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We describe the spherically symmetric steady-state accretion of perfect fluid in the Reissner—Nordstrdm metric.
We present analytic solutions for accretion of a fluid with linear equations of state and of the Chaplygin gas. We
also show that under reasonable physical conditions, there is no steady-state accretion of a perfect fluid onto a
Reissner—Nordstrom naked singularity. Instead, a static atmosphere of fluid is formed. We discuss a possibility
of violation of the third law of black hole thermodynamics for a phantom fluid accretion.

1. INTRODUCTION

The problem of matter accretion onto compact ob-
jects in Newtonian gravity was formulated within the
self-similar treatment by Bondi [1]. In the framework
of general relativity, the steady-state spherical symmet-
ric flow of test gas onto a Schwarzschild black hole was
investigated by Michel [2]. Detailed studies of sphe-
rically symmetric accretion of different types of fluids
onto black holes were further undertaken in a number
of works [3] (see also review [4]).

In this paper, we study perfect fluids and scalar
fields in the Reissner—Nordstrom (RN) metric. We de-
scribe spherically symmetric steady-state accretion of
a test perfect fluid with a general equation of state
onto a nonrotating charged black hole. We find analy-
tic solutions for accretion of a perfect fluid with a linear
equation of state and of the Chaplygin gas onto an RN
black hole. When a phantom fluid accretes onto a black
hole, the latter loses its mass. This result is consistent
with the findings in Ref. [5] on the phantom accretion
onto a Schwarzschild black hole.

We find that under reasonable physical assump-
tions, a perfect fluid does not accrete onto the RN
naked singularity, i.e., when M? < @2, where M is
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the mass and @ is the electric charge of the naked sin-
gularity. Namely, steady-state accretion onto a naked
singularity is only possible in two unphysical cases. In
the first case, the accreting fluid is superluminal and
an additional boundary condition on the central singu-
larity is specified. In the second case, the fluid may be
stiff or subluminal, but we have to postulate that the
inflow and outflow coexist in the space—time manifold,
and the solution passes somehow through a singular
point. We show that instead of a steady-state accre-
tion, a static atmosphere around a naked singularity is
formed?).

We also show that the extreme state of an electri-
cally charged black hole is reached in a finite time due
to phantom fluid accretion, when gravitational back
reaction of the accreting fluid is neglected. We argue,
however, that the test fluid approximation may be vio-
lated when the RN black hole or naked singularity is
almost extreme. This implies that back reaction of the
fluid on the background geometry may prevent trans-
formation of a black hole into a naked singularity, in
accordance with the third law of black hole thermody-
namics [7].

The paper is organized as follows. In Sec. 2, we
construct the general formalism for steady-state sphe-
rically symmetric accretion of a test perfect fluid in the

1) A similar result for the Kerr naked singularity was found
in [6] using numerical methods.
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RN metric. In Sec. 3, we give an alternative description
of the accretion in terms of a scalar field. In Sec. 4, we
apply the results of the previous sections to particular
examples of perfect fluid, namely, we study accretion
of a fluid with a linear equation of state and accretion
of the Chaplygin gas. A static atmosphere of fluids
around a naked singularity is described in Sec. 5. A
black hole approaching the extreme state by accretion
of phantom fluid and the possibility of violation of the
third law of thermodynamics are discussed in Sec. 6.
We conclude in Sec. 7.

2. STEADY-STATE ACCRETION

In this section, we study spherically symmetric
steady-state accretion of a test perfect fluid with a ge-
neral equation of state in the RN metric. We closely
follow the approach in [5] to gas accretion in the
Schwarzschild metric.

The RN metric is given by

ds®> = fdt? — fLdr® — r*(dh* + sin® 0 d¢?), (1)

where )
2M
P
r r

Here, M is the black hole (or naked singularity) mass,
and @ is its total charge. It is convenient to introduce
dimensionless coordinates,

t T

—, = —,

M’ M

T

and the dimensionless electric charge of the black hole
e = Q/M. In the case e < 1, the equation f(z) =0
has two roots

xizlﬂ:\/l—QQ.

