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We express the covariant actions of a super p-brane and the corresponding equations of motion, in flat and
curved superspaces, in terms of the Nambu (p + 1)-brackets. These brackets make the (p+ 1)-algebra structure
of a super p-brane manifest. For the flat superspace, this reconstruction of the action also allows reformulating

it in terms of two sets of differential forms.

1. INTRODUCTION

Recent studies reveal that M2-branes have a de-
scription in terms of a 3-algebra, a generalization of
Lie algebras based on an antisymmetric triple prod-
uct structure [1]. 3-algebra relations have played an
important role in the construction of the worldvolume
theories of multiple M2-branes, which have attracted
considerable attention [1, 2]. Various aspects of the
3-algebra can be seen in [2] and the references therein.
But the correspondence of the 2-algebra to the string
theory and of the 3-algebra to the M-theory can be
understood from the dimensions of the string world-
sheet and membrane worldvolume. This implies that
the description of the super p-brane theory may require
a (p + 1)-algebra structure.

Here, we consider the important subject of the con-
struction of worldvolume theories for multiple p-branes.
Recently, this subject received much attention due to
the discovery of its relation to the multiple algebras.
These algebras are defined in terms of multiple com-
mutators. Their classical approximation is given by
the well-known Nambu multiple brackets. Therefore,
to explicitly formulate the brane action in terms of the
multiple algebras, the first step would be to rewrite
the brane action in terms of the Nambu brackets. The
Nambu n-brackets are a way for realizing the Lie n-al-
gebra [3], which was developed by Filippov [4].

In Ref. [5], it was demonstrated that the (super-
symmetric) p-brane action is invariant under (p + 1)-di-
mensional diffeomorphisms. In other words, there is an
infinite-dimensional volume-preserving algebra of super
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p-branes. In this paper, we reformulate the super p-bra-
ne covariant action and the corresponding equations of
motion, in the flat and curved superspaces, in terms
of the Nambu (p + 1)-brackets. Because the Nambu
(p+1)-brackets are generators of the (p+1)-dimensional
diffeomorphisms, this reformulation reveals the above
symmetry more explicitly. However, this reformulation
represents the super p-branes based on the (p + 1)-al-
gebra.

In fact, there are some advantages in reformula-
ting the membrane theory in terms of the 3-algebra.
The same advantages also appear in reformulating the
p-brane theory in terms of the (p + 1)-algebra. In ad-
dition, this reconstruction may provide a method for
quantizing the theory. Beside, for the flat superspace,
this reconstruction of the action also allows reformula-
ting it in terms of two sets of differential forms.

This paper is organized as follows. In Sec. 2, we re-
construct a covariant, (p + 1)-algebra based action for
a super p-brane in flat superspace. In Sec. 3, we refor-
mulate the super p-brane action in curved superspace
in terms of the (p+1)-algebra. In Sec. 4, quantizability
of the theory is discussed. Section 5 is devoted to the
conclusions.

2. THE SUPER p-BRANE IN FLAT
SUPERSPACE, BASED ON THE
(p + 1)-ALGEBRA

2.1. The action
For the (p+1)-algebra description of a super p-brane

propagating in the D-dimensional flat spacetime, we
begin with the known action
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Sp = Tp/dp+10'([,1 + [,2),
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The Lagrangian £; is of the Schild type [6], i.e.,
an auxiliary scalar field ¢ is introduced to take the
square root of the Nambu—Goto action. L» is the
Wess—Zumino Lagrangian. The degrees of freedom
are the spacetime coordinates X*#, the Majorana
spinor #, and the scalar field ¢. The indices pu,
W2y pipr1 € {0,1,...,D — 1} belong to the space-
time, while 41,42,... ,ip+1 € {0,1,...,p} indicate the
p + 1 directions of the brane worldvolume. The world-
volume coordinates are o!. The Dirac matrices are de-
noted by I'*. The spacetime metric is

N = diag(—1,1,...,1).

