ИССЛЕДОВАНИЕ РЕГУЛЯРИЗУЮЩИХ СВОЙСТВ НЕЛИНЕЙНОЙ ЭЛЕКТРОДИНАМИКИ В ТЕОРИИ ЭЙНШТЕЙНА – БОРНА – ИНФЕЛЬДА

В. И. Денисов^{*}, В. А. Соколов^{**}

Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

Поступила в редакцию 30 марта 2011 г.

Рассматриваются новые регуляризирующие проявления теории Эйнштейна – Борна – Инфельда в пространстве-времени массивного заряженного силового центра. Исследуются свойства изотропных геодезических в этом пространстве. Показано, что заряд может превышать максимально допустимый в решении Райснера – Нордстрема, а также отмечена возможность устранения одного из горизонтов метрики.

1. ВВЕДЕНИЕ

Как известно, переход от линейной электродинамики Максвелла к нелинейной электродинамике Борна-Инфельда устраняет [1] проблему расходимости энергии электростатического поля точечной заряженной частицы. Поэтому представляет несомненный интерес исследование регуляризующих свойств нелинейной электродинамики в электровакуумных пространствах теории Эйнштейна-Борна-Инфельда. В качестве первого шага на этом пути рассмотрим решение уравнений Эйнштейна-Борна-Инфельда в случае, когда источником электромагнитного и гравитационного полей является статическое сферически-симметричное тело массы M, обладающее электрическим зарядом Q, и изучим регуляризующие свойства этой теории на основе полученного пространства-времени.

В теории Эйнштейна—Максвелла решением такой задачи является [2] метрика Райснера—Нордстрема:

$$ds^{2} = \left(1 - \frac{r_{g}}{r} + \frac{GQ^{2}}{c^{4}r^{2}}\right)c^{2}dt^{2} - \frac{dr^{2}}{1 - \frac{r_{g}}{r} + \frac{GQ^{2}}{c^{4}r^{2}}} - r^{2}[d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}], \quad (1)$$

где r_g — гравитационный радиус,
 G — гравитационная постоянная.

Напряженность электрического поля в этом случае имеет вид $F_{01} = Q/r^2$.

Пространство-время Райснера-Нордстрема обладает двумя горизонтами, имеющими радиусы

$$r_{+} = \frac{r_{g}}{2} \left[1 + \sqrt{1 - \frac{Q^{2}}{M^{2}G}} \right],$$

$$r_{-} = \frac{r_{g}}{2} \left[1 - \sqrt{1 - \frac{Q^{2}}{M^{2}G}} \right].$$
(2)

Первый из этих горизонтов обладает свойствами, во многом аналогичными свойствам горизонта событий Шварцшильда, а второй — горизонт Коши — имеет самостоятельное значение. Для того чтобы оба горизонта были вещественными и окружали сингулярность, необходимо, чтобы заряд центра не превышал значения $Q^{*2} = GM^2$ — предельно допустимого заряда звезды с массой M в пространстве-времени Райснера – Нордстрема.

Таким образом, линейная электродинамика в теории Эйнштейна-Максвелла даже в случае сферически-симметричного пространства-времени не проявляет регуляризирующих свойств.

^{*}E-mail: vid.msu@yanedx.ru

^{**}E-mail: sokolov.sev@inbox.ru

2. ОСНОВНЫЕ УРАВНЕНИЯ ТЕОРИИ ЭЙНШТЕЙНА – БОРНА – ИНФЕЛЬДА И ИХ РЕШЕНИЕ В СФЕРИЧЕСКИ-СИММЕТРИЧНОМ СЛУЧАЕ

Плотность лагранжиана в теории Эйнштейна-Борна-Инфельда имеет вид

$$L = -\frac{c^4 \sqrt{-g}}{16\pi G} R - \frac{\sqrt{-g}}{4\pi a^2} \times \left\{ \sqrt{1 - \frac{a^2}{2} I_2 - \frac{a^4}{4} I_4 + \frac{a^4}{8} I_2^2} - 1 \right\}, \quad (3)$$

где G — гравитационная постоянная, $I_2 = F_{ik}F^{ki}$, $I_4 = F_{ik}F^{km}F_{ml}F^{li}$ — инварианты тензора электромагнитного поля, R — скалярная кривизна, g — определитель метрического тензора g_{ik} , 1/a — характерная для электродинамики Борна – Инфельда величина индукции магнитного поля.

Уравнения электромагнитного поля в этой теории отличаются от уравнений Максвелла, переходя в них только при $a^2 \rightarrow 0$:

$$\nabla_n \left\{ \frac{\left(2 - a^2 I_2\right) F^{kn} + 2a^2 F^{kn}_{(3)}}{\sqrt{4 - 2a^2 I_2 - a^4 I_4 + a^4 I_2^2/2}} \right\} = -\frac{4\pi}{c} j^k, \quad (4)$$
$$\nabla_j F_{nm} + \nabla_n F_{mj} + \nabla_m F_{jn} = 0,$$

где $F_{(3)}^{kn} = F^{kp}F_{pm}F^{mn}$ — третья степень [3] тензора электромагнитного поля, а ∇_n — ковариантная производная по координате x^n в псевдоримановом пространстве-времени с метрическим тензором g_{pm} .