The larger root, z, corresponds to the event horizon of
the RN black hole, and z = z_ is the so-called Cauchy
(or inner) horizon. In the opposite case, e > 1, the
RN metric (1) describes a naked singularity without an
event horizon. The marginal case e? = 1 corresponds
to an extreme black hole.

The energy—momentum of a perfect fluid is

Tu = (p+ p)UuUu — P9uv, (2)

where p and p are the fluid energy density and pressure
respectively, and u# = dx* /ds is the fluid four-velocity
normalized by u*u, = 1. We assume that the pressure
is an arbitrary function of the density alone, p = p(p).
To find integrals of motion, we use the projection of

the equation for the energy—momentum tensor conser-
vation onto the 4-velocity, u,T"",, = 0. This gives the
continuity equation

utpu+ (p +p)uty, =0. (3)

Integrating (3) once, we find the integral of motion (the
energy conservation)

ur’n = —A, (4)

where
P

_ / dp’
n = exp —_—
P |’

u=dr/ds < 0in the case of inflow motion (accretion),
and A > 0is a constant of integration, which is related
to the radial energy flux.

Integration of the time component of the conserva-
tion law 7%, = 0 gives another integral of motion (the
relativistic Bernoulli equation),

(p+p)(f +u?)/?2%u = Cy, (5)

where u = dr/ds and C} is a constant of integration.
From (4) and (5), we can easily obtain that

PIL(f4u2)1 = G, (6)
where
—C1 _ poo +P(Poo)

A n(ps)

with poo being the energy density at infinity.

Equations (4) and (6) along with the equation of
state p = p(p) form a closed system for accretion onto
an RN black hole (or naked singularity). This system is
to be supplied with appropriate boundary conditions.
The obtained system of equations describes accretion of
a perfect fluid with a general equation of state p = p(p),
and may be applied, in particular, to accretion of the
Chaplygin gas [8] or dark energy described by the gen-
eralized linear equation of state [9].

The constant C5 is fixed by the boundary condition
at infinity. Fixing A in (4) and, respectively, the flux is
more tricky. This is provided by the physical require-
ment of a smooth transition through the critical sound
point (see the details, e.g., in [2]). The resulting so-
lution should be continuous from infinity down to the
black hole horizon. Following [2], we find relations at
the critical point,

CQE

5 Ty — € ) Te — €2

'LL* = 21‘% b Cs(p*) = 21‘2 _ 31‘* + 627

(7)
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where c,(p) = (9p/dp)*/? is the speed of sound, and
the subscript “x” indicates that the values are taken at
the critical point. It follows from (7) that

{re[-3m2 ")

where ¢, = c¢s(z4). Critical points exist only if

+ _ 1+ 3c?
* 4c2

xr

(1+3c2)°
82 (1+¢2)"

2

It is worthwhile to note that in contrast to the case
of a Schwarzschild black hole, there are formally two
different critical points, corresponding to the plus and
minus signs in (8). We also note that 2, — 0ase — 0.

Depending on the values of e and ¢4 one can identify
the following five cases.

1. e <1,¢2 <1 (c2=1). In this case, the event
and the Cauchy horizons exist, ¥ > 27, as well as
both critical points; the outer critical point is outside
the event horizon, 7 >z (zf = z™), the inner criti-
cal point is between the event and the Cauchy horizons,
T <wzy <zt (xy =w_).

2. e <1, ¢ > 1. Similarly to the previous case,
the event and the Cauchy horizons, and both critical
points exist; but the outer critical point is in between
the event and the Cauchy horizons, = < z; < o+
(f = 2_ = x,); the inner critical point is inside the
Cauchy horizon, 2y < 2.

3. e = 1. The event and the Cauchy horizons co-
incide, z+ = 2~ = 1, and both critical points exist: in
the subluminal case, 7 > 1 and z, = 1; for a stiff
fluid, ¢2 = 1, we find ¥ = 1; in the superluminal case,
zf =1land 27 < 1.

