет считать, что она более верно описывает структуру ϕ_{33} Pd_6B ($Pd_6B\Box_5$) и взаимно инверсных ϕ_{33} $M_6X\Box_5$ и $M_6X_5\Box$, чем модель с пространственной группой C2. Показано, что в сверхструктурах типа $M_6X\Box_5$ (пр. гр. C2/c, C2, C2/m и $P3_1$) и в инверсных им сверхструктурах типа $M_6X_5\Box$ с теми же пространственными группами имеются два типа позиций ближайшего окружения атомов металла узлами неметаллической подрешетки, расположенными в первой и второй координационных сферах.

1. ВВЕДЕНИЕ

В результате упорядочения неметаллических атомов внедрения Х и структурных вакансий 🗆 в неметаллической подрешетке кубических фаз MX_y ($MX_y \square_{1-y}$) с базисной структурой B1 образуется большое число сверхструктур $M_{2t}X_{2t-1}$ $(M_{2t}X_{2t-1}\Box)$, где t = 1, 1.5, 2, 3, 4. Заметим, что неметаллическая подрешетка кубических фаз MX_u (М — переходный металл, X = B, C, N, O) со структурой В1 представляет собой гранецентрированную кубическую (ГЦК) решетку, образованную октаэдрическими междоузлиями металлической ГЦК-подрешетки. Особенно много экспериментальных и теоретических данных имеется по сверхструктурам типа M₆X₅ (M₆X₅□), для которых t = 3 [1]. Сверхструктуры M_6X_5 возникают, когда относительное содержание атомов Х в фазе МХ_и достаточно велико (y > 1/2). В фазах МХ_y с малым

содержанием атомов X и большим содержанием вакансий \Box , т. е. при y < 1/2, в принципе могут образовываться инверсные сверхструктуры M₆X (M₆X \Box_5) с такой же симметрией, что и сверхструктуры M₆X₅ (M₆X₅ \Box) [1, 2]. Под инверсией в данном случае понимается инверсия заселенностей октаэдрических междоузлий (вакантное междоузлие заменяется на занятое неметаллическим атомом внедрения и наоборот). Общие для этих взаимно инверсных сверхструктур формулы имеют вид M_{2t}X (M_{2t}X \Box_{2t-1}) и M_{2t}X_{2t-1} \Box), где t = 3.

Недавно в работах [3,4] методами структурной нейтронографии, рентгеновской и электронной дифракции исследован твердый раствор PdB_y бора в ГЦК-палладии. Предельное содержание бора в PdB_y достигает примерно 20 ат. %, что соответствует твердому раствору состава $PdB_{0.25}$. Атомы В неупорядоченно размещаются в октаэдрических междоузлиях ГЦК-подрешетки атомов Pd, при этом заполненные и незаполненные октаэдрические междоузлия образуют неметаллическую ГЦК-под-

^{*}E-mail: gusev@ihim.uran.ru

решетку (пр. гр. $Fm\bar{3}m$). В результате неупорядоченный твердый раствор PdB_y имеет базисную структуру типа B1. При изучении твердого раствора PdB_y (y = 0.158-0.184) авторы работ [3, 4], используя аналогию с упорядоченными нестехиометрическими карбидами M_6C_5 [1, 2, 5, 6], сделали вывод об образовании моноклинной (пр. гр. C2/c(C12/c1)) сверхструктуры Pd_6B ($Pd_6B\Box_5$). Ранее о существовании упорядоченной фазы Pd_6B сообщалось в работе [7]. Помимо сверхструктуры Pd_6B в твердом растворе PdB_y при температуре ниже 670 K существует упорядоченная фаза $Pd_{16}B_3$ [8] или Pd_5B [7, 9].

По мнению авторов работ [3, 4], моноклинная (пр. гр. C2/c) сверхструктура Pd_6B возникает в результате упорядоченного распределения атомов В по октаэдрическим междоузлиям ГЦК-подрешетки атомов Pd, т.е. аналогично тому, как образуются упорядоченные нестехиометрические карбиды M₆C₅ $(M_6C_5\Box \equiv M_6X_5\Box)$. Экспериментально обнаружены три карбидные сверхструктуры типа M₆X₅ с тригональной (пр. гр. P3₁ [10-15] или P3₁12 [16,17]) и моноклинной (пр. гр. C2 [18-21] и C2/m [22-27]) симметрией, которым соответствуют инверсные сверхструктуры M₆XП₅ с такой же симметрией. В работах [28,29] при изучении упорядоченной фазы карбида ниобия было показано, что наблюдаемые сверхструктурные отражения не соответствуют моноклинной сверхструктуре Nb_6C_5 (M_6X_5) (пр. гр. C2) и потому сверхструктуру Nb₆C₅ описали как тригональную (пр. гр. P31). Однако другую моноклинную (пр. гр. C2/m) модель структуры авторы работ [28, 29] не обсуждали, хотя в работах [1, 6] показано, что идеальные моноклинная (пр. гр. C2/m) и тригональная (пр. гр. P3₁) сверхструктуры типа M₆X₅ в порошковом дифракционном эксперименте имеют одинаковый по положению и интенсивности набор сверхструктурных отражений. Полный обзор экспериментальных результатов по указанным сверхструктурам M₆X₅ и их теоретическое описание даны в работах [1, 2, 5, 6, 30].

В настоящей работе для моноклинной (пр. гр. C2/c) фазы Pd₆B определен канал структурного фазового перехода беспорядок—порядок и рассчитана функция распределения атомов бора в сверхструктуре Pd₆B, проведено сопоставление моноклинных (пр. гр. C2/c и C2) структур типа M₆X для выяснения того, являются ли эти структуры самостоятельными или же, если это одна и та же структура, для однозначного определения ее пространственной группы.

2. СИММЕТРИЙНЫЙ АНАЛИЗ СВЕРХСТРУКТУРЫ Рd₆В

Определим сначала канал перехода беспорядок-порядок PdB_y (пр. гр. $Fm\bar{3}m$) \rightarrow $\mathrm{Pd}_6\mathrm{B}$ (пр. гр. C2/c), т.е. найдем совокупность сверхструктурных векторов обратной решетки, связанных с этим структурным фазовым переходом.