Тензор энергии-импульса электромагнитного поля в электродинамике Борна – Инфельда, как и в любой теории, можно получить, варьируя плотность лагранжиана (3) по метрическому тензору. Учитывая тензорное соотношение [3]

$$F_{ik}^{(4)} = \frac{1}{2} F_{ik}^{(2)} I_2 + \frac{1}{8} g_{ik} [2I_4 - I_2^2], \qquad (5)$$

в результате будем иметь

$$T_{ik} = \frac{1}{4\pi S} \left\{ F_{ik}^{(2)} - \frac{1}{2a^2} g_{ik} \left[a^2 I_2 + 2S - 2 \right] \right\},\,$$

где для сокращения записи введены обозначения

$$S = \sqrt{1 - a^2 I_2/2 - a^4 I_4/4 + a^4 I_2^2/8},$$
$$F_{ik}^{(2)} = F_{im} F_{\cdot k}^{m} \cdot.$$

Гравитационные уравнения теории Эйнштейна-Борна-Инфельда принимают вид

$$R_{ik} - \frac{1}{2}g_{ik}R = \frac{2G}{c^4S} \left\{ F_{ik}^{(2)} - \frac{1}{2a^2}g_{ik} \left[a^2I_2 + 2S - 2 \right] \right\}.$$
 (6)

Найдем решение уравнений (4) и (6) в случае, когда источником электромагнитного и гравитационного полей является массивный точечный заряд.

Электрическое поле точечного заряда радиально и центрально симметрично, поэтому единственной отличной от нуля компонентой тензора электромагнитного поля будет F_{01} . В сферически-симметричных задачах общей теории относительности метрика иногда [4] отличается от анзаца метрики Шварцшильда. Поэтому для достижения большей общности решение нашей задачи, следуя работе [4], будем искать в виде

$$g_{00} = A(r), \quad g_{11} = -B(r), \quad g_{22} = -r^2, \\ g_{33} = -r^2 \sin^2 \theta.$$
(7)

Подставляя эти выражения в уравнения (6) и комбинируя компоненты уравнений Эйнштейна с индексами «00» и «11», приходим к соотношению $A(r) = C_0/B(r)$, где C_0 — постоянная интегрирования.

Запишем с учетом этого обстоятельства нетривиальные уравнения теории Эйнштейна-Борна-Инфельда вне источника:

$$\frac{d}{dr} \left[\frac{r^2 F_{01} \sqrt{C_0}}{\sqrt{C_0 - a^2 F_{01}^2}} \right] = 0,$$

$$\frac{d}{dr} \left[r \left(A(r) - C_0 \right) \right] =$$

$$= \frac{2GC_0 r^2}{a^2 c^4} \left[1 - \frac{\sqrt{C_0}}{\sqrt{C_0 - a^2 F_{01}^2}} \right],$$

$$\frac{r^2}{2} \frac{d^2 A(r)}{dr^2} + r \frac{dA(r)}{dr} =$$

$$= \frac{2GC_0 r^2}{a^2 c^4} \left[1 - \sqrt{1 - \frac{a^2 F_{01}^2}{C_0}} \right].$$
(8)

Из первого уравнения системы (8) следует, что

$$F_{01} = \frac{Q\sqrt{C_0}}{\sqrt{C_0 r^4 + a^2 Q^2}}$$

Решая оставшиеся уравнения системы (8), получим

$$A(r) = C_0 - \frac{C_1}{r} + \frac{2GC_0}{a^2c^4r} \int_r^{\infty} \left[\sqrt{\eta^4 + \frac{a^2Q^2}{C_0}} - \eta^2\right] d\eta$$

где C_1 — некоторая постоянная.

1065

Если потребовать, чтобы метрика (7) при $a^2 \to 0$ переходила в решение Райснера – Нордстрема (1), то необходимо положить $C_0 = 1, C_1 = r_q$. Тогда

$$F_{01} = \frac{Q}{\sqrt{r^4 + a^2 Q^2}},\tag{9}$$

а компоненты метрического тензора псевдориманова пространства-времени в рассматриваемой задаче примут вид

$$g_{00} = 1 - \frac{r_g}{r} + \frac{2G}{a^2 c^4 r} \int_r^\infty \left[\sqrt{\eta^4 + a^2 Q^2} - \eta^2 \right] d\eta,$$
(10)
$$g_{11} = -1/g_{00}, \quad g_{22} = -r^2, \quad g_{33} = -r^2 \sin^2 \theta.$$

Используя полученные выражения (9) и (10), исследуем законы движения безмассовых частиц в теории Эйнштейна-Борна-Инфельда.

3. ЭФФЕКТИВНОЕ ПРОСТРАНСТВО-ВРЕМЯ ДЛЯ ФОТОНОВ В ТЕОРИИ ЭЙНШТЕЙНА – БОРНА – ИНФЕЛЬДА

В отличие от электродинамики Максвелла, в электродинамике Борна – Инфельда уравнения электромагнитного поля (4) нелинейны и эта нелинейность содержится в членах со старшими производными. Поэтому в теории Эйнштейна – Борна – Инфельда распространение слабой электромагнитной волны во внешних электромагнитном и гравитационном полях будет эквивалентно [5,6] распространению этой волны по геодезическим некоторого эффективного псевдориманова пространства-времени, метрический тензор которого G_{ik} зависит от эйнштейновского метрического тензора g_{ik} и тензора внешнего электромагнитного поля F_{ik} . Найдем явное выражение для тензора G_{ik} .