4. 1 <e< 3/2\/5 The RN metric describes a
naked singularity (the horizons are absent). Critical
points exist for two different branches,

—4e? + 3 —4deve2 — 1

2
ct <
5= 8e2 -9

(subluminal),

or

—4e? + 3 +4eve2 -1

2
co >
5= 8e2 —9

(superluminal).

5. e > 3/2y/2. The RN metric describes a naked
singularity. In contrast to the previous case, the critical
points exist only for subluminal branch.

In Fig. 1, the critical radii are shown as functions
of the speed of sound for several values of e.

Substituting the value of 2} from (8) in the first re-
lation in (7) and then substituting =, and u, expressed
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Fig.1. The outer critical radius 2 (thick lines) and
inner critical radius 2. (thin lines) are shown as func-
tions of the sound speed ¢s for several values of the
electric charge e = /M. We note that the outer crit-
ical radius coincides with the event horizon, =z = 1,
for the extreme black hole (e = 1) in the case ¢; > 1

in terms of ¢, in (6), we find a closed equation for p at
the critical point,

PstPe Moo _ 1+3c¢2+D

PootDoo s \/2[14+3c2+4e22(2—1)+D]’

(9)

where

D= \/(1 +3c2)? — 8e2¢2(¢? + 1).
For e = 0, Eq. (9) reduces to the equation for the criti-
cal point in the case of the Schwarzschild black hole [5].
The black hole mass changes at the rate M =
= —47r?T," due to fluid accretion. With the help of (4)
and (6), this expression can be written as

M = 47 AM?[poe + Poo). (10)

It is clear from this equation that the accretion of phan-
tom energy, defined by the condition ps + p(poo) < 0,
is always accompanied with a decrease in the black hole
mass. This is in accordance with previous findings [5].
We stress that the result is valid for any equation of
state p = p(p) with p + p(p) < 0.

3. PERFECT FLUID AS A SCALAR FIELD

It is well known that the dynamics of a relativistic
perfect fluid in the absence of vorticity can be described
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in terms of a scalar field. In particular, a stiff fluid
corresponds to a canonical massless scalar field. To
describe more complicated equations of state, we intro-
duce a generalized noncanonical scalar field Lagrangian
of the form

L= L(X),

%amaﬂqs. (11)

The energy-momentum tensor corresponding to La-
grangian (11) is

Ty = LxV 0V, ¢ — gun L,

where the subscript X denotes the derivative with re-
spect to X. The correspondence between the scalar
field and the perfect fluid with energy—momentum ten-
sor (2) is achieved by the identification (see, e.g., [10])

_ Vuo
Uy = N
V2X
where the pressure p coincides with the Lagrangian

density of the scalar field, p = £(X), and the energy
density is

p(X)=2XLx —L.

The sound speed can be expressed as

=( )_1.

Apart from the energy density ¢ and pressure p, we can
formally define the “particle number density”

) = VXL x

Lxx
1+2X——
+ I+

2_£,X

C
s
P.x

a4

</
n = Xp
p

+p
and the enthalpy

hzm=2\/)_(.
n

Equations of motion following from (11) are

o (V=9 Lx g"d,0) =0. (12)
A steady-state flow is described by the ansatz
o(t, ) = asot + Y(), (13)

where the constant a., defines the “cosmological” value
of ¢ at spatial infinity. For ansatz (13), it is easy to see
X == % _ fwl2

that
> ().

and equation of motion (12) can be integrated once to
give

1

22 fLx (2) = V2A. (14)
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Equation (14) is in fact another form of (3), written
in terms of the scalar field. Moreover, Eq. (14) is an
algebraic equation for the function v)’. Therefore, the
general solution must contain A, which should be de-
termined via an analog of critical point (7). From (12),
we can find ¢ in terms of ¢’ (this expression also con-
tains Lx and Lxx). The critical point is then found by
equating both the nominator and the denominator of
the obtained expression to zero. As a result, we obtain

22 wfe
CT P (e fl 4L

which is another form of (7). We now have three equa-
tions (14) and (15) which can be used to find ., x.,
and A. This procedure is fully equivalent to fixing the
critical point for the fluid accretion. This description
is very useful for some particular tasks.

