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MOVING BRANES IN THE PRESENCEOF BACKGROUND TACHYON FIELDSZ. Rezaei *, D. Kamani **Physis Department, Amirkabir University of Tehnology (Tehran Polytehni)15875-4413, Tehran, IranReeived April 14, 2011We ompute the boundary state assoiated with a moving Dp-brane in the presene of the open string tahyon�eld as a bakground �eld. The e�et of the tahyon ondensation on the boundary state is disussed. It leadsto a boundary state assoiated with a lower-dimensional moving D-brane or a stationary instantoni D-brane.The former originates from ondensation along the spatial diretions and the latter omes from the temporal di-retion of the D-brane worldvolume. Using the boundary state, we also study the interation amplitude betweentwo arbitrary Dp1 and Dp2-branes. The long-range behavior of the amplitude is investigated, demonstrating anobvious deviation from the onventional form, due to the presene of the bakground tahyon �eld.1. INTRODUCTIONThe open string tahyon an be regarded as an in-stability of branes beause open strings introdue quan-tum exitations of the branes [1℄. The tahyon poten-tial has a stationary point where the negative poten-tial energy of the tahyon anels the tension of theD-brane [2℄. This proess, whih is alled tahyon on-densation, ends when the brane has ompletely disap-peared. During the ondensation proess, lower-dimen-sional branes are produed [3, 4℄.On the other hand, we have the boundary state asa quantum state that ontains losed string states [5℄.It an be used to study D-branes. In the other words,a D-brane ouples to all states of the losed string viathe boundary state. We an therefore suppose that theexhange of losed strings between two D-branes is re-sponsible for the interation of branes. For alulatingit, we an just onnet their orresponding bounda-ry states through the losed string propagator. Theoherent state method [6℄ and the path integral ap-proah [7, 8℄ have been used to obtain the boundarystate. Furthermore, the boundary state in the presen-e of bakground �elds suh as B�� and U(1) gauge�elds in a ompat spaetime [9℄ and in the presene ofthe tahyon �eld [10, 11℄ have been investigated.Apart from the bakground U(1) gauge �eld and*E-mail: z.rezaei�aut.a.ir**E-mail: kamani�aut.a.ir

the open string tahyon �eld, whih are parallel tothe brane worldvolume, the transverse �utuations ofa D-brane are also essential as a dynamial objet.Sarity of this kind of multilateral disussion moti-vated us to follow this proess in this paper in spite ofsome tehnial di�ulties. Besides, the full brane inthe presene of a one-dimensional bakground tahyon�eld is usually onsidered in the literature and the ef-fet of one-stage ondensation on that brane is studied.But we here study a D-brane of an arbitrary dimension.Therefore, the Dirihlet boundary onditions are alsopresent. In our setup, the tahyon �eld has omponentsalong all the diretions of the D-brane worldvolume.This tahyon pro�le leads to various ondensations andhene a variety of the resulted branes.Here, using the path integral approah, we alu-late the boundary state orresponding to a movingDp-brane in the presene of a tahyon �eld. Conse-quently, we obtain the disk partition funtion of thelosed string. The e�et of the tahyon ondensationon this partition funtion is studied. The ondensa-tion is applied along the spatial worldvolume diretionsand gives a partition funtion assoiated with a mov-ing lower-dimensional D-brane. The di�erene from theonventional tahyon ondensation (e. g., see [10℄) is inthe presene of a tahyon-dependent fator in the re-sultant partition funtion. That is, although the branedimension dereases, the e�et of the tahyon is not re-moved by ondensation. In this proess, the transverse1096