На рис. 1а показано положение элементарной ячейки моноклинной (пр. гр. C2) сверхструктуры M₆X, инверсной по отношению к ранее определенной сверхструктуре М₆Х₅, и контур элементарной ячейки моноклинной (пр. гр. C2/c) фазы Pd₆B. На рис. 16 показано размещение атомов и вакансий в элементарной ячейке моноклинной (пр. гр. C2/c) фазы Pd_6B ($Pd_6B\Box_5$ или в общем виде $M_6X\Box_5$). В соответствии с рис. 1 начало координат $(000)_{C2/c}$ этой сверхструктуры имеет кубические координаты $(-1/2, 1/4, -1/4)_{B1}$, т.е. смещено относительно начала координат $(000)_{B1} \equiv (000)_{C2}$ моноклинной (пр. гр. C2) ячейки сверхструктуры M₆X на вектор $\{-1/2, 1/4, -1/4\}_{B1}$. Для удобства изображения направления осей $\mathbf{b}_{C2/c}$ и $\mathbf{c}_{C2/c}$ выбраны противоположными направлениям этих же осей в работах [3,4]. Координаты атомов и вакансий в идеальной моноклинной сверхструктуре Pd₆B (Pd₆B□₅) даны в таблице. В соответствии с рис. 1 моноклинные координаты $(x_{C2/c}, y_{C2/c}, z_{C2/c})$ преобразуются в кубические координаты (x_I, y_I, z_I) по следующим соотношениям:

$$x_{I} = x_{C2/c}/2 + 3y_{C2/c}/2 + 3z_{C2/c}/2 - 1/2,$$

$$y_{I} = -x_{C2/c}/2 + 3y_{C2/c}/2 - 3z_{C2/c}/2 + 1/4,$$

$$z_{I} = -x_{C2/c} + z_{C2/c} - 1/4.$$

Элементарная ячейка моноклинной сверхструктуры включает 4 формульные единицы Pd₆B.

Для проведения симметрийного анализа и расчета функции распределения атомов бора в обсуждаемой упорядоченной фазе нужно перейти к обратной решетке этой фазы и найти канал структурного фазового перехода беспорядок-порядок PdB_y-Pd₆B. Векторы трансляции элементарной ячейки идеальной моноклинной (пр. гр. C2/c) фазы Pd₆B в базисной решетке со структурой B1 имеют вид

$$\mathbf{a}_{C2/c} = \{1/2, -1/2, -1\}_{B1}, \quad \mathbf{b}_{C2/c} = \{3/2, 3/2, 0\}_{B1},$$

 $\mathbf{c}_{C2/c} = \{3/2, -3/2, 1\}_{B1}.$

Базисные векторы \mathbf{b}_i^* ($\mathbf{b}_1^* \equiv \mathbf{a}_{C2/c}^*$, $\mathbf{b}_2^* \equiv \mathbf{b}_{C2/c}^*$, $\mathbf{b}_3^* \equiv \mathbf{c}_{C2/c}^*$) обратной решетки определяются через трансляционные векторы \mathbf{a}_i ($\mathbf{a}_1 \equiv \mathbf{a}_{C2/c}, \mathbf{a}_2 \equiv \mathbf{b}_{C2/c}$,

8 ЖЭТФ, вып.1(7)

	Атом	Позиция и кратность	Атомные координаты в базисной неупоря- доченной структуре <i>B</i> 1 (по рис. 1)			Атомные координаты в идеальной упорядо- ченной структуре			Значения функции распределения $n(x_I,y_I,z_I)$
			x/a_{B1}	y/a_{B1}	z/a_{B1}	$x/a_{C2/c}$	$y/b_{C2/c}$	$z/c_{C2/c}$	
B1	(вакансия)	особая $4(c)$	0	1/2	-1/2	1/4	1/4	0	$n_1 = y - \eta_9/6 - \eta_4/6 + \eta_3/6$
B2	(вакансия)	особая $4(e)$	1/2	1/2	0	0	5/12	1/4	$n_2 = y + \eta_9/6 + \eta_4/12 + \eta_3/12 - \eta_0/2$
B3	(вакансия)	особая $4(e)$	1	1	0	0	3/4	1/4	$n_3 = y + \eta_9/6 - \eta_4/6 - \eta_3/6$
B4	(вакансия)	общая $8(f)$	1/2	1	-1/2	1/4	7/12	0	$n_4 = y - \eta_9/6 + \eta_4/12 - \eta_3/12$
	B5	особая $4(e)$	0	0	0	0	1/12	1/4	$n_5 = y + \eta_9 / 6 + \eta_4 / 12 + \eta_3 / 12 + \eta_0 / 2$
	Pd1	общая $8(f)$	1/2	0	-1	7/8	1/4	1/8	—
	Pd2	общая $8(f)$	1	1/2	-1	7/8	7/12	1/8	_
	Pd3	общая $8(f)$	3/2	1	-1	7/8	11/12	1/8	_

Таблица. Моноклинная (пр. гр. № 15 -C2/c (C12/c1) $-C_{2h}^6$) сверхструктура Pd_6B , Z = 4: $\mathbf{a}_{C2/c} = \frac{1}{2} \langle 1\bar{1}\bar{2} \rangle_{B1}$, $\mathbf{b}_{C2/c} = \frac{1}{2} \langle 330 \rangle_{B1}$, $\mathbf{c}_{C2/c} = \frac{1}{2} \langle 3\bar{3}2 \rangle_{B1}$

 $\mathbf{a}_3 \equiv \mathbf{c}_{C2/c}$) элементарной ячейки по обычной формуле $\mathbf{b}_i^* = 2\pi [\mathbf{a}_j \times \mathbf{a}_k] / \mathbf{a}_1 [\mathbf{a}_2 \times \mathbf{a}_3]$, где i, j, k = 1, 2, 3. Согласно расчету векторы обратной решетки моноклинной (пр. гр. C2/c) сверхструктуры Pd₆B равны

$$\mathbf{a}_{C2/c}^* = \frac{1}{4} \langle 1\bar{1}\bar{3} \rangle, \quad \mathbf{b}_{C2/c}^* = \frac{1}{3} \langle \bar{1}\bar{1}0 \rangle, \quad \mathbf{c}_{C2/c}^* = \frac{1}{4} \langle 1\bar{1}1 \rangle.$$