In particular, we analyze (14) in the limit  — 0.
We have

fblPLxx = Lx, (15)

2

2
2X ~ B -
e

e_¢12

22
Because X > 0 for the fluid, this leads to

X =0, 9?=0 as z—0. (16)
On the other hand, it follows from (14) that
Lxy" — const, x — 0. (17)

Combining (16) and (17), we conclude that the fluid
reaches x = 0 during a steady-state accretion only if
Lx — oo as X — 0. This means, in particular, that
a fluid described by the linear equation of state with
a < 1 does not reach the central singularity at x = 0 if

e #0.

4. ACCRETION ONTO A BLACK HOLE

In this section, we present and discuss several an-
alytic solutions for steady-state accretion of a perfect
fluid onto a charged black hole.

4.1. Linear equation of state
Ag the first example, we consider the linear equation
of state

p=a(p—po), (18)

where a and pg are constants. This equation was int-
roduced in [5] (see also [9]) to avoid hydrodynamical
instability for a perfect fluid with negative pressure.
The constant « in (18) determines the squared speed
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of sound of small perturbations, @ = ¢2, and it must
be positive. We note that (18) can be regarded as a
linear approximation to the general nonlinear equation
of state p = p(p) around some point p = p;. Therefore,
the results in this section can be applied to a generic
equation of state if |p — p1| is small enough.

Using (7) and (8), we can use (4) to calculate the di-
mensionless constant A for the linear equation of state
as

2
2ax;

(1—a)/2c

The velocity and the energy density as functions of the
radius are determined by solving (4) and (6),

A =a'/?g? < (19)

Ty — €

f+u?= _u_502 "
= 1 ,
p+p A 1+a (20)
Poo+Poo (_W> '

It is possible to express the solutions of the above equa-
tions through known analytic functions for specific va-
lues of a, namely, « = 1/4, 1/3, 1/2, 2/3, 1, 3/2, and
2. Below, we present solutions corresponding to some
particular values of a.

We first consider the case of the stiff fluid: a = 1.
For the radial velocity and the energy density we then

find

(x —z )zl

(@t 2@ +a5)2

2

:@+( _@) (z +ap)(2® +27)

P=5 Poe ™75 (x —x_)2?

The density at the horizon is
o =24 (p _@)A (21)
T2 2 ) I—e

We note that the energy density diverges at the event
horizon x, of an extreme black hole, e = 1.

Solutions for a thermal photon gas, a« = 1/3, can
be found accordingly. Indeed, the radial distribution of
the energy density in this case is

2
_ o ( _@) 1+ 22
p= 1 + | Po 1 ( 3f )
where
2r — f3
cos 3 T4 <o < T,
zZ =
=, > T,
cos3 T >

903

and

2
[ = arccos (1 — 2—7A2f—4> )
z

2

Phantom energy in this particular case corresponds to
the choice pp > 4ps. At the event horizon z = x,, we
have

_ _M _ o A?

The case of a superluminal fluid is also worth study-
ing. As an example, we take a = 2. The inflow then
consists of two hydrodynamical branches:

| / 8

ULQ:EF 1+ 1+4fﬂ,
A 3
p172 - ( ) .

U1,21‘2
At the outer and inner horizons, we find

1 A?
(22)

AZ
i’

uy(zy) = uz(ry) = 0.

The energy density diverges at r_, and the solution
does not exist for r < r_. The behavior of superlumi-
nal fluids (¢s > 1) is quite unusual. Apart from the
transonic solution in (22), there is an infinite family of
solutions that are regular at r > 0 and are paramete-
rized by A with A > A,. These solutions consist of
a single hydrodynamical branch, and the sonic horizon
is absent. A solution with A > A, allows probing the
singularity of a black hole with small perturbations. In
fact, it is not clear how to choose the “correct” physical
solution for a superluminal fluid?.