Для этого рассмотрим систему уравнений (4) в области пространства, где четырехвектор плотности тока равен нулю: $j^k = 0$. Опустим свободный индекс в первом из них и запишем только независимые уравнения этой системы:

$$\nabla_{n} \left\{ \frac{\left(2 - a^{2} I_{2}\right) F_{\alpha}^{\cdot n} + 2a^{2} F_{\alpha}^{(3) \cdot n}}{\sqrt{4 - 2a^{2} I_{2} - a^{4} I_{4} + a^{4} I_{2}^{2} / 2}} \right\} = 0, \quad (11)$$

$$\nabla_{0} F_{\alpha\beta} + \nabla_{\alpha} F_{\beta0} + \nabla_{\beta} F_{0\alpha} = 0,$$

где $\alpha, \beta = 1, 2, 3.$

Тензор электромагнитного поля F_{nm} , входящий в эти уравнения, представим в виде суммы тензора внешнего статического электромагнитного поля $F_{nm}(\mathbf{r})$ и тензора слабой электромагнитной волны $f_{nm}(\mathbf{r}, S(\mathbf{r}, t))$:

$$F_{nm} = F_{nm}(\mathbf{r}) + f_{nm}(\mathbf{r}, S(\mathbf{r}, t))$$

где $S(\mathbf{r},t)$ — эйконал.

Разложим уравнения (11) в ряд по малому параметру — отношению амплитуды слабой электромагнитной волны к величине напряженности внешнего электромагнитного поля. В нулевом приближении получим систему дифференциальных уравнений для определения тензора $F_{nm}(\mathbf{r})$. В первом приближении по рассматриваемому малому параметру из (11) будем иметь

$$\nabla_n Q_{\alpha}^{\cdot n} = 0,$$

$$\nabla_0 f_{\alpha\beta} + \nabla_\alpha f_{\beta0} + \nabla_\beta f_{0\alpha} = 0,$$
(12)

где для сокращения записи введено обозначение

$$Q_{\alpha}^{\cdot n} = \left\{ \left(2 - a^{2}J_{2}\right)f_{\alpha}^{\cdot n} + 2a^{2} \times \left[F_{\alpha m}^{(2)}(\mathbf{r})f^{mn} + F_{\alpha}^{\cdot m}(\mathbf{r})f_{mp}F^{pn}(\mathbf{r}) + f_{\alpha m}F_{(2)}^{mn}(\mathbf{r})\right] - 2a^{2}f_{km}F^{mk}(\mathbf{r})F_{\alpha}^{\cdot n}(\mathbf{r})\right\} \times \left\{ 4 - 2a^{2}J_{2} - a^{4}J_{4} + \frac{a^{4}}{2}J_{2}^{2}\right\}^{-1/2} + \frac{1}{2}\left\{ \left(2 - a^{2}J_{2}\right)F_{\alpha}^{\cdot n} + 2a^{2}F_{\alpha}^{(3)\cdot n}\right\} \times \left\{ 4a^{2}f_{km}F^{mk}(\mathbf{r}) + 4a^{4}f_{km}F_{(3)}^{mk}(\mathbf{r}) - 2a^{4}J_{2}f_{km}F^{mk}(\mathbf{r})\right\} \left\{ 4 - 2a^{2}J_{2} - a^{4}J_{4} + \frac{a^{4}}{2}J_{2}^{2}\right\}^{-3/2},$$

а J_2 и J_4 — частный случай инвариантов I_2 и I_4 :

$$J_{2} = F_{km}(\mathbf{r})F^{mk}(\mathbf{r}),$$

$$J_{4} = F_{km}(\mathbf{r})F^{mp}(\mathbf{r})F_{pj}(\mathbf{r})F^{jk}(\mathbf{r}).$$

Проводя в выражениях (12) дифференцирование и учитывая, что в эйкональном приближении справедливы неравенства

$$|f_{pj}\nabla_n F_{km}(\mathbf{r})| \ll \left|F_{km}(\mathbf{r})\frac{\partial f_{pj}}{\partial S}\nabla_n S\right|,$$

асимптотически главную часть уравнений (14) представим в виде

$$A^{\cdot\beta}_{\alpha}\frac{\partial f_{\beta 0}}{\partial S} = 0, \qquad (13)$$