Комбинации найденных сверхструктурных векторов и трансляции этих векторов, т.е. всех сверхструктурных узлов обратной решетки моноклинной (пр. гр. C2/c) фазы Pd_6B показывают, что зона Бриллюэна неупорядоченной ГЦК-решетки включает девять векторов: $\begin{array}{l} (1/2, -1/2, 1/2) &= 2\mathbf{c}_{2C/c}^{*}, (2/3, 2/3, 0) &= -2\mathbf{b}_{C2/c}^{*}, \\ (-2/3, -2/3, 0) &= 2\mathbf{b}_{C2/c}^{*}, (1/6, -5/6, -3/6) &= \\ &= (\mathbf{a}_{C2/c}^{*} + \mathbf{b}_{C2/c}^{*} + \mathbf{c}_{C2/c}^{*}), (-1/6, 5/6, 3/6) &= \\ &= (-\mathbf{a}_{C2/c}^{*} - \mathbf{b}_{C2/c}^{*} - \mathbf{c}_{C2/c}^{*}), (-7/12, -1/12, 9/12) &= \\ &= (-\mathbf{a}_{C2/c}^{*} + \mathbf{b}_{C2/c}^{*}), (7/12, 1/12, -9/12) &= \\ &= (\mathbf{a}_{C2/c}^{*} - \mathbf{b}_{C2/c}^{*}), (-1/12, -7/12, -9/12) &= \\ &= (\mathbf{a}_{C2/c}^{*} + \mathbf{b}_{C2/c}^{*}), (-1/12, -7/12, -9/12) &= \\ &= (\mathbf{a}_{C2/c}^{*} + \mathbf{b}_{C2/c}^{*}), \mathbf{u} \quad (1/12, 7/12, 9/12) &= \\ &= (\mathbf{a}_{C2/c}^{*} + \mathbf{b}_{C2/c}^{*}) \quad \mathbf{u} \quad (1/12, 7/12, 9/12) &= \\ &= (-\mathbf{a}_{C2/c}^{*} + \mathbf{b}_{C2/c}^{*}) \quad \mathbf{u} \quad (1/12, 7/12, 9/12) &= \\ &= (-\mathbf{a}_{C2/c}^{*} - \mathbf{b}_{C2/c}^{*}) \quad \mathbf{u} \quad (1/12, 7/12, 9/12) &= \\ &= (-\mathbf{a}_{C2/c}^{*} - \mathbf{b}_{C2/c}^{*}) \quad \mathbf{u} \quad (1/12, 7/12, 9/12) &= \\ &= (-\mathbf{a}_{C2/c}^{*} - \mathbf{b}_{C2/c}^{*}) \quad \mathbf{u} \quad (1/12, 7/12, 9/12) &= \\ &= (-\mathbf{a}_{C2/c}^{*} - \mathbf{b}_{C2/c}^{*}) \quad \mathbf{u} \quad (1/12, 7/12, 9/12) &= \\ &= (-\mathbf{a}_{C2/c}^{*} - \mathbf{b}_{C2/c}^{*}) \quad \mathbf{u} \quad (1/12, 7/12, 9/12) &= \\ &= (-\mathbf{a}_{C2/c}^{*} - \mathbf{b}_{C2/c}^{*}) \quad \mathbf{u} \quad (1/12, 7/12, 9/12) &= \\ &= (-\mathbf{a}_{C2/c}^{*} - \mathbf{b}_{C2/c}^{*}) \quad \mathbf{u} \quad (1/12, 7/12, 9/12) &= \\ &= (-\mathbf{a}_{C2/c}^{*} - \mathbf{b}_{C2/c}^{*}) \quad \mathbf{u} \quad (1/12, 7/12, 9/12) &= \\ &= (-\mathbf{a}_{C2/c}^{*} - \mathbf{b}_{C2/c}^{*}) \quad \mathbf{u} \quad (1/12, 7/12, 9/12) &= \\ &= (-\mathbf{a}_{C2/c}^{*} - \mathbf{b}_{C2/c}^{*}) \quad \mathbf{u} \quad (\mathbf{u}_{C2/c}^{*} - \mathbf{u}_{C2/c}^{*}) \quad \mathbf{u} \quad (\mathbf{u}_{C2/c}^{*} - \mathbf{u}_{C2/c}^{*}) \quad \mathbf{u} \quad (\mathbf{u}_{C2/c}^{*}) \quad \mathbf{u} \quad (\mathbf{u}_{C2/c}^{*} - \mathbf{u}_{C2/c}^{*}) \quad (\mathbf{u}_{C2/c}^{*} - \mathbf{u}_{C2/c}^{*}) \quad \mathbf{u} \quad (\mathbf{u}_{C2/c}^{*} - \mathbf{u}_{C2/c}^{*}) \quad \mathbf{u} \quad (\mathbf{u}_{C2/c}^{*} - \mathbf{u}_{C2/c}^{*}) \quad (\mathbf{u}_{C2/c}^{*} -$ = $(-\mathbf{a}_{C2/c}^{*} - \mathbf{b}_{C2/c}^{*})$. Эти векторы соответствуют девяти лучам: $\mathbf{k}_{9}^{(3)} = \mathbf{b}_{2}/2$, $\mathbf{k}_{4}^{(1)} = (\mathbf{b}_{1} + \mathbf{b}_{2} + 2\mathbf{b}_{3})/3$, $\mathbf{k}_{4}^{(2)} = -\mathbf{k}_{4}^{(1)}$, $\mathbf{k}_{3}^{(3)} = -(4\mathbf{b}_{1} + \mathbf{b}_{2} + 2\mathbf{b}_{3})/6$, $\mathbf{k}_{3}^{(4)} =$ $= -\mathbf{k}_{3}^{(3)}$, $\mathbf{k}_{0}^{(4)} = (4\mathbf{b}_{1} + \mathbf{b}_{2} - 4\mathbf{b}_{3})/12$, $\mathbf{k}_{0}^{(28)} = -\mathbf{k}_{0}^{(4)}$, $\mathbf{k}_{0}^{(13)} = -(8\mathbf{b}_{1} + 5\mathbf{b}_{2} + 4\mathbf{b}_{3})/12$ и $\mathbf{k}_{0}^{(37)} = -\mathbf{k}_{0}^{(13)}$, принадлежащим лифшицевской звезде $\{k_9\}$, нелифшицевским звездам $\{\mathbf{k}_4\}$ с $\mu_4 = 1/3$ и $\{\mathbf{k}_3\}$ с $\mu_3 = 1/6$ и нелифшицевской звезде $\{\mathbf{k}_0\}$ общего положения с параметрами $\mu_{0-1} = 7/12, \ \mu_{0-2} = 1/12$ и $\mu_{0-3} = 9/12$ (здесь и далее нумерация и описание

звезд $\{\mathbf{k}_s\}$ волновых векторов и их лучей $\mathbf{k}_s^{(j)}$ даны в соответствии с работами [1, 2, 31, 32], $\mathbf{b}_1 = (\bar{1}11)$, $\mathbf{b}_2 = (1\bar{1}1)$ и $\mathbf{b}_3 = (11\bar{1})$ — структурные векторы обратной решетки базисной ГЦК-решетки в единицах $2\pi/a$). Эти девять сверхструктурных векторов входят в канал фазового перехода, связанный с образованием обсуждаемой моноклинной (пр. гр. C2/c) сверхструктуры Рd₆B (Рd₆BП₅) (рис. 2).

