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We compute the boundary state associated with a moving Dp-brane in the presence of the open string tachyon
field as a background field. The effect of the tachyon condensation on the boundary state is discussed. It leads
to a boundary state associated with a lower-dimensional moving D-brane or a stationary instantonic D-brane.
The former originates from condensation along the spatial directions and the latter comes from the temporal di-
rection of the D-brane worldvolume. Using the boundary state, we also study the interaction amplitude between
two arbitrary Dp; and Dps-branes. The long-range behavior of the amplitude is investigated, demonstrating an
obvious deviation from the conventional form, due to the presence of the background tachyon field.

1. INTRODUCTION

The open string tachyon can be regarded as an in-
stability of branes because open strings introduce quan-
tum excitations of the branes [1]. The tachyon poten-
tial has a stationary point where the negative poten-
tial energy of the tachyon cancels the tension of the
D-brane [2]. This process, which is called tachyon con-
densation, ends when the brane has completely disap-
peared. During the condensation process, lower-dimen-
sional branes are produced [3, 4].

On the other hand, we have the boundary state as
a quantum state that contains closed string states [5].
It can be used to study D-branes. In the other words,
a D-brane couples to all states of the closed string via
the boundary state. We can therefore suppose that the
exchange of closed strings between two D-branes is re-
sponsible for the interaction of branes. For calculating
it, we can just connect their corresponding bounda-
ry states through the closed string propagator. The
coherent state method [6] and the path integral ap-
proach [7, 8] have been used to obtain the boundary
state. Furthermore, the boundary state in the presen-
ce of background fields such as By, and U(1) gauge
fields in a compact spacetime [9] and in the presence of
the tachyon field [10, 11] have been investigated.

Apart from the background U(1) gauge field and
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the open string tachyon field, which are parallel to
the brane worldvolume, the transverse fluctuations of
a D-brane are also essential as a dynamical object.
Scarcity of this kind of multilateral discussion moti-
vated us to follow this process in this paper in spite of
some technical difficulties. Besides, the full brane in
the presence of a one-dimensional background tachyon
field is usually considered in the literature and the ef-
fect of one-stage condensation on that brane is studied.
But we here study a D-brane of an arbitrary dimension.
Therefore, the Dirichlet boundary conditions are also
present. In our setup, the tachyon field has components
along all the directions of the D-brane worldvolume.
This tachyon profile leads to various condensations and
hence a variety of the resulted branes.

Here, using the path integral approach, we calcu-
late the boundary state corresponding to a moving
Dp-brane in the presence of a tachyon field. Conse-
quently, we obtain the disk partition function of the
closed string. The effect of the tachyon condensation
on this partition function is studied. The condensa-
tion is applied along the spatial worldvolume directions
and gives a partition function associated with a mov-
ing lower-dimensional D-brane. The difference from the
conventional tachyon condensation (e.g., see [10]) is in
the presence of a tachyon-dependent factor in the re-
sultant partition function. That is, although the brane
dimension decreases, the effect of the tachyon is not re-
moved by condensation. In this process, the transverse
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fluctuations of a Dp-brane prevent the normal tachyon
condensation from occurring. Applying the conden-
sation along the temporal direction of the Dp-brane
worldvolume gives an instantonic stationary brane.

The final goal of this paper is to apply the bounda-
ry state to obtain the interaction amplitude between
two moving D-branes and to study its behavior for
large distances between the branes. We observe that
due to the inclusion of the open string tachyon back-
ground (which is equivalent to considering the instabil-
ity of the bosonic D-branes), the long-range interaction
of the branes tends to zero. This is a consequence of
the tachyon rolling toward its minimum potential. We
observe that for the interaction of two D-instantons,
the conventional long-time interaction amplitude is re-
stored.

2. BOUNDARY STATE AND TACHYON
CONDENSATION

To determine the boundary state associated with
a moving Dp-brane in the presence of the tachyon
field, we begin with an appropriate sigma-model for the
string. This action contains the bulk term, a tachyonic
term on the boundary, and a velocity term correspon-
ding to the motion of the brane:

! / Po (x/—hh“bg”,,ﬁaX“ﬁbX”), (1)

4o
®

Shulk = —

Sboundary = /dU(VZXoﬁ.,.XZ + anﬁXaXﬁ), (2)
oz

where ¥ is the worldsheet of the closed string ex-
changed between the branes, 9% is the boundary of
this worldsheet, which can be at 7 = 0 or 7 = 79 and
the d-dimensional spacetime metric is

g = (—1,1,...,1).