ÆÝÒÔ, òîì 140, âûï. 6 (12), 2011 Moving branes in the presene : : :�utuations of a Dp-brane prevent the normal tahyonondensation from ourring. Applying the onden-sation along the temporal diretion of the Dp-braneworldvolume gives an instantoni stationary brane.The �nal goal of this paper is to apply the bounda-ry state to obtain the interation amplitude betweentwo moving D-branes and to study its behavior forlarge distanes between the branes. We observe thatdue to the inlusion of the open string tahyon bak-ground (whih is equivalent to onsidering the instabil-ity of the bosoni D-branes), the long-range interationof the branes tends to zero. This is a onsequene ofthe tahyon rolling toward its minimum potential. Weobserve that for the interation of two D-instantons,the onventional long-time interation amplitude is re-stored.2. BOUNDARY STATE AND TACHYONCONDENSATIONTo determine the boundary state assoiated witha moving Dp-brane in the presene of the tahyon�eld, we begin with an appropriate sigma-model for thestring. This ation ontains the bulk term, a tahyoniterm on the boundary, and a veloity term orrespon-ding to the motion of the brane:Sbulk = � 14��0 Z� d2� �p�hhabg���aX��bX�� ; (1)Sboundary = Z�� d�(V iX0��X i + iU��X�X�); (2)where � is the worldsheet of the losed string ex-hanged between the branes, �� is the boundary ofthis worldsheet, whih an be at � = 0 or � = �0 andthe d-dimensional spaetime metri isg�� = (�1; 1; : : : ; 1):In addition, we de�neV i = vi2��0 ;where vi is the brane veloity omponent along theX i diretion. The oupling of the tahyon �eld to thestring via integration over the worldsheet boundary hasbeen disussed in [12℄. It ours squared in the ation,i. e., as T 2(X), and in order to produe a Gaussianintegral, the tahyon pro�le must therefore be hosenlinear, T (X) = a+ u�X�:

The onstant a has been shifted away in (2). We alsoonsider the symmetri matrix U to have nonzero ele-ments only along the worldvolume of the Dp-brane.The set fX�g spei�es the diretions along the Dp-bra-ne worldvolume and fX ig shows the diretions perpen-diular to it. 2.1. The boundary stateWe now onsider the mode expansion of the oor-dinates of the losed stringX�(�; �) = x�0 + 2�0p�� +r�02 ��Xm>0m�1=2(x�me2im� + x�me�2im�); (3)where we de�ne x and x as the bosoni mode ombina-tions xm = ame�2im� + eayme2im� ;xm = ayme2im� + eame�2im� ; (4)with a�m = ipm��m; ay�m = �ipm���m:Similar relations hold for ea�m and eay�m . If we interpretequations (4) as eigenvalue equations [7℄, then the or-responding eigenstate isjx; xi == 1Ym=1 exp��12xmxm�aymeaym+aymxm+xmeaym��� jvai; (5)where ontration with the metri g�� is applied im-pliitly. This is a boundary state of the losed stringdue to the bulk term of the string sigma-model with-out any boundary interation. Naturally deforming theation by adding nonvanishing boundary ontributionsleads to the deformed boundary statejB;Sboundaryi = Z [dx dx℄eiSboundary [x;x℄jx; xi: (6)The boundary ations related to the tahyon, ST ,and the veloity term, SV , an be written in terms ofmodes asST = i�x�0U��x�0 + i��0 1Xm=1x�mU��m x�m; (7)1097



Z. Rezaei, D. Kamani ÆÝÒÔ, òîì 140, âûï. 6 (12), 2011SV = vix00pi + ivi �� 1Xm=1�12(x0mxim + ximx0m)� x0maim � eaimx0m� : (8)Here and hereafter, we impose a seleted diretion X i0for the motion of the Dp-brane and set vi0 = v. Sub-stituting (7) and (8) in (6) and also onsidering theontribution of the bulk ation at the boundary givesthe boundary state. The osillating part of this stateis jBxios = 1Ym=1 1detR(m) �� exp 1Xm=1 aymS(m)eaym! j0i; (9)where R(m)ab = �2
ab + 2��0m U��Æ�aÆ�b;
ab = �12gab � 12v(Æ0aÆi0b + Æi0aÆ0b); (10)and S(m)�� = 2(R�1(m))abÆa�Æb� � g�� : (11)The indies a and b indiate the worldvolume and mo-tion diretions (i. e., a; b 2 f�; i0g). It is seen that whenthe veloity v and the tahyon matrix U are zero, then(R�1(m))ab = gab:Hene, boundary state (9) redues to the state for aDp-brane where the X�, � = 0; : : : ; p, and the X i,i = p + 1; : : : ; d � 1, respetively obey the Neumannand Dirihlet boundary onditions [13℄.The in�nite produt in (9) is generated by the pathintegral. Zeta-funtion regularization an be used toavoid this divergent quantity [14℄,1Ym=1 �det��2
+ 2��0Wm���1 ==pdet(�2
) det ��1� ��0W
 � ; (12)where the matrix W is de�ned byWab = U��Æ�aÆ�b:The zero-mode part of the boundary state beomes