Заметим, что векторы трансляции моноклинной (пр. гр. C2) сверхструктуры M₆X₅, предложенной авторами работ [18-21] для упорядоченной фазы V₆C₅ на основе данных по дифракции электронов и нейтронов, и инверсной ей фазы М₆Х равны $\mathbf{a}_{C2} = \{1/2, -1/2, -1\}_{B1}, \mathbf{b}_{C2} = \{3/2, 3/2, 0\}_{B1},$ $\mathbf{c}_{C2} = \{1, -1, 2\}_{B1}$ [5]. Как видно на рис. 1, векторы трансляции элементарной ячейки моноклинной (пр. гр. C2/c) фазы Pd_6B совпадают по длине и направлению с векторами трансляции моноклинной (пр. гр. C2) фазы M₆X или являются их линейными комбинациями: $\mathbf{a}_{C2/c} = \mathbf{a}_{C2}, \ \mathbf{b}_{C2/c} = \mathbf{b}_{C2},$ $\mathbf{c}_{C2/c} = \mathbf{a}_{C2} + \mathbf{c}_{C2}$, причем объемы элементарных ячеек равны. Вследствие инвариантности детерминантов формулы $\mathbf{b}_i^* = 2\pi [\mathbf{a}_i \times \mathbf{a}_k] / \mathbf{a}_1 [\mathbf{a}_2 \times \mathbf{a}_3]$ относительно сложения и вычитания строк сверхструктурные векторы обратной решетки моноклинной (пр. гр. C2/c) фазы Pd_6B тоже совпадают или являются комбинациями векторов обратной решетки моноклинной (пр. гр. C2) фазы M₆X: $\mathbf{a}_{C2/c}^* = \mathbf{a}_{C2}^* - \mathbf{c}_{C2}^*$, $\mathbf{b}^*_{C2/c} \;=\; \mathbf{b}^*_{C2},\; \mathbf{c}^*_{C2/c} \;=\; \mathbf{c}^*_{C2}.$ Ясно, что каналы перехода беспорядок-порядок, по которым образуются, с одной стороны, моноклинная (пр. гр. C2/c)

Рис.1. Положение элементарных ячеек моноклинной (пр. гр. C2) сверхструктуры M_6X (a) и моноклинной (пр. гр. C2/c) сверхструктуры Pd_6B (b) в решетке со структурой B1. Штрихпунктирными линиями дополнительно показан контур элементарной ячейки сверхструктуры Pd_6B с моноклинной (пр. гр. C2/c) симметрией. Начало координат $(000)_{C2/c}$ моноклинной (пр. гр. C2/c) сверхструктуры Pd_6B имеет кубические координаты $(-1/2, 1/4, -1/4)_{B1}$, т.е. смещено относительно начала координат $(000)_{B1} \equiv (000)_{C2}$ моноклинной (пр. гр. C2) ячейки сверхструктуры M_6X на вектор $\{-1/2, 1/4, -1/4\}_{B1}$. Видно, что разные элементарные ячейки выбраны в одной и той же упорядоченной кристаллической структуре. Вертикальными штриховыми линиями показаны проекции (\times) атомов и вакансий, а также вершин элементарных ячеек на плоскость $(xy0)_{B1}$: • — атом Pd (M), • — атом B (X), \Box — вакансия

фаза Pd_6B и, с другой стороны, моноклинная (пр. гр. C2) сверхструктура M_6X_5 [1,5,6,18–21,30] и инверсная ей сверхструктура M_6X с той же пространственной группой C2, одинаковы. Таким образом, из определения канала перехода беспоря-

док-порядок PdB_y-Pd_6B следует, что обнаруженную в работах [3,4] сверхструктуру Pd_6B можно отнести и к пространственной группе C2. Действительно, на рис. 1 видно, что разные элементарные ячейки выбраны в одной и той же упорядоченной кристал-

Рис.2. Сверхструктурные векторы обратной решетки моноклинной (пр. гр. C2/c) упорядоченной фазы Pd_6B , входящие в канал фазового перехода беспорядок-порядок PdB_y-Pd_6B , и их положение в первой зоне Бриллюэна ГЦК-решетки. По такому же каналу перехода образуется моноклинная (пр. гр. C2) сверхструктура типа M_6X

лической структуре с одинаковым дальним порядком.

Найденный канал перехода беспорядок-порядок для обсуждаемой сверхструктуры Pd₆B позволяет рассчитать картины электронной дифракции и сопоставить их с экспериментальными картинами, приведенными в работах [3,4]. Следует особо подчеркнуть, что взаимное положение структурных и сверхструктурных отражений на картинах электронной дифракции для идентичных сечений обратной решетки обсуждаемой моноклинной (пр. гр. C2/c) и возможной моноклинной (пр. гр. C2) сверхструктур Pd₆B абсолютно одинаковы, поскольку эти сверхструктуры образуются по одинаковым каналам перехода беспорядок-порядок. Иначе говоря, электронная дифракция не позволяет различить эти две моноклинные сверхструктуры. Ранее [30] были рассчитаны модельные изображения электронной дифракции для разных ориентировок кристалла M₆X₅ (или M₆X D₅) с моноклинной (пр. гр. C2) симметрией, в том числе для сечения обратной решетки этого моноклинного кристалла плоскостью $(121)_{fcc}^*$ обратной ГЦК-решетки (см. рис. 5 в работе [30]). В работах [3,4] приведена экспериментальная картина электронной дифракции для такого же сечения обратной решетки фазы PdB_6 плоскостью $(\bar{1}\bar{2}\bar{1})_{fcc}^*$, эквивалентной плоскостям $(1\bar{1}0)_{C2/c}^* \equiv (1\bar{1}0)_{C2}^*$ обратных решеток моноклинных (пр. гр. C2/c и C2) сверхструктур. Проведенный расчет показал, что экспериментальная [3, 4] и теоретическая картины электронной дифракции полностью совпадают (рис. 3). Поэтому сделанный в работах [3, 4] вывод о пространственной группе C2/c моноклинной сверхструктуры Pd_6B требует дополнительного обоснования, так как те же экспериментальные результаты можно описать в модели пространственной группы C2.