In addition, we define

i
i v

2ral’

where v’ is the brane velocity component along the
X' direction. The coupling of the tachyon field to the
string via integration over the worldsheet boundary has
been discussed in [12]. It occurs squared in the action,
i.e., as T%(X), and in order to produce a Gaussian
integral, the tachyon profile must therefore be chosen
linear,
T(X)=a+u,X".

The constant a has been shifted away in (2). We also
consider the symmetric matrix U to have nonzero ele-
ments only along the worldvolume of the Dp-brane.
The set { X} specifies the directions along the Dp-bra-
ne worldvolume and {X?} shows the directions perpen-
dicular to it.

2.1. The boundary state

We now consider the mode expansion of the coor-
dinates of the closed string

!
X*(o, 1) = xb + 2a'p*r + \/% X

~ Z m—1/2(xﬁ162imcr +E¢fne—2im0)’ (3)

m>0

where we define x and T as the bosonic mode combina-
tions

T = am672zmr _I_aj:ne%mr,

o~ o (4)
Ty = a’rfnesz‘r + ame—sz‘r’
with . .
po— Y o th b u
am = ﬁam, am = ﬁa_m.
Similar relations hold for ¥ and @f#. If we interpret
equations (4) as eigenvalue equations [7], then the cor-

responding eigenstate is
|z, T) =

r 1 ot val 24z G
= H exp —ixmxm—amam-l-amxm-l-xmam X
=1

3

x |vac), (5)

where contraction with the metric g,, is applied im-
plicitly. This is a boundary state of the closed string
due to the bulk term of the string sigma-model with-
out any boundary interaction. Naturally deforming the
action by adding nonvanishing boundary contributions
leads to the deformed boundary state

|B; Sboundary> = /[dx dj]eiSboundMy (2] |SU,E> (6)

The boundary actions related to the tachyon, St,
and the velocity term, Sy, can be written in terms of
modes as

o0
U
St = imcgUagxg +ima’ Z f%%ﬁx,ﬁn, (7)

m=1
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Sy = v’xgp’ + vt x
o0
X ( wxt 47 20) 30 al —6fnacgl>. (8)
m=1

Here and hereafter, we impose a selected direction X%
for the motion of the Dp-brane and set v = v. Sub-
stituting (7) and (8) in (6) and also considering the
contribution of the bulk action at the boundary gives
the boundary state. The oscillating part of this state
is

- 1
Bz 0sc —
|Bz) H det R(m) x

m=1
X exp (Z ains(m)ain> 10), (9)

m=1
where
2mwa’ o B
R(m)ab = =20 + —Ua55 ) b
1 (10)
Qap = ~59ab 51’(5()@6“;, +8%.8%),
and
Stmyur = 2(R0))ab0",0°, = Guo- (11)

The indices a and b indicate the worldvolume and mo-
tion directions (i.e., a,b € {a,ip}). It is seen that when
the velocity v and the tachyon matrix U are zero, then

(R(;i) )ab = Gab-

Hence, boundary state (9) reduces to the state for a
Dp-brane where the X%, o = 0,...,p, and the X?,
t=p+1,...,d—1, respectively obey the Neumann
and Dirichlet boundary conditions [13].

The infinite product in (9) is generated by the path
integral. Zeta-function regularization can be used to
avoid this divergent quantity [14],

o) —1
{det (—29 + 271'0/K>] =
m=1 m
!
= /det(—2Q) detT (1 - ”O‘QW> . (12)

where the matrix W is defined by

Wap = Uapd®,8°,.

The zero-mode part of the boundary state becomes

T 1
B, = —£F __ /d e (——PTU_1P> X
|Be) 2v/det U T
*) I oo - "

i' #ig

XHIpL—pR 11 i = vk =0) x

i'#ig

x §(zy —vx) —y

0 _ ot _

1
x |pP =pg = Evp > (13)

where the vector P is defined by

P, = 'Upiofsoa - %pow
The momentum-dependent exponential term appears
due to the presence of the momentum components in
the zero-mode parts of the boundary actions. Two delta
functions indicate the position of the brane. After per-
forming the integration over momenta, the matter part
of the boundary state takes the form

_ osc 0 _ 7T(47T)p
1B2) = 1B} 1B2) = Ty 5

o0 1 o0
T ot
X ngl det R exp ( E amS(m)am> X

X O(xl — val -y H o(x "Yvac), (14)
i’ #ig
where
[vac) = 10)al0)a|p)

is written in this form for brevity.