Contrary to accretion of a superluminal fluid, a so-
lution for a subluminal fluid exists only above some
minimal radius 7, 0 < Tmin < r—, and hence the in-
flowing fluid does not reach the central singularity (see
Sec. 3). The energy density of the fluid has the maxi-
mum at rpi,. For example, rpin = 2(v/2 — 1)M and
P(Pmin) = (8/3)2(12v/2+17) po in the case of accretion
of a fluid with o = 1/3 (thermal photon gas) onto the
extremely charged black hole.

2) One can argue, however, that all these problems are due to
the unphysical choice of the equation of state (18). We note that
p — 0 as @ — 0. The equation of state (18) is unphysical for
a # 1at p — 0, due to the pathological behavior of the equations
of motion for ¢ in the limit p — 0, as it was shown in [10]. To
cure the model in (18) with a # 1 for small densities, one can
modify the equation of state, such that p — p as p — 0. For

example, in terms of the scalar field, the Lagrangian
£=(+X)¥*—g, (23)

with small o satisfies this requirement, also giving a “superlumi-
nal” fluid with p = 2p for large densities.
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We note that similar behavior was found for
geodesic motion of test particles with a nonzero mass
[11, 12] in the RN metric. In particular, the radial com-
ponent of the 4-velocity for parabolic radial geodesics
(i.e., for particles with zero velocity at infinity) is

/ 3
wy(z) = £ Y22 (24)
x
The particle bounces at rp,;, = Q2/2M and
Up(Tmin) = 0, but |uy,(rmin)| = 0o according to (24).

The corresponding solutions for an accreting sublu-
minal fluid are singular at r = r,;,,, namely, u' (7)) =
= oo and p'(rmin) = —oo (although both the 4-velocity
and the energy density are finite at r = 7p,;,). As are-
sult, continuity equation (3) is ill-defined at r = rp;p.
In what follows, we assume that (i) the fluid can have
double-valued solutions, and hence inflow and outflow
solutions can coexist at the same point of the mani-
fold, and (ii) the fluid passes through the singularity
in the solution at r = ry,;,. Formally, these assump-
tions imply that we can match solutions for the inflow
and outflow at 7y, such that pinfiow () = Pout fiow ()
and Wi fiow (%) = —Uoutfiow (). A physical interpreta-
tion is then as follows: the fluid accretes onto a black
hole, then it bounces at r,,;, and flows outwards to the
asymptotically flat internal spacetime. Because the in-
flow and the outflow are symmetric by construction, we
present, the results for the inflow only.

The resulting distribution for the energy density
p(z) for the thermal photon gas is shown in Fig. 2.
In Fig. 3, the corresponding distributions for the ra-
dial component of the 4-velocitiy are shown. In Fig. 4,
we plot the radial 3-velocity v(x) with respect to lo-
cal static observers. We note that v(x) is equal to the
speed of sound, v(rmin) = ¢s, at the minimal radius
Tmin for a generic equation of state.

In Fig. 5, we depict a part of the Carter—Penrose
diagram for the the RN metric [13, 14], containing an
accreting fluid. This diagram is symmetric and time-
reversible due to the stationarity of the process. We
note that for “astrophysical” black holes formed by
gravitational collapse of massive objects, the internal
space—times are absent and the inflowing fluid can be
expected to modify the metric inside the event horizon
(see, e.g., [15-25] and the references herein).