Структуру упорядоченных фаз удобно описывать функцией распределения $n(\mathbf{r})$, которая является вероятностью обнаружения атома данного сорта на узле $\mathbf{r} = (x_I, y_I, z_I)$ упорядочивающейся решетки Изинга. В случае твердого раствора PdB_u с базисной структурой В1 решеткой Изинга, в которой происходит атомно-вакансионное упорядочение, является неметаллическая ГЦК-подрешетка. Отклонение вероятности $n(\mathbf{r})$ от ее значения в случае неупорядоченного (статистического) распределения можно представить суперпозицией нескольких плоских концентрационных волн [33]. Волновыми векторами этих волн являются сверхструктурные векторы, образующие канал перехода беспорядок-порядок [1, 2, 31]. В методе статических концентрационных волн [33] функция распределения $n(\mathbf{r})$ имеет вид

$$n(\mathbf{r}) = y + \frac{1}{2} \sum_{s} \sum_{j \in s} \eta_{s} \gamma_{s} \times \\ \times \left[\exp\left(i\varphi_{s}^{(j)}\right) \exp\left(i\mathbf{k}_{s}^{(j)} \cdot \mathbf{r}\right) + \\ + \exp\left(-i\varphi_{s}^{(j)}\right) \exp\left(-i\mathbf{k}_{s}^{(j)} \cdot \mathbf{r}\right) \right], \quad (1)$$

где y — доля узлов, занятых атомами данного сорта в упорядочивающейся подрешетке; величина $\frac{1}{2}\eta_s\gamma_s\left[\exp\left(i\varphi_s^{(j)}\right)\exp\left(i\mathbf{k}_s^{(j)}\cdot\mathbf{r}\right) + \exp\left(-i\varphi_s^{(j)}\right)\times\right]$ $\times \exp\left(-i\mathbf{k}_s^{(j)}\cdot\mathbf{r}\right)\right] \equiv \Delta(\mathbf{k}_s^{(j)},\mathbf{r})$ описывает стоячую плоскую статическую концентрационную волну, порождаемую сверхструктурным вектором $\mathbf{k}_s^{(j)}$ звезды $\{\mathbf{k}_s\}; \eta_s$ — параметр дальнего порядка, соответствующий звезде $\{\mathbf{k}_s\}; \eta_s\gamma_s$ и $\varphi_s^{(j)}$ — соответственно амплитуда и фазовый сдвиг концентрационной волны. На узлах \mathbf{r} , расположенных в кристаллографически эквивалентных позициях, функция распределения $n(\mathbf{r})$ принимает одно и тоже значение. Общее число значений, принимаемых функцией распределения, на единицу больше числа параметров дальнего порядка. Суммирование в формуле (1) следует вести

Рис.3. Экспериментальное [3,4] (a) и рассчитанное (b) положения структурных (•) и сверхструктурных (·) отражений в сечении обратной решетки моноклинных (пр. гр. C2/c и C2) сверхструктур Pd_6B (M_6X) плоскостью $(\bar{1}\bar{2}\bar{1})_{fcc}^*$ обратной ГЦК-решетки или эквивалентными плоскостями $(1\bar{1}0)_{C2/c}^* \equiv (1\bar{1}0)_{C2}^*$ обратных решеток моноклинных сверхструктур. На рассчитанной картине электронной дифракции для всех структурных отражений указаны индексы, соответствующие базисной кубической решетке, и для некоторых структурных и сверхструктурных отражений дополнительно указаны индексы, соответствующие моноклинной сверхструктуре и отмеченные подстрочной буквой m

только по неэквивалентным сверхструктурным векторам первой зоны Бриллюэна.

С учетом формулы (1) и найденного канала перехода функция распределения атомов бора в моноклинной (пр. гр. C2/c) сверхструктуре Pd₆B зависит от четырех параметров дальнего порядка, η_9 , η_4 , η_3 , η_0 , соответствующих звездам {k₉}, {k₄}, {k₃}, {k₀}, и имеет вид

$$n(x_{I}, y_{I}, z_{I}) = y + \frac{\eta_{9}}{6} \cos\left[\pi(x_{I} - y_{I} + z_{I})\right] + \frac{\eta_{4}}{12} \left\{ \cos\left[\frac{4\pi}{3}(x_{I} + y_{I})\right] - \sqrt{3} \sin\left[\frac{4\pi}{3}(x_{I} + y_{I})\right] \right\} + \frac{\eta_{3}}{12} \left\{ \cos\left[\frac{\pi}{3}(x_{I} - 5y_{I} - 3z_{I})\right] - \sqrt{3} \sin\left[\frac{\pi}{3}(x_{I} - 5y_{I} - 3z_{I})\right] \right\} + \frac{\eta_{0}}{12} \left\{ 3 \cos\left[\frac{\pi}{6}(x_{I} + 7y_{I} + 9z_{I})\right] - \sqrt{3} \sin\left[\frac{\pi}{6}(x_{I} + 7y_{I} + 9z_{I})\right] - \sqrt{3} \sin\left[\frac{\pi}{6}(7x_{I} + y_{I} - 9z_{I})\right] \right\} + \left\{ 3 \cos\left[\frac{\pi}{6}(7x_{I} + y_{I} - 9z_{I})\right] - \sqrt{3} \sin\left[\frac{\pi}{6}(7x_{I} + y_{I} - 9z_{I})\right] \right\}$$

Функция распределения (2), описывающая моноклинную сверхструктуру Pd₆B, на всех узлах базисной неметаллической ГЦК-подрешетки принимает пять разных значений n_1 , n_2 , n_3 , n_4 и n_5 (таблица). Это означает, что неметаллическая подрешетка неупорядоченного твердого раствора PdB_y при описываемом упорядочении разбивается на пять неэквивалентных подрешеток, различающихся вероятностями n_1 , n_2 , n_3 , n_4 и n_5 заполнения их узлов атомами В. Для идеальной сверхструктуры $\mathrm{Pd}_6\mathrm{B}$ в функции распределения (2) величина y, т.е. относительное содержание атомов бора, равна 1/6.

С одной стороны, функция распределения (2) абсолютно однозначно описывает кристаллическую структуру фазы Pd₆B, т. е. распределение атомов и вакансий на любых сколь угодно удаленных узлах решетки. С другой стороны, эта же функция распределения (2) соответствует сразу двум моноклинным (пр. гр. C2 и C2/c) сверхструктурам с элементарными ячейками одинакового объема. Если бы эти две сверхструктуры имели разные каналы перехода, это означало бы реальное существование двух моноклинных упорядоченных фаз типа Pd₆B, термодинамически равновесных в разных температурных интервалах. Сопоставляя понижение симметрии при образовании каждой из этих сверхструктур, можно было бы установить последовательность их образования при понижении температуры.