jBxi0 = Tp2pdetU Z dp� exp�� 14�P TU�1P��� Æ(xi00 � vx00 � yi0) Yi0 6=i0 Æ(xi00 � yi0)��Y� jp�L = p�Ri Yi0 6=i0 jpi0L = pi0R = 0i �� ����pi0L = pi0R = 12vp0� ; (13)where the vetor P is de�ned byP� = vpi0Æ0� � 12p�:The momentum-dependent exponential term appearsdue to the presene of the momentum omponents inthe zero-mode parts of the boundary ations. Two deltafuntions indiate the position of the brane. After per-forming the integration over momenta, the matter partof the boundary state takes the formjBxi = jBxiosjBxi0 = Tp �(4�)pv2 + 1=2 �� 1Ym=1 1detR(m) exp 1Xm=1 aymS(m)eaym!�� Æ(xi00 � vx00 � yi0) Yi0 6=i0 Æ(xi00 � yi0)jvai; (14)where jvai = j0i�j0ie�jpiis written in this form for brevity.2.2. Partition funtion and tahyonondensationBeause the partition funtion is de�ned asZ = Z DXeiS[X℄;it is obvious that there exists a very natural onnetionbetween the boundary state and the partition funtion:the latter is just given by the vauum amplitude of theboundary state:Z = hvajB;Sboundaryi: (15)Therefore, the normalization fators in Eq. (14) omefrom the disk partition funtion [15℄, whih an also bederived by evaluating the string path integral on a disk:1098



ÆÝÒÔ, òîì 140, âûï. 6 (12), 2011 Moving branes in the presene : : :Zdisk = Tp �(4�)pv2 + 1=2 �� 1Ym=1 � det�gab � v(Æ0aÆi0b + Æ0bÆi0a) ++ 2��0m U��Æ�aÆ�b���1 : (16)We note that the disk diagram in the losed string the-ory shows a propagating losed string from the bound-ary of the disk, whih then disappears.The presene of the open string tahyon �eld as abakground �eld in our ase allows studying the e�etof tahyon ondensation on the partition funtion. Inour ase, where the tahyon pro�le is linear, studyingthe tahyon ondensation amounts to sending the ele-ments of the tahyon matrix U to in�nity [10℄.Our tahyon matrix has all elements along the braneworldvolume. We reall that U�� is a (p+1)� (p+ 1)matrix. Without loss of generality, we let it be a di-agonal matrix. We onsider ondensation of all spatialomponents of U , whih an be done for eah om-ponent one by one or for all of them at one. Aftersuessive ondensations along the spatial diretionsof the Dp-brane fX�j�� = 1; 2; : : : ; pg, with the limitU�� !1 applied, partition funtion (16) beomesZdisk = Tp �(4�)pv2 + 1=2 �2�p�0 �ppdetU 0 �� 1Ym=1�1� v2 + 2��0m U00��1 ; (17)where U 0 is a new diagonal p� p tahyon matrix thatdoes not ontain the element U00. The zeta funtionregularization,Ym=1 �det�2��0U 0m ���1 = �2�p�0 �ppdetU 0;has been used in (17). The relation between the D-bra-ne tensions Tp�q = Tp �2�p�0�qallows interpreting (17) as the partition funtion re-lated to a moving D0-brane with the e�etive tensionT0 = T0 �(4�)pv2 + 1=2 pdetU 0:This onsiderable di�erene from the onventionaltahyon ondensation [10℄, omes from the momentum-dependent exponential fator, whih exists due to thepresene of zero modes in both tahyon and velo-ity boundary ations. In the absene of the veloity

term, there is no momentum dependene in the par-tition funtion and the fator 1=pdetU that appearsfrom zero modes in the tahyon ation anels the fa-tor pdetU that omes from the tahyon ondensationin the in�nite determinant. But an additional fatorpdetU appears beause of the Gaussian integrationover momenta and leads to this unusual behavior ofthe partition funtion after tahyon ondensation.As the next step, performing tahyon ondensationalong the X0-diretion in Eq. (17), we eliminate theveloity and obtain a D-instanton with the partitionfuntion Zdisk = T(�1) �(4�)pv2 + 1=2 pdetU:In other words, temporal tahyon ondensation �xesthe D-brane in time as well as eliminates its veloityand �xes it in the spae. Generally, temporal onden-sation on a moving Dp-brane leads to a stationary in-stantoni Dp-brane (i. e., eliminates the time diretionof the worldvolume), and ondensation of the spatialomponents of the tahyon �eld also redues the Dp-brane dimension.Aordingly, after tahyon ondensation along anyspatial diretion of the moving Dp-brane worldvolume,its dimension dereases by one suh that after q su-essive ondensations, we have a D(p � q)-brane inthe presene of a U(p�q+1)�(p�q+1) tahyon �eld. Themain di�erene from the usual ase is that although thebrane dimension dereases, the e�et of the tahyon re-mains in the root fator.In the next setion, by using the boundary state for-malism, we ompute the interation amplitude betweentwo D-branes in the losed string hannel.3. INTERACTION OF THE BRANESBeause the onformal invariane is preserved inbulk ation (1) and is broken on boundary ation (2)(see [16℄), the onformal ghosts play a role just in thebulk, and hene their ontribution to the boundarystate should also be onsidered. For alulating the in-teration amplitude between two D-branes, we returnto the previous boundary state (14), but restore the in-tegration over momenta. Those give the total boundarystate jBitotal = jBghijBxi: (18)To �nd the interation amplitude between the Dp1- andDp2-branes via exhanges of losed string states, weneed the losed string propagator, whih is given by atime integral of the losed string Hamiltonian:1099