In the Carter-Penrose diagram, the streamlines of
the outflowing fluid intersect the inflowing ones in the
region T, < r < r— (note the intersecting dashed
lines in Fig. 5). As we discussed before, we assume
the inflow and outflow do not interact and they freely
pass through each other (similarly to the motion of test
particles). If the fluid is viscous, the picture should be

904
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200 +
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0.5

Fig.2. Energy density p(z) for the inflowing fluid with

a = 1/3 (thermal photon gas) in the RN metric with

the charge e = 0.99. After reaching the bounce point

(marked by the dot) at the minimal radius rmin, the

fluid expands to the internal asymptotically flat uni-

verse. 7 =2.04, x4 = 1.14, 27 = 0.96, _ = 0.86,
Tmin = 0.79

Fig.3. Radial 4-velocity u(r) (thick curve) for the in-
flowing fluid with o = 1/3 (thermal photon gas) in the
RN metric with the charge e = 0.999. Thin curves
correspond to the unphysical hydrodynamical branches
and u, is the 4-velocity at the critical (sound) point
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Fig.4.

(a 1/2, e 0.999) with respect to the local

static observers in the R-regions ri < r < oo and

0 <r <r_. In the T-region r_ < r < ry, the local

static observers do not exist, and hence the 3-velocity
is undefined

Radial 3-velocity v(z) for the inflowing fluid

modified (at least for » < r_, but not for r > r,),
because intersecting streamlines interact. The result-
ing flow may become time dependent, turbulent or/and
accompanied by formation of shocks.

4.2. Chaplygin gas

Another analytically solvable example we consider
here is the Chaplygin gas,

p=—-
p
where a constant a > 0 corresponds to a hydrodyna-
mically stable fluid. The Chaplygin gas with p?> < a
represents phantom energy with a superluminal speed
of sound. The opposite case, p?> > a, corresponds to
dark energy with p+p>0and 0 < 2 < 1.
We find the following relations at the critical point:
&E-1
fo="—F,
- (25)

=7

:l::

*

T 1+

§

where ¢ = p2_ /a. The sonic point exists and the ac-
cretion is transonic for & > €2, i.e., when the square

905

Fig.5. Carter—Penrose diagram of the Reissner—Nord-
strdm metric containing a steady-state accreting fluid.
The fluid streamlines are shown by dashed lines. The
minimal radius r.,i, is a bounce point for inflowing

fluid

root in (25) is real. We note that for the nonphantom
Chaplygin gas, this is always the case. On the other
hand, in the phantom case, the critical point is absent
for some range of parameters, implying that a physical
solution does not exist. This, however, is merely a con-
sequence of pathological behavior of the Chaplygin gas
in the phantom regime. For the radial dependence of
the energy density and the radial 4-velocity u, we find
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__ A=
=2\ ol T (26)
p [F— 2= D
2o

The value of the energy density at the event horizon
is p(ry)/pec = A/2%. In the special case £ = 1, so-
lution (26) corresponds to the vacuum state with p =
= —p = —peo and u = 0. The energy density of the
nonphantom Chaplygin gas diverges at the inner criti-

cal point
e(1-

5. SOLUTIONS FOR A NAKED SINGULARITY

1—62/5).

As was discussed in Sec. 3, only “superluminal” flu-
ids reach a naked singularity in steady-state accretion.
More precisely, when formulated in terms of a scalar
field, a solution well-behaved at r > 0 exists only
if the Lagrangian satisfies the relation dL/dX — oo
as X — 0%. In this case one can specify the sec-
ond boundary condition for accretion at the singularity,
r=0.

In the case of a “subluminal” fluid, the critical so-
lution for steady-state accretion exists not for all r but
only for r > rp,. This is in fact similar to the case of
an RN black hole, when a fluid bounces from the singu-
larity, as was discussed in Sec. 4. The radial 4-velocity
as a function of r is similar to that for the RN black
hole, plotted in Fig. 3. But the 3-velocity does not have
a gap with undefined values, in contrast to the case of
the black hole. Thinking in terms of a superfluid, the
solution for the critical flow can be interpreted as two
physical solutions: the inflow and the outflow, matched
at the point 7,,,;,,. We note, however, that in the case of
a black hole, the matching point 7,;, (where the solu-
tion becomes singular) is hidden by the horizon, while
in the case of an RN naked singularity, the singular
matching point is reachable by a static observer. It
should be expected that an arbitrarily small viscosity
of the fluid drastically changes the solution, because
the inflowing and outflowing components of the fluid
interact in the whole space—time. We can therefore
conclude that for any realistic fluid, the steady-state
accretion does not occur for the RN singularity.