Идентичность каналов перехода и функций распределения означает, что для фазы Pd₆B верна только одна из двух моноклинных моделей структуры. Выбор в одной и той же решетке элементарной ячейки при выполнении обычных требований к ней (соответствие симметрии кристалла, максимальное число прямых углов в ячейке и минимальный объем ячейки) может проводиться различными способами и быть неоднозначным [34]. Это приводит к тому, что в экспериментальных исследованиях один и тот же кристалл получает разные описания. Действительно, комбинируя векторы трансляции моноклинной (пр. гр. *C*2) фазы M₆X, можно получить еще несколько моноклинных элементарных ячеек с таким же объемом, но с разными трансляционными векторами.

В общем случае выявить единственную ячейку, описывающую решетку, можно с помощью алгоритма приведения Делоне [35–37]. Однако в работах [34, 38] показано, что в случае моноклинной решетки приведение Делоне тоже дает неоднозначные результаты.

Фактически требования к выбору элементарной ячейки сводятся к тому, чтобы она обладала наибольшей возможной симметрией. При одинаковом объеме ячеек это означает, что точечная группа симметрии выбранной ячейки должна включать максимальное число элементов (операций) симметрии.

Точечная группа симметрии 2/m (C_{2h}) моноклинной (пр. гр. C2/c) фазы Pd₆B включает четыре элемента (операции) симметрии — повороты h_1, h_4, h_{25} и h_{28} , тогда как точечная группа симметрии 2 (С2) моноклинной (пр. гр. С2) фазы M_6X включает два элемента симметрии h_1 и h_4 . Поэтому в сравнении с ней моноклинная (пр. гр. C2/c) модель структуры фазы Pd_6B является более высокосимметричной. С учетом этого можно полагать, что предложенная авторами работ [3, 4] моноклинная (пр. гр. C2/c) модель более верно описывает кристаллическую структуру взаимно инверсных фаз M_6X и M_6X_5 ($M_6X\square_5$ и $M_6X_5\square$), чем модель с пространственной группой С2. Это позволяет утверждать, что экспериментально определенные в работах [18-21] моноклинные (пр. гр. C2) сверхструктуры М₆Х₅, позднее описанные в обзорах [1, 2, 5, 6, 30, 31], а также инверсные им сверхструктуры M₆X на самом деле принадлежат к пространственной группе C2/c.

Для инверсных моноклинных (пр. гр. C2/c и C2) сверхструктур M_6X_5 функция распределения $n(x_I, y_I, z_I)_{inv}$ неметаллических атомов X равна $[1 - n(x_I, y_I, z_I)]$ и имеет вид

$$n(x_{I}, y_{I}, z_{I})_{inv} = (1-y) - \frac{\eta_{9}}{6} \cos \left[\pi (x_{I} - y_{I} + z_{I})\right] - \frac{\eta_{4}}{12} \left\{ \cos \left[\frac{4\pi}{3}(x_{I} + y_{I})\right] - \sqrt{3} \sin \left[\frac{4\pi}{3}(x_{I} + y_{I})\right] \right\} - \frac{\eta_{3}}{12} \left\{ \cos \left[\frac{\pi}{3}(x_{I} - 5y_{I} - 3z_{I})\right] - \sqrt{3} \sin \left[\frac{\pi}{3}(x_{I} - 5y_{I} - 3z_{I})\right] \right\} - \frac{\eta_{0}}{12} \left\{ 3 \cos \left[\frac{\pi}{6}(x_{I} + 7y_{I} + 9z_{I})\right] - \frac{\eta_{0}}{12} \left\{ 3 \cos \left[\frac{\pi}{6}(x_{I} + 7y_{I} + 9z_{I})\right] - \sqrt{3} \sin \left[\frac{\pi}{6}(x_{I} + 7y_{I} + 9z_{I})\right] \right\} + \left\{ 3 \cos \left[\frac{\pi}{6}(7x_{I} + y_{I} - 9z_{I})\right] - \sqrt{3} \sin \left[\frac{\pi}{6}(7x_{I} + y_{I} - 9z_{I})\right] \right\}.$$
 (3)

Такая функция распределения была рассчитана ранее [1,2,5,6,30,31] для моноклинной (пр. гр. *C2*) сверхструктуры M_6X_5 . Для идеальных сверхструктур M_6X_5 в функции распределения (3) величина $(1-y) = y_{inv}$ есть относительное содержание атомов X, равное 5/6.

Образование обсуждаемой сверхструктуры Pd_6B происходит с искажением симметрии по четырем неприводимым представлениям. Ясно, что фазовый переход $PdB_y \rightarrow Pd_6B$ не удовлетворяет теоретико-групповому критерию Ландау для фазовых переходов второго рода и реализуется по механизму перехода первого рода. Это согласуется с данными работ [3, 4].

3. БЛИЖНИЙ ПОРЯДОК ВО ВЗАИМНО ИНВЕРСНЫХ СВЕРХСТРУКТУРАХ М₆Х₅□ И М₆Х□₅

В моноклинной (пр. гр. C2/c) сверхструктуре M₆X и инверсной ей сверхструктуре M₆X₅ любой неметаллический атом Х находится в ближайшем окружении шести металлических атомов М. В случае сверхструктуры Pd₆B любой атом бора и любая вакансия окружены шестью атомами Pd: двумя атомами Pd1, двумя атомами Pd2 и двумя атомами Pd3 (координаты атомов Pd1, Pd2 и Pd3 даны в таблице). Что касается атомов металла, то в полностью упорядоченной структуре M₆X (Pd₆B) для них имеются позиции ближайшего окружения узлами неметаллической подрешетки двух типов. Если ограничиться двумя ближайшими координационными сферами, то этими позициями являются M_5^7 (атом металла с пятью вакансиями в первой и семью вакансиями во второй координационных сферах) и M_5^6 (атом металла с пятью вакансиями в первой и шестью вакансиями во второй координационных сфе-

Рис. 4. Ближайшее окружение атомов металла M узлами неметаллической подрешетки в первой и второй координационных сферах сверхструктур Pd_6B (M_6X) и инверсных сверхструктур типа M_6X_5 : позиции M_5^7 и M_5^6 для сверхструктур типа M_6X (a) и позиции M_1^1 и M_1^2 для сверхструктур типа M_6X_5 (δ). В идеальных полностью упорядоченных структурах типа M_6X (пр. гр. C2/c или C2, C2/m, $P3_1$) две трети всех атомов металла находятся в позиции M_5^7 и одна треть — в позиции M_5^6 . В идеальных упорядоченных структурах типа M_6X_5 с теми же пространственными группами две трети атомов металла находятся в позиции M_1^1 и одна треть — в позиции M_1^2 : • — атом Pd (M), • — атом B (X), \Box — вакансия

рах); в обозначениях позиций нижний и верхний индексы показывают число вакансий в первой и второй координационных сферах атома металла. Заметим, что такое ближайшее окружение реализуется в сверхструктурах типа M_6X не только с пространственными группами C2/c и C2, но и с пространственными группами C2/m и $P3_1$. В идеальных полностью упорядоченных структурах типа M_6X (пр. гр. C2/c или $C2, C2/m, P3_1$) две трети всех атомов металла находятся в позиции M_5^7 и одна треть — в позиции M_5^6 (рис. 4a).