Z. Rezaei, D. Kamani ÆÝÒÔ, òîì 140, âûï. 6 (12), 2011D = 2�0 1Z0 dte�tH ;H = �0p�p� + 2 1Xn=1(��n:�n + e��n:e�n) + (d� 2)=6:The onvention for the indies to be used in theamplitude is as follows. The set f�ig shows the dire-tions perpendiular to both branes exept i0, f�ug isfor the diretions along both branes exept 0, f�01g isused for the diretions along the Dp1-brane and per-pendiular to the Dp2-brane, and f�02g indiates thediretions along the Dp2-brane and perpendiular tothe Dp1-brane. Beause f�1g and f�2g are arbitrary,the positions of the branes are not �xed, that is, the twobranes an be parallel or perpendiular to eah other.3.1. The interation amplitudeThe interation amplitude is given by the overlap ofthe two boundary states orresponding to the branes,via the losed string propagator, i. e.,A = hB1jDjB2i:After a long alulation, we obtainA = �0Vu4(2�)di Tp1Tp2jv1 � v2j [detU1 detU2℄�1=2 �� 1Ym=1[detR(m)1 detR(m)2℄�1 1Z0 dt��8<: 1Ym=1�[det(1�S(m)1ST(m)2e�4mt)℄�1(1�e�4mt)2� ��e(d�2)t=6�r ��0t �d�i exp � 14�0tX�i (y1�i�y2�i)2!�� 1pdetQ detG1 detG2 �� exp0��14 24ETQ�1E+X�01 [(y2�01)2(G�11 )�01�01 ℄ ++ X�02 [(y1�02)2(G�12 )�02�02 ℄351A9=; : (19)The matries Q, G1, and G2 and the doublet E arede�ned in terms of their elements as

Q11 = �0t(v2 � v1)2 (1 + v12)(1� v22)�� "�v21 + 12�2 (U001 )�1# ;Q22 = �0t(v2 � v1)2 (1 + v22)(1� v12)�� "�v22 + 12�2 (U002 )�1# ;Q12 = Q21 = �0t(v2 � v1)2 (1 + v12)�� (1 + v22)(1� v1v2);
(20)

E1 = iv2 � v1 [y2i0(1 + v12)2 � y1i0(1 + v1v2)℄;E2 = iv2 � v1 [y1i0(1 + v22)2 � y2i0(1 + v1v2)℄; (21)and the nonzero elements of the matrix G1 areG1�01�01 = ��0t� 14(U�01�011 )�1;G1uu = �12�0t� 14(Uuu1 )�1: (22)With the exhange 1 $ 2, we obtain the nonzero ele-ments of G2. We note that there is no sum over therepeated indies �01 and u in (22).In the interation amplitude (19), Vu is the om-mon worldvolume of the branes and d�i is the dimen-sion of the diretions that are perpendiular to bothbranes. The in�nite produt in the seond line of (19)shows the e�et of the osillators and onformal ghosts(see Refs. [9, 17℄ for an analogous e�et). The �rst ex-ponential and its prefator, whih originate from thediretions perpendiular to both branes, indiate thedamping of the amplitude due to the distane betweenthe branes. The momenta entering the Hamiltonianand the zero mode terms in the boundary state leadto the seond exponential and its prefator. The on-stant fators behind the time integral somehow showthe strength of the interation, whih depends on thebrane tensions, their veloities, and the tahyon �elds.We note that the regularization of the in�nite produtin the �rst line an be done aording to (12). Ampli-tude (19) an also be interpreted as the ylinder parti-tion funtion for a losed string.3.2. Long time behavior of the interationamplitudeAn interesting feature of the interation amplitudeis its behavior after su�iently long times, i. e.,1100