3) As was discussed in Sec. 3, the condition dL/dX — const as
X — 0 must hold for the fluid to be nonpathological. Therefore,
strictly speaking, a “nonpathological” superluminal fluid does not
reach a naked singularity either.

906

5.1. Static fluid atmosphere

It is interesting that in contrast to the black hole
case, a static solution for a naked singularity can be
constructed. Such a solution describes a static light at-
mosphere with zero influx. Indeed, from (6), assuming
u = 0, we find a static distribution of a test perfect
fluid around the RN naked singularity

p

Poo

dipl = f1/2
P +p(p')

In the particular case of linear equation of state (18),

we obtain
 (pe-

for a static atmosphere. The energy density of ordinary
matter (with pg = 0 and « > 0) approaches zero at the
singularity, p oc 2'*/® as  — 0. The phantom energy
density is finite at = 0, and hence the phantom fluid

QpPo
1+a

apo —(1+a)/2a 28
1+ a) f (28)

p(r) =

“overcomes” the naked singularity repulsiveness.

In the case €2 > 1, setting u = A = 0in Eq. (26), we
find a static distribution of the Chaplygin gas around
a naked singularity.

5.2. Static scalar field atmosphere

We note that the solutions for a static atmosphere
of the fluid considered above corresponds to the follo-
wing solution in terms of the scalar field,

% = const, % =0.

ot or

However, zero energy flux,
Ty = —fLx0d ¢ =0,

is also achieved by setting dy¢ = 0. Then the equation

of motion becomes
( Lxf ¢) =0.

0
(29)
We restrict ourselves to the canonical scalar field,

or

L(X) = X. The respective solutions of (29) for an
RN black hole and a naked singularity are
& r—xy
= |
¢($) M(JU+—SU_) n T — 1 +£27
& { r—1 ]
T arct — | + &2, 30
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where & and & are constants. We note that ¢(1) =0
in (30) for any e # 0, but ¢(0) is not necessarily zero.
The energy density of the scalar field is TQ = £7/2r* f.
In the case of an RN black hole, it diverges at the hori-
zon, while for a naked singularity, the energy density
is singular at » = 0. However this singularity is inte-
grable and the mass of the scalar field atmosphere is
finite inside any finite r.

6. APPROACH TO THE EXTREME STATE

A black hole can approach the extreme state by cap-
turing particles with an electric charge and/or angular
momentum, but an infinite time is required to reach
the extreme state [7, 26, 27]. This is a manifestation of
the third law of the black hole thermodynamics [7]. We
note that during accretion of neutral phantom energy,
the electric charge of the RN black hole is unchanged,
() = const, while the black hole mass decreases. As a
result, the black hole approaches a near-extreme state
because the ratio e = /M (t) increases. In the test
fluid approximation, the black hole reaches the extreme
state in a finite time ¢ = tyg defined by the relation
Q = M(tnys). Indeed, using (10), the time tyg for a
black hole with the initial mass M = M(0) and the
electric charge () = const can be calculated from the
equation

tns

/ mdt = Q — M(0). (31)

If we neglect the cosmological evolution of ps,, then in
the particular case of phantom with the stiff equation
of state (¢cs = 1), it follows from (10), (19) and (31)
that

ed —3e2 +2—2(1 —e3)*/? T
3eg '

tnNs = (32)
where eg = Q/M (0) and 7 = —{47[poo+p(poo) | M (0)} 1
is the characteristic accretion time.

The finiteness of the time ¢xg in (32) implies viola-
tion of the third law of the black hole thermodynamics
in the considered test fluid approximation®.