The brane tension is given by the constant 7,.
The variable IT% is defined as

¥ = ;X" —ifT" 9,0, (3)

which is a supersymmetry invariant pull-back. In ad-
dition, we define

(I, TT#2 L TRy =

_ G1do.. . dp 1 TTML TTH2 Hp+1
= e T

ip+1 7

(4)

which is totally antisymmetric.

2.2. Equations of motion and symmetries

The equations of motion have been extracted in [5].
Because we want to express them in terms of the
Nambu brackets, we write them explicitly. For the
fields ¢, X* and @, the equations of motion are

¢—+/=g=0,
0:(V=gg"TI}) — iy/=g(— )PP/ x
x0;0T*TT9;0 = 0,
[1— (=1)PTIT9;6 = 0,

(5)

where

9ij = Iy,
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is the induced metric. The determinant of this metric
is denoted by g = det g;;, which is

1
p+1)!

(T, ... TIPe+ (T I

Byt ey Hp+1>‘ (7)
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In addition, the matrices I'¥, '/, and T are defined as

I =g"T, 1%,
7 = g™/, I,
(—1)(p=2)(p=5)/4
e+

The matrix I satisfies I'?> = 1. We see in what follows
that the equations of motion have expressions in terms
of the (p + 1)-algebra.

In addition to the worldvolume diffeomorphism in-
variance, the action is also invariant under the trans-
formations

(8)
| PPN (1 AR | (LR

80 =¢, O6XHM=izTH, ¢ =0, (9)

and

5.0 = [1+ (¢/V/=9)T]k(0), 0.X" = iBT"6,0,

i, (10
8u = 4igpg 1 0;0T k(o).

)

The supersymmetry parameters ¢ and x are spinors of
the D-dimensional spacetime. The former is constant
and the latter is local.

By removing the auxiliary field ¢ through its equa-
tion of motion ¢ = /—g, the Lagrangian £; reduces to
the Nambu—Goto form

Ly = —/— det(T[{ T n,,,.). (11)
This Lagrangian also has a Polyakov expression
1 ij v
! = VIR, - (- 1), (12)

where the independent auxiliary field h;; is the intrinsic
worldvolume metric with h = det h;;. This is a conve-
nient alternative form for £;. The equation of motion
for h;j, extracted from (12), is

hij = HfHJ’/nw,

After eliminating h;; through its equation of motion,
Lagrangian (12) also reduces to (11). Therefore, classi-
cally, £y, £}, and L] are equivalent. However, £, and
the form (12) of £; define the Green—Schwarz action
for the super p-brane.



D. Kamani

MHKITD, Tom 139, BHIm. 5, 2011

2.3. The action based on the (p + 1)-algebra

The Nambu (p + 1)-bracket of the variables
@1, .. s Opt1 is defined by

{61, bp1}ng = €010y dpra (13)

Therefore, in terms of the Nambu brackets, Eq. (4)
takes the form

<H‘“,H“2, o 7Hup+1> — {A)(‘AL17A)('AL27 o 7)(MJDH}NB_
—i(p+ D) {(Tlg)> xk2 o X+l yp 4

+p(p2+1) Ba05{(TI10)>, (TH20) X P ... Xtet]} yp—
. 2_ _ _ _
_Zp(p6 1)90[9697{@[#1 )", (Fuzg)ﬁ, (THsg)Y X M4

o ’XH:DJrl]}NB +.. Z'p+1(_1)(p+1)(p+2)/2§a1 %

X B, ...§%+1{(F“19)“1, (TH20)2 ...
p+1
p+1
oo, (THPHLH) P H1 = X
oS

% in(_l)n(n+1)/2 %

X OOy - - - O, {(TIF10)21 (DH2g)2

., (DHeg)on X Hntr ,X“P+1]}NB] . (14)

where the bracket [u1, ... , up+1] indicates the antisym-
metrization of the indices.