где для упрощения записи введено обозначение

$$\begin{split} A_{\alpha}^{\cdot\beta} &= \left[8 - 4a^2J_2 - 2a^4J_4 + a^4J_2^2 \right] \times \\ &\times \left\{ \left[(a^2J_2 - 2)g^{ik} - 2a^2F_{(2)}^{ik} \right] \nabla_i S \nabla_k S \delta_{\alpha}^{\beta} - \right. \\ &- (a^2J_2 - 2)g^{\beta i} \nabla_i S \nabla_{\alpha} S + 2a^2 \left[F_{(2)\alpha}^{\cdot i}.g^{\beta k} + F_{(2)}^{\beta k} \nabla_{\alpha} S \right] \times \\ &\times \nabla_k S - 2a^2g^{ik} \nabla_i S \nabla_k S F_{(2)\alpha}^{\cdot\beta}. \\ &- 2a^2F_{\alpha}^{\cdot i}.F^{\beta k} \nabla_i S \nabla_k S \right\} + \\ &+ \left\{ 16a^6F_{(3)\alpha}^{\cdot i}.F_{(3)}^{\beta k} + 4a^2(a^2J_2 - 2)^2F_{\alpha}^{\cdot i}.F^{\beta k} - \right. \\ &- 8a^4(a^2J_2 - 2) \left[F_{(3)\alpha}^{\cdot i}.F^{\beta k} + F_{\alpha}^{\cdot i}.F_{(3)}^{\beta k} \right] \right\} \nabla_i S \nabla_k S. \end{split}$$

Условием существования нетривиального решения $(\partial f_{\beta 0}/\partial S \neq 0)$ для системы линейных однородных алгебраических уравнений (13) является требование равенства нулю определителя коэффициентов системы: Det $||A_{\alpha}^{\cdot\beta}|| = 0.$

Поскольку вычисление этого определителя необходимо проводить, сохраняя тензорную структуру получаемого выражения, удобно воспользоваться известным [3] соотношением:

Det
$$||A_{\alpha}^{\beta}|| = \frac{1}{3}A_{(3)} - \frac{1}{2}A_{(1)}A_{(2)} + \frac{1}{6}A_{(1)}^{3}$$
,

где инвариант $A_{(N)}$ N-й степени тензора $A_{\alpha\beta}$ определяется равенством $A_{(N)} = A^{\alpha\beta}_{(N)}g_{\alpha\beta}$.

Условие существования нетривиального решения системы линейных уравнений (13) примет вид

$$2A_{(3)} - 3A_{(1)}A_{(2)} + A_{(1)}^3 = 0.$$
(14)

Это соотношение и будет представлять собой уравнение эйконала в нелинейной электродинамике Борна-Инфельда.

Поскольку в выражение (14) входят только трехмерные инварианты тензора $A_{\alpha\beta}$, возникает впечатление, что полученное уравнение эйконала не является релятивистски инвариантным с точки зрения преобразования координат четырехмерного пространства-времени. В этом случае и «метрический тензор» эффективного псевдориманова пространства-времени, входящий в данные уравнения, не представлял бы собой тензор в четырехмерном пространстве-времени, так как наряду с четырехмерными свертками степеней тензора внешнего электромагнитного поля он содержал бы и их трехмерные свертки.

Для доказательства того, что соотношение (14) приводит к релятивистски инвариантному, с точки зрения четырехмерного пространства-времени, уравнению эйконала, построим четырехмерное обобщение $B_{p}^{\cdot m}$ трехмерного тензора $A_{\alpha}^{\cdot \beta}$. Будем считать, что трехмерная часть тензора $B_{p.}^{\cdot m}$ совпадает с тензором $A_{\alpha}^{\cdot \beta} : B_{\alpha}^{\cdot \beta} = A_{\alpha}^{\cdot \beta}$.

Преобразуем соотношение (14) так, чтобы в него входили только компоненты тензора $B_{p}^{\cdot m}$, его степени и инварианты

$$B_{(1)} = B_m^m, \quad B_{(2)} = B_{(2)m}^m, \quad B_{(3)} = B_{(3)m}^m,$$

Для этого учтем следующие равенства:

$$A_{(1)} \equiv A_{\alpha}^{\alpha} = B_{(1)} - B_{0}^{0},$$

$$A_{(2)} \equiv A_{(2)\alpha}^{\alpha} = B_{(2)} - 2B_{(2)0}^{0} + (B_{0}^{0})^{2},$$

$$A_{(2)} \equiv B_{(2)\alpha} = B_{(2)} - 2B_{(2)0}^{0} - B_{(2)\alpha}^{0} - B_{(2)\alpha$$

$$A_{(3)} \equiv A^{\alpha}_{(3)\alpha} = B_{(3)} - 3B^{0}_{(3)0} + 3B^{0}_{(2)0}B^{0}_{0} - (B^{0}_{0})^{3}.$$

Тогда соотношение (14) примет вид

$$2B_{(3)} - 3B_{(1)}B_{(2)} + B_{(1)}^3 - 6B_{(3)0}^0 - - 3B_0^0 B_{(1)}^2 + 6B_{(2)0}^0 B_{(1)} + 3B_0^0 B_{(2)} = 0.$$
(15)

Это уравнение содержит две части — неинвариантную относительно преобразований координат четырехмерного пространства-времени

$$-6B^{0}_{(3)0} - 3B^{0}_{0}B^{2}_{(1)} + 6B^{0}_{(2)0}B_{(1)} + 3B^{0}_{0}B_{(2)}$$

и инвариантную

$$2B_{(3)} - 3B_{(1)}B_{(2)} + B_{(1)}^3.$$

Однако уравнение эйконала, как и любое фундаментальное уравнение физики, должно обладать четырехмерной инвариантностью. Это общетеоретическое требование может быть удовлетворено лишь в том случае, когда неинвариантная и инвариантная части уравнения (15) равны нулю по отдельности. Подстановка явного выражения для B_{n}^{m} в каждое из этих соотношений приводит к уравнению эйконала:

$$\left\{ \left[g^{ik} \left(1 - \frac{a^2}{2} J_2 \right) + a^2 F_{(2)}^{ik} \right] \frac{\partial S}{\partial x^i} \frac{\partial S}{\partial x^k} \right\}^2 = 0.$$
 (16)