We note that in deriving the above result, we as-
sumed that the fluid does not back-react. But this as-
sumption may not be valid for the near-extreme black
holes/naked singularities. Indeed, in the case o > 1,
the energy density of the accreting fluid diverges at

1) Possibility for a black hole to be transformed into a naked
singularity by phantom accretion was first discussed in [28].

the horizon, as the black hole approaches the extreme
state. This can be seen from (19), (21), and (20). Si-
milarly, violation of the test fluid approximation occurs
at the radius r = M for the static atmosphere around
a near-extreme naked singularity due to the divergence
of the energy density, as can be verified from Eqs. (28).
It is worth noting that in the case of a near-extreme
Kerr-Newman naked singularity, the energy density di-
verges at r = M for an atmosphere of a fluid [29].

Meanwhile, when 0 < o < 1, the energy density of
the accreting fluid remains finite even for the extreme
black hole. It can nevertheless be argued that the test
fluid approximation is violated for the following reason.
The test fluid approximation is valid if the back reac-
tion of an accreting fluid is small. But for an almost
extreme black hole, with |m — e| < m, the back re-
action can be calculated from the perturbed Einstein
equations,

0G, = 81GT,,, (33)

where dG,, is the deviation of the Einstein tensor due
to the presence of the accreting fluid with the ener-
gy—momentum tensor 7),,. Even if the perturbation of
the metric calculated from (33) is small, the presence
of the fluid may have a drastic effect on the metric in
the limit as M — . Hence, the back reaction effects
in the case of near-extreme black holes must be con-
sidered carefully, even if the accreting fluid has a small
energy—momentum tensor. The back reaction of the
accretion flow may prevent conversion of a black hole
into a naked singularity®. This question, however, is
beyond the scope of this paper, and we leave it for fu-
ture investigation.

7. CONCLUSION

We have studied the steady-state distribution of
a test perfect fluid with a general equation of state,
p = p(p), and a scalar field in the Reissner—Nordstrom
metric. Similarly to the case of steady-state accretion
of a perfect fluid onto a Schwarzschild black hole, the
corresponding solution for the accretion exists also in
the case of the RN black hole. On the other hand, no
steady-state accretion of a perfect fluid exists onto the
RN naked singularity, unless the double-valued veloci-
ty, energy density, and the pressure of a fluid are intro-
duced in order to describe the inflow and the outflow

5) The importance of back reaction was discussed in [30] in
the context of absorption of scalar particles with a large angular
momentum by a near-extreme black hole.
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occurring in the same points of space—time. Instead
of a steady-state accretion, a static atmosphere of the
fluid is formed around a naked singularity. For both the
black hole and the naked singularity, we found analytic
solutions of the problem of the steady state configu-
rations of perfect fluids with an arbitrary equation of
state p = p(p). As particular cases, we studied a fluid
with the linear equation of state, p = a(p — po) and
the Chaplygin gas, p = a/p. We also found a static
distribution of a scalar field around the RN naked sin-
gularity.

When the accreting fluid is phantom, p + p < 0,
the mass of the RN black hole decreases. This result
is in agreement with the previous findings [5, 31]. This
poses a question of whether it is possible to convert
an RN black hole into a naked singularity by accretion
of phantom. Under the assumptions we made, such a
conversion is possible, because the accreting phantom
decreases the black hole mass, while the electric charge
of the black hole remains the same. The conversion of
an RN black hole into a naked singularity in the case
of accretion of exotic matter with a negative energy
density p < 0 was already studied in [25, 32]. It is in-
teresting to verify the possibility of similar conversion
in the case of a phantom fluid with a positive energy
density p > 0 by taking back reaction into account,
which, as we expect, plays an important role in the
case of near-extreme states. We leave this question for
future study.

Although the test fluid approximation seems
to break down for the near-extreme state of the
black hole/naked singularity, we stress that for the
far-from-extreme state of a black hole (in particular,
for the Schwarzschild solution), the parameters of the
perfect fluid and the boundary condition at the infinity
can be tuned such that the test fluid approximation
describes the accretion process well.
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