ÆÝÒÔ, òîì 140, âûï. 6 (12), 2011 Moving branes in the presene : : :limt!1A:In the ordinary ases (i. e., in the absene of a bak-ground tahyon), massless losed string states domi-nate in this regime. Here, the di�erene from the on-ventional interation amplitudes is in the presene ofthe matries Q, G1, and G2 and the doublet E, whihare funtions of time. Therefore, at large separations ofthe branes in the 26-dimensional spaetime, the losedstring tahyon and the massless losed string states (thegraviton, the dilaton, and the Kalb�Ramond �eld) on-tribute to the interation amplitude asA0 = limt!1A == i(�1)(p1+p2)=2 Tp1Tp24(2�)d�i(1 + v12)(1 + v22) 2du+1=2(�0)(p1+p2)=2 �� [detU1 detU2℄�1=2 1Ym=1[detR(m)1 detR(m)2℄�1 �� Z dt(�r ��0t �d�i exp � 14�0tX�i (y1�i � y2�i)2! �� limt!1  e4tt1+(p1+p2)=2 + Tr(S(1)1ST(1)2)� 2t1+(p1+p2)=2 !) ; (23)where d�u is the dimension of the ommon worldvol-ume of the branes. The limit of the exponential andits prefator in (23) with respet to t is not importantfor us beause they are related to the position of thebranes, while the losed string states are independent ofthese positions. The divergent part in the last line (the�rst term) orresponds to the tahyoni losed stringstate. The analog of this divergent term in the abseneof the bakground tahyon �eld laks the deeleratingoe�ient 1=t1+(p1+p2)=2 and is usually omitted in theliterature. It is a de�ieny of the bosoni string the-ory, whih is to be omponented in superstring theory.But the point is that here the time dependene in thedenominator slows down this divergene. The otherterm is related to the ontribution of massless states,whih also di�ers from the onventional ase, due tothe presene of the deelerating fator that makes itrapidly tend to zero in the limit of long time.There is a remarkable interpretation for this be-havior. Taking the open string tahyon into aountas a bakground �eld means working with unstableD-branes. The onsequene of this instability is thetahyon rolling as the system evolves; after a long time,most of the energy that was loalized in the tahyon�eld transfers to the bulk. This is the onsequeneof deaying of the unstable D-branes into the bulkmodes [18℄. Therefore, in this piture, the long-time

interation of the D-branes (due to the massless losedstring exhange) tends to zero. In other words, aftera long enough time, there are no D-branes to interat.The exhange of the losed string tahyon, whih ispresent as a divergent term, also has been moderatedin this piture. Although this term tends to in�nityanyway, its growth rate is related to the dimension ofthe branes. Therefore, apart from the tahyoni termthat tends to in�nity, we an say that the exhange ofthe massless losed string states auses the D-branes tointerat, but their ontribution dereases in time dueto the instability of the D-branes.The damping of the interation amplitude with timedepends on the brane dimensions. An interesting ex-eption is a D-instanton. When two D-instantons inter-at with eah other, the fator 1=t1+(p1+p2)=2 reduesto 1 and hene the ordinary long-time amplitude as-soiated with the massless states is restored. In addi-tion, the usual divergent term is related to the tahy-oni losed string state. We an therefore say that thegeneral interative behavior of the D-instantons is un-hanged in the presene of an open string bakgroundtahyon �eld.4. CONCLUSIONS AND SUMMARYWe obtained the boundary state of a losed string,emitted from or absorbed by moving Dp-branes in thepresene of the bakground tahyon �eld.The relation between the boundary state and thedisk partition funtion was disussed. The e�et ofthe tahyon ondensation on the partition funtionwas studied, whih shows a spetaular di�erene fromthe onventional ondensation. Condensation of thetahyon matrix omponents along any spatial world-volume diretions leads to a partition funtion orre-sponding to a lower dimensional moving D-brane withan e�etive tension that depends on the ondensatedomponents of the tahyon �eld. However, ondensa-tion of U00 eliminates veloity and also leads to an in-stantoni D-brane, whih is �xed in time. After om-plete ondensation of the tahyon �eld, a D-instantonis obtained.The interation amplitude between two D-braneswith arbitrary dimensions p1 and p2 has been alu-lated. Our alulations are valid for the systems ofbranes that are parallel or perpendiular to eah other.The interation strength between the branes dependson the brane dimensions, their tensions, their rela-1101
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