Из этого равенства следует, что распространение слабой электромагнитной волны во внешних электромагнитном и гравитационном полях теории Эйнштейна – Борна – Инфельда эквивалентно движению безмассовой частицы по изотропной геодезической в эффективном псевдоримановом пространстве-времени, метрический тензор которого

$$G^{ik} = \left[1 - \frac{a^2}{2}J_2\right]g^{ik} + a^2 F^{ik}_{(2)} \tag{17}$$

зависит от эйнштейновского метрического тензора g^{ik} и квадратичных комбинаций компонент внешнего электромагнитного поля F^{ik} . Ковариантные компоненты метрики G_{kn} этого эффективного псевдориманова пространства-времени можно найти, используя соотношение $G^{ik}G_{kn} = \delta_n^i$ и учитывая равенство (17):

$$G_{kn} = \frac{g_{kn} - a^2 F_{kn}^{(2)}}{1 - \frac{a^2}{2} J_2 - \frac{a^4}{4} J_4 + \frac{a^4}{8} J_2^2}.$$
 (18)

Следует отметить, что наличие двух метрических тензоров g_{kn} и G_{kn} не означает нарушения принципа эквивалентности или перехода к двуметрической теории гравитации. Псевдориманово пространство-время для всех видов материи едино и обладает эйнштейновским метрическим тензором g_{kn} , определяемым из уравнений Эйнштейна (6). В отсутствие других полей все массивные и безмассовые частицы движутся по геодезическим этого пространства-времени. Однако при наличии внешнего электромагнитного поля фотоны уже не движутся по геодезическим пространства-времени с метрическим тензором g_{kn} , так как испытывают нелинейное воздействие со стороны внешнего электромагнитного поля. Поэтому в данном случае законы движения фотонов можно определить из уравнения эйконала (16), которое показывает, что совместное действие внешних электромагнитного и гравитационного полей на движение фотонов можно описать как свободное движение в некотором эффективном пространстве-времени с метрическим тензором (18).

4. ОПРЕДЕЛЕНИЕ ГОРИЗОНТОВ ЭФФЕКТИВНОГО ПРОСТРАНСТВА-ВРЕМЕНИ

Используя выражения (9) и (17), построим компоненты метрического тензора G^{ik} эффективного пространства-времени для движения слабых электромагнитных волн, распространяющихся во внешних электромагнитном и гравитационном полях. В результате будем иметь

$$G^{00} = g^{00}, \quad G^{11} = g^{11},$$

$$G^{22} = \frac{r^4}{r^4 + a^2 Q^2} g^{22}, \quad G^{33} = \frac{r^4}{r^4 + a^2 Q^2} g^{33}.$$
 (19)

Из этих выражений следует, что радиальное движение фотона будет полностью определяться свойствами эйнштейновского метрического тензора пространства-времени, точнее, его компонентами g^{00} и g^{11} . Для нерадиального движения наличие дополнительных множителей перед g^{22} и g^{33} приведет к изменению величины центробежной силы, действующей на фотон, и, как следствие, к изменению радиусов круговых орбит фотона.

Подставляя в выражения (19) соотношения (10), получим

$$G^{11} = -\left[1 - \frac{r_g}{r} + \frac{2G}{a^2 c^4 r} \times \int_r^{\infty} \left[\sqrt{\eta^4 + a^2 Q^2} - \eta^2\right] d\eta\right], \qquad (20)$$
$$G^{00} = -\frac{1}{G^{11}}, \quad G^{22} = -\frac{r^2}{r^4 + a^2 Q^2}, \qquad G^{33} = \frac{G^{22}}{\sin^2 \theta}.$$

Исследуем горизонты данной метрики и сравним их с горизонтами (2) пространства-времени Райснера-Нордстрема.

Для этого нам прежде всего необходимо задать массу звезды. До недавнего времени считалось, что существуют две группы черных дыр, у одной из которых массы M имеют «звездные» значения $3M_{\odot} < M < 140M_{\odot}$, а другая группа содержит сверхмассивные черные дыры $M > 10^6 M_{\odot}$. Однако в последнее время было показано [7], что во Вселенной могут существовать отдельные черные дыры с массой, превышающей 260 M_{\odot} . Одна из таких черных дыр, имеющая массу $M = 500M_{\odot}$ недавно была обнаружена [8] в галактике ESO 243-49. Поэтому для иллюстрации полученных результатов в качестве массы звезды будем использовать промежуточное значение $M = 350M_{\odot}$.