2.2. Partition function and tachyon
condensation

Because the partition function is defined as
Z = /DXeiS[X],

it is obvious that there exists a very natural connection
between the boundary state and the partition function:
the latter is just given by the vacuum amplitude of the
boundary state:

Z = (vac|B; Shoundary)- (15)

Therefore, the normalization factors in Eq. (14) come
from the disk partition function [15], which can also be
derived by evaluating the string path integral on a disk:
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m(4m)P
Zdisk = Tp m X

X [det <gab —v(0°,8% +0°,0%) +
m=1

ML - (16)
m aB? o9 p -

We note that the disk diagram in the closed string the-
ory shows a propagating closed string from the bound-
ary of the disk, which then disappears.

The presence of the open string tachyon field as a
background field in our case allows studying the effect
of tachyon condensation on the partition function. In
our case, where the tachyon profile is linear, studying
the tachyon condensation amounts to sending the ele-
ments of the tachyon matrix U to infinity [10].

Our tachyon matrix has all elements along the brane
worldvolume. We recall that Uyg is a (p+1) x (p+ 1)
matrix. Without loss of generality, we let it be a di-
agonal matrix. We consider condensation of all spatial
components of U, which can be done for each com-
ponent one by one or for all of them at once. After
successive condensations along the spatial directions
of the Dp-brane {X%|a =1,2,...,p}, with the limit
Uza — oo applied, partition function (16) becomes

m(4m)P
v24+1/2

i 2ra’ !
X H1 <1 — 0?4 . Uoo) . (17)
m=

where U’ is a new diagonal p X p tachyon matrix that
does not contain the element Uyg. The zeta function
regularization,

Zaisk = T (27r\/o7)p Vdet U’ x

I [det <2”ZIU')]1 - (wa)”m,

m=1

has been used in (17). The relation between the D-bra-

ne tensions p
Tpy =T, (27Va')

allows interpreting (17) as the partition function re-
lated to a moving DO-brane with the effective tension

P
T4 e,

=Ty ——
To v +1/2

This considerable difference from the conventional
tachyon condensation [10], comes from the momentum-
dependent exponential factor, which exists due to the
presence of zero modes in both tachyon and veloc-
ity boundary actions. In the absence of the velocity

term, there is no momentum dependence in the par-
tition function and the factor 1/v/det U that appears
from zero modes in the tachyon action cancels the fac-
tor v/det U that comes from the tachyon condensation
in the infinite determinant. But an additional factor
Vdet U appears because of the Gaussian integration
over momenta and leads to this unusual behavior of
the partition function after tachyon condensation.

Ag the next step, performing tachyon condensation
along the X°-direction in Eq. (17), we eliminate the
velocity and obtain a D-instanton with the partition
function

w(4m)P

Zaisk = T(_1)
In other words, temporal tachyon condensation fixes
the D-brane in time as well as eliminates its velocity
and fixes it in the space. Generally, temporal conden-
sation on a moving Dp-brane leads to a stationary in-
stantonic Dp-brane (i.e., eliminates the time direction
of the worldvolume), and condensation of the spatial
components of the tachyon field also reduces the Dp-
brane dimension.

Accordingly, after tachyon condensation along any
spatial direction of the moving Dp-brane worldvolume,
its dimension decreases by one such that after ¢ suc-
cessive condensations, we have a D(p — ¢)-brane in
the presence of a U, _q11)x(p—qg+1) tachyon field. The
main difference from the usual case is that although the
brane dimension decreases, the effect of the tachyon re-
mains in the root factor.

In the next section, by using the boundary state for-
malism, we compute the interaction amplitude between
two D-branes in the closed string channel.