Substituting Eq. (14) in equations of motion (5) and
the Lagrangian £;, we obtain the (p 4+ 1)-algebra ex-
pressions of them. The explicit form of £; is

()

W mEn () mEm et D/2g g G gy

m

x {(Tlgyr, .. (Trng) o Xttt XHeil}yp x

p+1 p+1

1 -1
SRETTEIAEPIPD

n=0m=0

X {(T, 07 (T 0P Xy ,XHPH]}NB] —

50 (19)

In fact, the B-field can be expressed in terms of the

XH and 0 as [7]
14
Zi’r‘Jrl p+]‘ %
r+1

r=0

0

Ip41

1 -
Biliz...ip+1 = Enerul...u},a

X (éf“lahﬁ) R (éf”rairQ)Hirfll . HZDP N (16)
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where

n= (_1)(10*1)(1#6)/4.
After eliminating the coefficients Biyiy..ipyq» the La-
grangian Lo becomes

n
(p+1)!

x [zp:f“ ( P+l ) @T"10,,9) ...

e r+1

_ 1. dpt1 .
Lo=— ST W R

(6T, O T | L (1)

Similarly to £y, the Lagrangian £, in terms of the
Nambu brackets has the expansion

1 LN i p+1 p—r
Lo=——— X
s (07
) AP (=) Km0, 00 Oy - 00, Oy X
x {(Dr1g)r, ..., (DHrg)n, Xt . X Hrim
([‘Nr+m+1 9)0r+m+17 e ([‘Mp 9)%7

(Ful...uﬁ)a”“}NB], (18)
where

. 1
Br,m =p+ Z(p_l)(p+6)+

gl =D+ (= —m)(pr —m 1]

Let ZM = (X*,0%) denote coordinates of the tar-
get space of the super p-brane. The worldvolume form
B; is a pull-back, i.e.,

=8“ZM18

(19)

1edpg1

M
B; Z P B,y My

1...ip+1 ip+1 (20)
where By, ,,..m, are components of a (p + 1)-form
potential in the superspace. Therefore, an other

(p + 1)-algebra expression of L5 is

Ly =
2
=——{ZM ... ZM+1}\pB .(21
(p+ 1)|{ ) ) }NB Mpy1... My ( )
According to (15), (18), and (21), all the deriva-
tives have been absorbed in the Nambu (p+1)-brackets.
Hence, the (p + 1)-algebra structure is made manifest.

2.4. The action in terms of differential forms

The (p + 1)-algebra description of a super p-brane
allows writing the action

Sp =S + 53
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in the language of differential forms,

() ()

% im+n(_1)(m+n)(m+n+1)/2 / ¢_1A(m,n)
wv

p+1 p+1

T,
-2y

n=0 m=0

p+1
n

p+1
m

T,

_r p+1
> / ¢ o9, (22)
wv
P p-r
+1 p—r
S2) — _T b X
P p;% r+1 m
X Z.p_m—H(_]-)Kr'm / C’(r,'m)
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The differential (p + 1)-forms are defined by
1
A m,n = X
(mem) = (p + 1)1
X{Y,[”“.“ ,Yum,Xum+1,... 7pr+1]}NB X
X(dYHFE N OANAYEr AdXEE AL
.../\dX“p+1)|Wv, (23)
1
= dYFLA Lo NdYHr
O(r7m) (p-l— 1)!( A N A

AAXH LA LA dX P A dY Bt A
 NAY NdZyy )Wy

where the restriction |wy means the pull-back of the
wedge products on the worldvolume of the super p-
brane, e. g.,

dXH*|wv = 8; X do.

The variable Y# and the antisymmetric tensor 7, .,
are given by

, (24)

0Ty, b-

Hi---fp

These wedge products define differential (p 4+ 1)-forms.
The components of these forms explicitly have been
given in terms of the coordinates {X*} (J{6*}. These
forms do not have the pure bosonic part, i.e., they van-
ish in the absence of the 8%. Hence, they exist only for
super branes.

Because

{XH(r;0, ... ,Up)}U{t‘)o‘(T;al,... ,oP)}

are coordinates of the worldvolume of the super p-brane
in superspace, the actions Sl(,l) and S§,2) imply that the
super p-brane is coupled to the potential forms

{A(m7n)|man = Oa]-a‘-' P+ 1}
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and

{C(T’m)|m=0,1,... ,p}.