В инверсных сверхструктурах типа M_6X_5 (пр. гр. C2/c или C2, C2/m, $P3_1$) тоже имеются позиции ближайшего окружения атомов металла узлами неметаллической подрешетки двух типов: M_1^1 (атом металла с одной вакансией в первой и одной ваканси-

ей во второй координационных сферах) и M_1^2 (атом металла с одной вакансией в первой и двумя вакансиями во второй координационных сферах). В идеальных сверхструктурах типа M_6X_5 (пр. гр. C2/cили $C2, C2/m, P3_1$) две трети всех атомов металла находятся в позиции M_1^1 и одна треть — в позиции M_1^2 (рис. 46).

Если рассматривать только неметаллическую подрешетку сверхструктуры Pd_6B , то в направлении $[1\bar{1}1]_{B1}$ последовательно чередуются атомные плоскости $(1\bar{1}1)_{B1}$, все узлы которых вакантны, и плоскости $(1\bar{1}1)_{B1}$, в которых одна треть узлов занята атомами бора В и две трети узлов вакантны (рис. 1). В плоскостях $(1\bar{1}1)_{B1}$ второго типа каждый атом В окружен шестью вакансиями, которые образуют правильный шестиугольник.

Рис.5. Трехмерные сечения четырехмерной области допустимых значений параметров дальнего порядка для моноклинной (пр. гр. C2/c) упорядоченной структуры Pd_6B : $a - 0 \le \eta_0 \le (1/3)\eta_0^{max}(y)$, $\delta - \eta_0 = (2/3)\eta_0^{max}(y)$, $e - \eta_0 = (5/6)\eta_0^{max}(y)$

4. ОБЛАСТЬ ДОПУСТИМЫХ ЗНАЧЕНИЙ ПАРАМЕТРОВ ДАЛЬНЕГО ПОРЯДКА ДЛЯ МОНОКЛИННОЙ СВЕРХСТРУКТУРЫ Рd₆B

Если описывающие сверхструктуру параметры дальнего порядка равны между собой, то неметаллическая подрешетка неупорядоченной фазы MX_и в результате упорядочения разбивается на две неэквивалентные подрешетки — вакансионную подрешетку и подрешетку атомов X. Ранее [1, 2, 31] показано, что при равных по величине параметрах дальнего порядка функция распределения сверхструктур типа $M_{2t}X_{2t-1}$ ($M_{2t}X_{2t-1}\Box$) вырождается и принимает только два значения: $n_1^{(d)} = y - (2t - 1)\eta/2t$ (вероятность обнаружения атома внедрения на узле вакансионной подрешетки) и $n_2^{(d)} = y + \eta/2t$ (вероятность обнаружения атома внедрения на узле подрешетки атомов X). Зависимость максимальной величины параметра η от состава неупорядоченной фазы MX_y при образовании сверхструктуры $\mathrm{M}_{2t}\mathrm{X}_{2t-1}$ имеет вид

$$\eta^{max}(y) = \begin{cases} 2t(1-y), & \text{если } y \ge (2t-1)/2t, \\ 2ty/(2t-1), & \text{если } y < (2t-1)/2t. \end{cases}$$
(4)

Для инверсной сверхструктуры $M_{2t}X$ $(M_{2t}X\square_{2t-1})$ вырожденные значения функции $n(\mathbf{r})$ равны

$$n_1^{(d)} = y - \frac{\eta}{2t}, \quad n_2^{(d)} = y + (2t - 1)\frac{\eta}{2t}$$

а зависимость $\eta^{max}(y)$ имеет несколько иной вид:

$$\eta^{max}(y) = \begin{cases} 2t(1-y)/(2t-1), & \text{если} \quad y \ge 1/2t, \\ 2ty, & \text{если} \quad y < 1/2t. \end{cases}$$
(5)

Функция распределения $n(\mathbf{r})$ по своему смыслу является вероятностью и в общем случае может принимать значения от нуля до единицы. Значение функции распределения зависит от состава упорядочивающейся фазы MX_y и от того, к какой подрешетке упорядоченной структуры относится узел \mathbf{r} . Зависимость максимального значения любого параметра дальнего порядка от состава упорядочивающейся фазы MX_y ($MX_y \Box_{1-y}$) определяется уравнениями (4) или (5), а минимальное значение параметров порядка равно нулю. Поэтому любой параметр порядка, описывающий сверхструктуры $M_{2t}X_{2t-1}$ и $M_{2t}X$, ограничен неравенством

$$0 \le \eta_s \le m^*,\tag{6}$$

где для сверхструктур $M_{2t}X_{2t-1}$ $m^* = 2t(1-y)$, если $y \ge (2t-1)/2t$, и $m^* = 2ty/(2t-1)$, если y < (2t-1)/2t. Для инверсных сверхструктур $M_{2t}X$ в формуле (5) $m^* = 2t(1-y)/(2t-1)$, если $y \ge 1/2t$, и $m^* = 2ty$, если y < 1/2t.

Условие (6) определяет одномерные области допустимых значений параметров дальнего порядка для сверхструктур, описываемых одним параметром дальнего порядка η_s . Но условие (6) не учитывает физических ограничений, накладываемых на значения функции распределения, описываемой несколькими параметрами η_s . Для определения допустимой области изменения того или иного параметра дальнего порядка нужно следить, чтобы значения функции распределения лежали между нулем и единицей. С учетом значений функции распределения (2) и накладываемых на них ограничений область допустимых значений параметров дальнего порядка для обсуждаемой моноклинной (пр. гр. C2/c) сверхструктуры Pd_6B ($M_{2t}X$, t = 3) является четырехмерной и согласно расчету, описывается системой неравенств:

$$\begin{aligned}
-2m^* &\leq -2\eta_9 + \eta_4 - \eta_3 \leq m^*, \\
-m^* &\leq -\eta_9 - \eta_4 + \eta_3 \leq m^*, \\
-m^* &\leq \eta_9 - \eta_4 - \eta_3 \leq m^*, \\
2m^* &\leq 2\eta_9 + \eta_4 + \eta_3 - 6\eta_0 \leq 4m^*.
\end{aligned} \tag{7}$$