Горизонты пространства-времени (20) можно определить из трансцендентного уравнения $G_{00} = 0$. Нахождение корней этого уравнения было проведено численно. На рис. 1 приведен результат вычисления горизонта событий для метрики (20) при значении массы звезды $M = 350 M_{\odot}$. На графике по оси абсцисс отложен заряд звезды, измеренный в единицах максимально допустимого заряда для Солнца в решении Райснера-Нордстрема $Q_{\odot}^* = \sqrt{G M_{\odot}^2}$, а по оси ординат — вычисленное значение горизонта событий, нормированное на радиус Шварцшильда для Солнца $r_{g\odot} = 2 M_{\odot} G/c^2$. Линиями нанесены значения горизонтов r_+ и r_- при различных значениях заряда.

При выбранной массе звезды для метрики (20) существует только один горизонт событий, изображенный на графике точками. Для малых значений заряда этот горизонт событий совпадает с r₊ выражения (2), но при увеличении заряда звезды

Рис.1. Зависимости горизонта событий от заряда звезды при $M=350M_{\odot}$. Сплошная линия — горизонт r_+ , штриховая — горизонт r_- , точки — численное решение

его поведение существенно отличается от поведения r_+ : при зарядах, больших, чем заряд, максимально допустимый решением Райснера-Нордстрема $(Q^2 > Q^{*2} = GM^2)$, горизонт событий остается вещественным, монотонно убывает с ростом заряда и обращается в нуль при некотором значении заряда $Q_0 > Q^*$, которое в силу принципа запрета Пенроуза и следует считать максимально возможным зарядом для звезды с данной массой.

По мере увеличения массы звезды M заряд Q_0 приближается к значению заряда Q', при котором $|\partial r/\partial Q| \to \infty$ при r = 0. Масса звезды M_{cr} , для которой $Q_0 = Q' = ac^4/2G$, соответствует предельному случаю, когда еще возможно существование одного горизонта событий в метрике (20).

Величину этой предельной массы можно определить из уравнения $[rg_{00}(M_{cr})] = 0$ при $r \to 0$, одновременно приняв $|\partial r/\partial Q| \to \infty$, что эквивалентно равенству

$$\frac{M_{cr}}{M_{\odot}} = w \int_{0}^{\infty} \frac{d\eta}{\eta^2 + \sqrt{\eta^4 + w^2}}$$

где для сокращения записи использовано обозначение $w = a^2 c^8 / 8G^3 M_{\odot}^2$.

Это уравнение имеет единственное решение, зависящее от параметра нелинейной электродинамики Борна–Инфельда. Например, для $a = 10^{-16} \, \Gamma c^{-1}$ [1] предельная масса равна $M_{cr} \approx 1037.8 \, M_{\odot}$.

Рис.2. Зависимости горизонтов от заряда звезды при $M = 5000 M_{\odot}$. Сплошная линия — горизонт r_+ , штриховая — горизонт r_- , точки — численное решение

Объекты, масса которых $M < M_{cr}$, будут иметь только один горизонт событий, как в случае M = $= 350 M_{\odot}$, изображенном на рис. 1. Объекты же с массой, превосходящей M_{cr} , при некоторых значениях заряда могут обладать двумя горизонтами со свойствами, аналогичными свойствам горизонтов r_+ и r_- в решении Райснера–Нордстрема. В качестве иллюстрации на рис. 2 приведена зависимость горизонтов метрики (20) от заряда звезды для $M = 5000 M_{\odot} > M_{cr}$.

Таким образом, если масса звезды не превосходит критического значения M_{cr} , имеет место регуляризирующее действие теории Эйнштейна – Борна – Инфельда, заключающееся в полном устранении одного из горизонтов. При массе звезды, превосходящей M_{cr} , регуляризирующее действие нелинейных слагаемых проявляется не полностью, а только при значениях заряда $Q < Q_0(M)$.

5. ДВИЖЕНИЕ ФОТОНОВ В ПОЛЕ МАССИВНОГО ЗАРЯЖЕННОГО СИЛОВОГО ЦЕНТРА В ТЕОРИИ ЭЙНШТЕЙНА – БОРНА – ИНФЕЛЬДА

Исследуем движение фотонов во внешних электромагнитном и гравитационном полях, происходящее по законам теории Эйнштейна-Борна-Инфельда и сравним его с движением в пространстве-времени Райснера – Нордстрема. Как отмечалось ранее, радиальное движение фотона определяется только свойствами эйнштейновского метрического тензора g_{ik} , а в случае, если момент импульса фотона отличен от нуля, возникает дополнительное влияние нелинейной электродинамики Борна-Инфельда. Поэтому рассмотрим эти случаи движения отдельно.

5.1. Радиальное движение фотона

Для определения свойств радиального движения фотона рассмотрим, аналогично [2], световой луч, распространяющийся из точки с координатой наблюдателя $r = r_0$ до точки r. Координатное время, измеренное по часам удаленного наблюдателя, необходимое для такого движения, определяется из равенства нулю интервала для светового луча:

$$x^{0} = \pm \int^{r} \frac{dr}{g_{00}(r)} = \pm R(r) + \text{const.}$$

Знак минус принимается для лучей, идущих от удаленного наблюдателя к силовому центру, а знак плюс — при движении в противоположном направлении.

Область пространства-времени, доступная для удаленного наблюдателя, согласно [2], определяется областью изменения r, в которой координатное время x^0 , а следовательно, и функция R(r), изменяется от $-\infty$ до $+\infty$.