3. INTERACTION OF THE BRANES

Because the conformal invariance is preserved in
bulk action (1) and is broken on boundary action (2)
(see [16]), the conformal ghosts play a role just in the
bulk, and hence their contribution to the boundary
state should also be considered. For calculating the in-
teraction amplitude between two D-branes, we return
to the previous boundary state (14), but restore the in-
tegration over momenta. Those give the total boundary
state

|B)'***! = | Byn)| Ba)- (18)

To find the interaction amplitude between the Dp;- and
Dpo-branes via exchanges of closed string states, we
need the closed string propagator, which is given by a
time integral of the closed string Hamiltonian:
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D= 2a'/dte*tH,
0

oo
H=ap'py+2) (aep.n+a_pn.dy) + (d—2)/6.

n=1

The convention for the indices to be used in the
amplitude is as follows. The set {i} shows the direc-
tions perpendicular to both branes except ig, {a} is
for the directions along both branes except 0, {af} is
used for the directions along the Dp;-brane and per-
pendicular to the Dpo-brane, and {ab} indicates the
directions along the Dpy-brane and perpendicular to
the Dp;-brane. Because {7} and {ay} are arbitrary,
the positions of the branes are not fixed, that is, the two
branes can be parallel or perpendicular to each other.

3.1. The interaction amplitude

The interaction amplitude is given by the overlap of
the two boundary states corresponding to the branes,
via the closed string propagator, i.e.,

After a long calculation, we obtain

o'V Tp, Ty,
4(2m)dE

[det Uy det U] ~/2 x

U1 —U2|

X H [det R(m)1 det R(m)2]71 /dt X
0

m=1

<< 11 ([detu—s(m)lsg;me—‘*mt)]—l(1—e—4mt)2) x

m=1

d=
d— T\ 1 i,
o (2" o (- St
1
X X
Vdet @ det Gy det G

1 / 1ol o
xexp | —7 ETQ_lE—}—Z[(yzal)z(Gll) 9] 4

+ Y[ )2(G ]| | o (19)

The matrices @, Gy, and G5 and the doublet E are
defined in terms of their elements as

o't ) )
U = (v —v1)2(1 +o7)(1—ve) -
[ 2, 1 ? 00 71-
—|{vi+ 3 (U1") )
o't
= — (141 -v?) -
0 = - (10?1 - 0?) o0
5, 1 ? 00y —1
—|{v2+ 3 (U3") )
o't
Q2 = Qs = (2 —0)? (14 v?) x
X (1 + U22)(1 — U1U2),
Ei = P [y2i°(1 +v1%)? —y (1 + v1v2)],
S | (21)
Er= vy — Uy [y (1 +02%)? = 92" (1 + v1v2)],
and the nonzero elements of the matrix G are
1, alal
Gragoy = —a't = (U717,
1 1 (22)
Gigm = 3 "t — Z(Ul““)’l

With the exchange 1 <+ 2, we obtain the nonzero ele-
ments of Go. We note that there is no sum over the
repeated indices of and @ in (22).

In the interaction amplitude (19), V4 is the com-
mon worldvolume of the branes and d; is the dimen-
sion of the directions that are perpendicular to both
branes. The infinite product in the second line of (19)
shows the effect of the oscillators and conformal ghosts
(see Refs. [9, 17] for an analogous effect). The first ex-
ponential and its prefactor, which originate from the
directions perpendicular to both branes, indicate the
damping of the amplitude due to the distance between
the branes. The momenta entering the Hamiltonian
and the zero mode terms in the boundary state lead
to the second exponential and its prefactor. The con-
stant factors behind the time integral somehow show
the strength of the interaction, which depends on the
brane tensions, their velocities, and the tachyon fields.
We note that the regularization of the infinite product
in the first line can be done according to (12). Ampli-
tude (19) can also be interpreted as the cylinder parti-
tion function for a closed string.