In fact, only reformulating the super p-brane action on
the basis of the (p+ 1)-algebra reveals these differential
forms.

,p—r;r=0,1,...

3. THE SUPER p-BRANE IN A CURVED
SUPERSPACE

We assume the target space of the super p-brane
to be a curved supermanifold with E4(Z) as its cor-
responding supervielbeins. The A = a, « are the
tangent-space indices. Then the super p-brane action
is given by

Ip = —Tp/dp+1g (1 / — det(EzaE;)T]ab) +

where
Bf = 0,2V B, (26)
is the pull-back of the supervielbeins Ej;. The field

Ba,,,...A,(Z) is a superspace (p + 1)-form potential.
We note that due to the x-symmetry of the action,
only special values of p and D are allowed (see Ref. [8]
and the references therein).

In this action, the (p + 1)-algebra can also be intro-
duced. Because

1
det(E?E]l-)Wab) = TESI] (B, ... E%+1) x
X <Ea17 e 7Eap+1>7 (27)
<Ea17 s 7Ellp+1> = filmip"'lE»al - E'aerlv
3 p+1

the action (22) can be reformulated in terms of the
Nambu (p + 1)-brackets

I, = —Tp/dp+1a X
% _ 1 ai ap+1 by bo1 o
P+ 1) - Ear BNy BN
X {ZMl,... 7Z]V[p"'l}]\rB X

1/2
% {ZN17-~. 7ZNP+1}NB77CLIb1"'naP+1bP+1> +

2
+——F
(p+1)!

Ay

Apt1 f M M,
Ml"'EMp {Z o7 p+1}NB><

p+1

X BAerl---Al} . (28)

The novelty of this reformulation is the appearance of
the (p + 1)-algebra.
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4. A NOTE ON THE QUANTIZATION OF THE
REFORMULATED ACTIONS

Due to the intrinsic nonlinearities, quantization of
p-branes is a difficult problem. There are different
quantum mechanical approaches associated with the
quantum dynamics of p-branes based on viewing p-bra-
nes as gauge theories of volume-preserving diffeomor-
phisms. In other words, several quantum mechanical
methods for p-branes are proposed based on the role
that the volume-preserving diffeomorphism group has
in the physics of these extended objects.

The other experience is the quantum Nambu brac-
kets. They describe the quantum behavior of systems
equivalently to the standard Hamiltonian quantization.
For example, they serve to guide quantization of more
general even-dimensional topological branes [9].

Thus, by appropriately replacing the classical
Nambu brackets with the quantum Nambu brackets,
one may achieve the quantization of the reformulated
actions in this paper. This is not straightforward. It
seems the status of quantizability of the reformulated
actions is that they are not quantizable for p # 1, for
the same reason that a quantum membrane theory has
yet to be formulated.

5. CONCLUSIONS

In the first part of this paper, we expressed the su-
per p-brane action and the corresponding equations of
motion, in the flat superspace, in terms of the Nambu
(p+ 1)-brackets. In the second part, for a super p-bra-
ne that lives in a curved superspace, we obtained the
Nambu (p + 1)-bracket expression of the action. This
reformulation is another language for describing the su-
per p-branes and gives a new insight into the branes.
It may provide a way for quantizing the p-branes.

In both the above cases, all derivatives appeared
through the Nambu (p + 1)-brackets, and hence the
(p + 1)-algebra structure for the super p-brane theory
was made manifest. This is related to the fact that the
(supersymmetric) p-brane action is invariant under the
(p + 1)-dimensional diffeomorphisms and the Nambu
(p + 1)-brackets are generators of (p + 1)-dimensional
diffeomorphisms.

Finally, for flat superspace, we found two sets of dif-
ferential (p+ 1)-forms that couple to the super p-brane.
This result originates from the reformulation and can-
not be seen in the original form of the action.
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