Для метрики Шварцшильда координатное время стремится к $+\infty$ по мере приближения r к горизонту r_g . На самом же горизонте $r = r_g$ световой луч испытывает бесконечно большое красное смещение. В случае пространства-времени Райснера-Нордстрема координатное время стремится к $+\infty$ на горизонте r_+ и к $-\infty$ на горизонте Коши $r = r_-$; на последнем из них световые сигналы имеют бесконечно большое фиолетовое смещение.

Характер движения фотонов в теории Эйнштейна–Борна–Инфельда качественно зависит от массы звезды и ее заряда. В этой теории пространство-время (20) при $M < M_{cr}$ и при $M > M_{cr}$, но $Q < Q_0$ имеет только один горизонт, на котором координатное время x^0 обращается в бесконечность. Поэтому радиальное распространение света при указанных параметрах звезды происходит так же, как и в пространстве-времени Шварцшильда.

При $M > M_{cr}$ и $Q > Q_0$ в решении (20) существуют оба горизонта и движение фотона качественно не отличается от его движения в пространстве-времени Райснера-Нордстрема, что означает возможность

существования изотропных радиальных геодезических с бесконечно большим фиолетовым смещением.

5.2. Круговые орбиты фотона

Рассмотрим сначала наиболее общий случай движения фотона. Для этого построим уравнение эйконала с учетом выражения (20) для метрического тензора эффективного пространства-времени и найдем уравнение траектории:

$$\varphi - \varphi_0 = \pm \int \left\{ (r^4 + a^2 Q^2) \sqrt{\frac{\mathcal{E}_0^2}{c^2} - \frac{L^2 r^2 g_{00}}{r^4 + a^2 Q^2}} \right\}^{-1} \times Lr^2 dr, \quad (21)$$

где \mathcal{E}_0 и L — соответственно энергия и момент импульса фотона.

Для исследования нерадиального движения фотона в пространстве-времени (20) в уравнении (21) удобно перейти к переменной u = 1/r, в терминах которой уравнение траектории примет вид

$$\left(\frac{du}{d\varphi}\right)^2 = (1+a^2Q^2u^2) \left[\frac{1+a^2Q^2u^4}{b^2} - u^2g_{00}(u)\right] = \Psi(u),$$

где $b = Lc/\mathcal{E}_0$ — прицельный параметр и введено обозначение

$$g_{00}(u) = 1 - r_g u + \frac{2GQ^2 u}{c^4} \int_0^u \frac{d\xi}{1 + \sqrt{1 + a^2 Q^2 \xi^4}}.$$

Известно [2], что в пространстве-времени Райснера-Нордстрема существует круговая орбита фотона, имеющая смысл предельной точки — все входящие изотропные геодезические, начинающиеся вне круговой орбиты, и все исходящие лучи, начинающиеся внутри этой орбиты, асимптотически приближаются к ней. Выясним возможность существования такой орбиты в случае теории Эйнштейна-Борна-Инфельда.

Для существования круговой критической орбиты необходимо, чтобы функция $\Psi(u)$ имела двукратный корень, соответствующий минимуму этой функции. Для определения такого корня $r_c = 1/u_c$ необходимо решить уравнение

Рис. 3. Зависимости радиуса круговой орбиты фотона от заряда звезды для $M=350M_{\odot}$. Сплошная линия — r_c для решения Райснера – Нордстрема, точки — численное решение

$$2(1 - a^2 Q^2 u_c^4) + (3 - a^2 Q^2 u_c^4) \times \\ \times \left[\frac{2GQ^2}{c^4} \int_0^{u_c} \frac{d\xi}{1 + \sqrt{1 + a^2 Q^2 \xi^4}} - r_g \right] u_c + \\ + \frac{2GQ^2}{c^4} \frac{u_c^2 (1 + a^2 Q^2 u_c^4)}{1 + \sqrt{1 + a^2 Q^2 u_c^4}} = 0.$$
(22)

При устремлении параметра нелинейной электродинамики к нулю, $a \rightarrow 0$, последнее равенство переходит в уравнение круговой орбиты фотона в метрике Райснера – Нордстрема:

$$2GQ^2u^2/c^4 - 3MGu/c^2 + 1 = 0.$$

Несмотря на то что это уравнение в общем случае имеет два корня, круговой орбите соответствует меньший из них:

$$r_c = \frac{1}{u_c} = \frac{3MG}{2c^2} \left[1 + \sqrt{1 - \frac{8Q^2}{9M^2G}} \right].$$
 (23)

В случае теории Эйнштейна-Борна-Инфельда при $a \neq 0$ найти аналитическое решение уравнения (22) нельзя, поэтому радиус круговой орбиты фотона в этой теории определялся нами численно.

На рис. З приведены результаты решения уравнения (22) для $M = 350 M_{\odot}$ при различных значениях заряда. По оси абсцисс отложено значение заряда, измеренное в единицах максимально допустимого заряда для звезды с массой Солнца, а по оси ординат — значение радиуса круговой орбиты фотона, нормированное на радиус Шварцшильда для Исследование регуляризующих свойств

Солнца. Сплошной линией на графике нанесена зависимость (23) для радиуса круговой орбиты в пространстве-времени Райснера – Нордстрема.