3.2. Long time behavior of the interaction
amplitude

An interesting feature of the interaction amplitude
is its behavior after sufficiently long times, i.e.,
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lim A.

t—o00

In the ordinary cases (i.e., in the absence of a back-
ground tachyon), massless closed string states domi-
nate in this regime. Here, the difference from the con-
ventional interaction amplitudes is in the presence of
the matrices @, Gy, and G2 and the doublet E, which
are functions of time. Therefore, at large separations of
the branes in the 26-dimensional spacetime, the closed
string tachyon and the massless closed string states (the
graviton, the dilaton, and the Kalb—-Ramond field) con-
tribute to the interaction amplitude as

Ap = lim A =

t—o0
_ (=) 2T, T,
T A2m) % (1 4 012) (1 + ve2) (o) (Pr+p2)/2

2dg+1/2

x [det Uy det U] /2 ] [det Ry det Ripya] * %
m=1

(e
. ett (8(1)18(1)2) -2
X }1}{}0 <t1+(p1+pz)/2 > (3

tl+(p1+p2)/2

where dy is the dimension of the common worldvol-
ume of the branes. The limit of the exponential and
its prefactor in (23) with respect to ¢ is not important
for us because they are related to the position of the
branes, while the closed string states are independent of
these positions. The divergent part in the last line (the
first term) corresponds to the tachyonic closed string
state. The analog of this divergent term in the absence
of the background tachyon field lacks the decelerating
coefficient 1/¢(P1+72)/2 and is usually omitted in the
literature. It is a deficiency of the bosonic string the-
ory, which is to be componented in superstring theory.
But the point is that here the time dependence in the
denominator slows down this divergence. The other
term is related to the contribution of massless states,
which also differs from the conventional case, due to
the presence of the decelerating factor that makes it
rapidly tend to zero in the limit of long time.

There is a remarkable interpretation for this be-
havior. Taking the open string tachyon into account
as a background field means working with unstable
D-branes. The consequence of this instability is the
tachyon rolling as the system evolves; after a long time,
most of the energy that was localized in the tachyon
field transfers to the bulk. This is the consequence
of decaying of the unstable D-branes into the bulk
modes [18]. Therefore, in this picture, the long-time

interaction of the D-branes (due to the massless closed
string exchange) tends to zero. In other words, after
a long enough time, there are no D-branes to interact.
The exchange of the closed string tachyon, which is
present as a divergent term, also has been moderated
in this picture. Although this term tends to infinity
anyway, its growth rate is related to the dimension of
the branes. Therefore, apart from the tachyonic term
that tends to infinity, we can say that the exchange of
the massless closed string states causes the D-branes to
interact, but their contribution decreases in time due
to the instability of the D-branes.

The damping of the interaction amplitude with time
depends on the brane dimensions. An interesting ex-
ception is a D-instanton. When two D-instantons inter-
act with each other, the factor 1/t'+(P1422)/2 reduces
to 1 and hence the ordinary long-time amplitude as-
sociated with the massless states is restored. In addi-
tion, the usual divergent term is related to the tachy-
onic closed string state. We can therefore say that the
general interactive behavior of the D-instantons is un-
changed in the presence of an open string background
tachyon field.

4. CONCLUSIONS AND SUMMARY

We obtained the boundary state of a closed string,
emitted from or absorbed by moving Dp-branes in the
presence of the background tachyon field.

The relation between the boundary state and the
disk partition function was discussed. The effect of
the tachyon condensation on the partition function
was studied, which shows a spectacular difference from
the conventional condensation. Condensation of the
tachyon matrix components along any spatial world-
volume directions leads to a partition function corre-
sponding to a lower dimensional moving D-brane with
an effective tension that depends on the condensated
components of the tachyon field. However, condensa-
tion of Upyg eliminates velocity and also leads to an in-
stantonic D-brane, which is fixed in time. After com-
plete condensation of the tachyon field, a D-instanton
is obtained.

The interaction amplitude between two D-branes
with arbitrary dimensions p; and ps has been calcu-
lated. Our calculations are valid for the systems of
branes that are parallel or perpendicular to each other.
The interaction strength between the branes depends
on the brane dimensions, their tensions, their rela-
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tive configuration, the closed string mode numbers, the
tachyon matrices, and the velocities of the branes.

Asg a special case, in the large-distance interaction
of the branes, the contribution of the massless states
tends to zero and the divergent part related to the
closed string tachyon state considerably slows down.
Therefore, the statement that the force associated with
the massless states is long range would be valid as long
as there is no background tachyon field in the system.
This unconventional behavior may be ascribed to the
rolling of the tachyon field toward a minimum of its po-
tential. This leads to a closed string vacuum without
any D-brane at the end of the process and causes the
concept of the interaction of the D-branes to faint. An
interesting point is that in the case of the D-instanton
interaction, this descension of the long time amplitude
jumps to the usual case.
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