На рис. 5 показаны трехмерные сечения четырехмерного многогранника допустимых значений параметров дальнего порядка, соответствующего моноклинной (пр. гр. C2/c) сверхструктуре Pd₆B. При $0 \le \eta_0 \le (1/3)\eta_0^{max}(y)$ область допустимых значений не изменяется (рис. 5*a*); при увеличении η_0 от $(1/3)\eta_0^{max}(y)$ до $\eta_0^{max}(y)$ она сокращается (рис. 5*б*,*6*) и при достижении $\eta_0^{max}(y)$ вырождается в точку $\eta_9^{max}(y) = \eta_4^{max}(y) = \eta_3^{max}(y) = \eta_0^{max}(y).$

5. ЗАКЛЮЧЕНИЕ

Проведенный анализ показал, что выявить идентичность или различие предлагаемых моделей сверхструктуры можно только с помощью определения канала перехода беспорядок—порядок. Если разные модели имеют одинаковый канал перехода, то из предлагаемых моделей сверхструктуры верна только одна, обладающая в рамках рассматриваемой кристаллической системы наиболее высокой точечной симметрией.

Работа выполнена при финансовой поддержке РФФИ (грант № 10-03-00023а) и Уральского отделения РАН (междисциплинарный проект № 09-М-23-2001 «Ближний и дальний порядок в нестехиометрических карбидах, карбогидридах и оксидах переходных металлов»).

ЛИТЕРАТУРА

 A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides, Springer, Berlin-Heidelberg-New York-London (2001).

- 2. А. И. Гусев, Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле, Наука, Москва (2007).
- 3. T. G. Berger, *Phase Transformations in Interstitial* Pd-B *Alloys* (Dissertation an der Universität Stuttgart), Institut für Metallkunde der Universität Stuttgart und Max-Planck-Institut für Metallforschung, Stuttgart (2005).
- T. G. Berger, A. Leineweber, E. J. Mittemeijer, C. Sarbu, V. Duppel, and P. Fischer, Z. Kristallographie 221, 450 (2006).
- A. I. Gusev and A. A. Rempel, J. Phys. C: Sol. St. Phys. 20, 5011 (1987).
- A. I. Gusev and A. A. Rempel, Phys. Stat. Sol. (a) 135, 15 (1993).
- P. Rogl, in: Phase Diagrams of Ternary Metal-Boron-Carbon Systems, ASM International, Materials Park, OH (USA) (1998), p. 234.
- R. A. Alqasmi, H. Brodowsky, and H.-J. Schaller, Z. Metallkunde 73, 331 (1982).
- M. Beck, M. Ellner, and E. J. Mittemeijer, Z. Kristallographie 216, 591 (2001).
- J. D. Venables, D. Kahn, and R. G. Lye, Phil. Mag. 18, 177 (1968).
- 11. J. D. Venables and R. G. Lye, Phil. Mag. 19, 565 (1969).
- 12. D. Kahn and R. G. Lye, Bull. Amer. Phys. Soc. 14, 332 (1969).
- 13. И. Каримов, Ф. Файзуллаев, М. Каланов, А. Эмиралиев, А. С. Рахимов, Л. Слепой, В. С. Полищук, ДАН Уз6ССР № 2, 32 (1976).
- И. Каримов, Ф. Файзуллаев, М. Каланов, А. Эмиралиев, В. С. Полищук, Изв. АН УзбССР № 4, 87 (1978).
- V. N. Lipatnikov, W. Lengauer, P. Ettmayer, E. Keil, G. Groboth, and E. Kny, J. Alloys Comp. 261, 192 (1997).
- 16. Б. В. Хаенко, В. В. Куколь, ДАН УССР. Сер. А. Физ.-мат. и техн. науки № 1, 78 (1987).
- 17. Б. В. Хаенко, В. В. Куколь, Л. С. Ершова, Изв. АН СССР. Неорган. матер. 25, 263 (1989).
- 18. J. Billingham, P. S. Bell, and M. H. Lewis, Phil. Mag. 25, 661 (1972).
- 19. J. Billingham, P. S. Bell, and M. H. Lewis, Acta Crystallogr. A 28, 602 (1972).

- 20. K. Hiraga, Phil. Mag. 27, 1301 (1973).
- 21. И. Каримов, Ф. Файзуллаев, М. Каланов, А. Эмиралиев, В. С. Полищук, Изв. АН УзбССР. Сер. физ.-мат. наук № 4, 74 (1976).
- **22**. А. А. Ремпель, А. И. Гусев, В. Г. Зубков, Г. П. Швейкин, ДАН СССР **275**, 883 (1984).
- **23**. А. И. Гусев, А. А. Ремпель, ФТТ **26**, 3622 (1984).
- 24. А. А. Ремпель, А. И. Гусев, Кристаллография 30, 1112 (1985).
- 25. A. I. Gusev and A. A. Rempel, Phys. Stat. Sol. (a) 93, 71 (1986).
- 26. А. А. Ремпель, А. И. Гусев, Упорядочение в нестехиометрическом монокарбиде ниобия, Уральский научный центр АН СССР, Свердловск (1983).
- **27**. Б. В. Хаенко, О. П. Сивак, Кристаллография **35**, 1110 (1990).
- 28. J. P. Landesman, A. N. Christensen, C. H. de Novion, C. H. Lorenzelli, and P. Convert, J. Phys. C: Sol. St. Phys. 18, 809 (1985).
- 29. A. N. Christensen, Acta Chem. Scand. A 39, 803 (1985).

- **30**. А. И. Гусев, ЖЭТФ **136**, 486 (2009).
- 31. А. И. Гусев, А. А. Ремпель, Нестехиометрия, беспорядок и порядок в твердом теле, УрО РАН, Екатеринбург (2001).
- **32**. О. В. Ковалев, Неприводимые и индуцированные представления и копредставления федоровских групп, Наука, Москва (1986).
- 33. А. Г. Хачатурян, Теория фазовых превращений и структура твердых растворов, Наука, Москва (1974).
- 34. Б. К. Вайнштейн, Симметрия кристаллов. Методы структурной кристаллографии. Современная кристаллография, т. 1. Наука, Москва (1979), с. 182.
- **35**. В. Delaunay, Изв. АН СССР. VII серия. Отд. матем. естеств. наук № 5, 641 (1933).
- 36. B. Delaunay, Z. Kristallographie 84, 109 (1933).
- 37. В. Delaunay, Изв. АН СССР. VII серия. Отд. матем. естеств. наук № 6, 793 (1934).
- 38. A. L. Patterson and W. E. Lowe, Acta Crystallogr. 10, 111 (1957).