Как видно, при $M = 350 M_{\odot}$ радиус орбиты фотона в теории Эйнштейна – Борна – Инфельда при всех значениях заряда превышает радиус аналогичной орбиты в решении Райснера – Нордстрема и возрастает с увеличением заряда вплоть до значения, соответствующего заряду Q_0 , при котором горизонт событий достигнет сингулярности и дальнейший рост заряда потеряет физический смысл. Такая качественно новая зависимость радиуса круговой орбиты связана с изменением величины центробежной силы в теории Эйнштейна – Борна – Инфельда, которое проявляется в виде дополнительных множителей перед компонентами g_{22} и g_{33} в метрическом тензоре эффективного пространства-времени (19).

При увеличении массы звезды решение уравнения (22) качественно изменяется — радиус орбиты фотона асимптотически приближается к круговой орбите в пространстве-времени Райснера-Нордстрема и убывает с ростом заряда *Q*. При всех значениях массы *M* круговая орбита фотона всегда лежит вне горизонта событий.

Изменение радиуса круговой орбиты фотона оказывает влияние на эффект ретро-линзирования в поле заряженной черной дыры. Этот эффект [9] проявляется в виде серии концентрических колец, возникающих при обратном рассеянии света черной дырой, освещаемой интенсивным точечным источником. Кольца отделены от сингулярности областью тени, радиус которой с точки зрения удаленного наблюдателя равен величине прицельного расстояния круговой орбиты фотона. Это расстояние однозначно связано с массой и зарядом звезды. В работе [10] рассматривается возможность использования эффекта ретро-линзирования для определения заряда черных дыр Райснера-Нордстрема. Влияние нелинейной электродинамики Борна-Инфельда на эффект ретро-линзирования будет проявляться, прежде всего, в изменении радиуса тени b_c , который связан с радиусом круговой орбиты фотона соотношением

$$b_c^2 = \frac{r_c^2}{g_{00}(r_c)},$$

где r_c определяется решением уравнения (22). В частности, для звезды с $M = 350 M_{\odot}$ зависимость размера тени от заряда качественно аналогична зависимости для радиуса круговой орбиты, изображенной на рис. 3. В этом случае размер тени для черной дыры Эйнштейна-Борна-Инфельда больше, чем для черной дыры Райснера-Нордстрема с аналогичной массой, что увеличивает вероятность обнаружения эффекта ретро-линзирования в спутниковом эксперименте. Кроме того, для указанной массы радиус тени черной дыры Эйнштейна – Борна – Инфельда достигает своего максимального значения при заряде Q_0 , значительно большем, чем $\sqrt{G}M$, когда существование черных дыр Райснера – Нордстрема с таким зарядом становится невозможным. Тем самым, исследование эффекта ретро-линзирования в поле заряженных черных дыр может дать ответ на вопрос об экспериментальном наблюдении проявлений теории Эйнштейна – Борна – Инфельда.

6. ЗАКЛЮЧЕНИЕ

Проведенное исследование показало, что влияние электродинамики Борна–Инфельда оказывает регуляризирующее действие на пространство-время массивного заряженного силового центра, в некоторых случаях приводит к устранению горизонта Коши и, в то же время, сохраняет ограничение на максимально допустимый заряд звезды с фиксированной массой.

Полученные в работе результаты свидетельствуют еще об одном нетривиальном проявлении свойств нелинейной электродинамики вакуума в теории Эйнштейна-Борна-Инфельда, приводящем к качественно новым закономерностям движения фотонов в поле массивного заряженного силового центра. Из них также следует, что механизм ограничения максимально возможного заряда звезды не нарушает принцип запрета сингулярностей, не окруженных горизонтом событий, установленный в общей теории относительности. А обнаруженная

возможность изменения числа горизонтов, окружающих сингулярность, при превышении массой звезды некоторого критического значения открывает новые перспективы для развития физики черных дыр в теории Эйнштейна-Борна-Инфельда.

ЛИТЕРАТУРА

- M. Born and L. Infeld, Proc. Roy. Soc. A 144, 425 (1934).
- 2. С. Чандрасекар, Математическая теория черных дыр, т. 1, Мир, Москва (1986).
- I. P. Denisova and B. V. Mehta, Gen. Rel. Grav. 29, 583 (1997).
- D. Garfinkle, G. T. Horowitz, and A. Strominger, Phys. Rev. D 43, 3140 (1991).
- 5. В. И. Денисов, И. П. Денисова, И. В. Кривченков, ЖЭТФ 122, 227 (2002).
- V. I. Denisov and S. I. Svertilov, Phys. Rev. D 71, 063002 (2005).
- R. P. van der Marel, Intermediate-Mass Black Holes in the Universe: A Review of Formation Theories and Observational Constraints. Carnegie Observatories Astrophysics Series, v. 1, Cambridge Univ. Press, Cambridge (2004).
- 8. S. A. Farrell et al., Nature 460, 73 (2009).
- D. E. Holz and J. A. Wheeler, Astrophys. J. 578, 330 (2002).
- A. F. Zakharov, F. De Paolis, G. Ingrosso, and A. A. Nucita, Astron. Astrophys. 422, 795 (2005).