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PERFECT FLUID AND SCALAR FIELDIN THE REISSNER�NORDSTRÖM METRICE. O. Babi
hev a;b*, V. I. Doku
haev b**, Yu. N. Eroshenko b***aArnold Sommerfeld Center for Theoreti
al Physi
s,Department für Physik, Ludwig-Maximilians-Universität Mün
henD-80333, Muni
h, GermanybInstitute for Nu
lear Resear
h, Russian A
ademy of S
ien
es117312, Mos
ow, RussiaRe
eived September 30, 2010We des
ribe the spheri
ally symmetri
 steady-state a

retion of perfe
t �uid in the Reissner�Nordström metri
.We present analyti
 solutions for a

retion of a �uid with linear equations of state and of the Chaplygin gas. Wealso show that under reasonable physi
al 
onditions, there is no steady-state a

retion of a perfe
t �uid onto aReissner�Nordström naked singularity. Instead, a stati
 atmosphere of �uid is formed. We dis
uss a possibilityof violation of the third law of bla
k hole thermodynami
s for a phantom �uid a

retion.1. INTRODUCTIONThe problem of matter a

retion onto 
ompa
t ob-je
ts in Newtonian gravity was formulated within theself-similar treatment by Bondi [1℄. In the frameworkof general relativity, the steady-state spheri
al symmet-ri
 �ow of test gas onto a S
hwarzs
hild bla
k hole wasinvestigated by Mi
hel [2℄. Detailed studies of sphe-ri
ally symmetri
 a

retion of di�erent types of �uidsonto bla
k holes were further undertaken in a numberof works [3℄ (see also review [4℄).In this paper, we study perfe
t �uids and s
alar�elds in the Reissner�Nordström (RN) metri
. We de-s
ribe spheri
ally symmetri
 steady-state a

retion ofa test perfe
t �uid with a general equation of stateonto a nonrotating 
harged bla
k hole. We �nd analy-ti
 solutions for a

retion of a perfe
t �uid with a linearequation of state and of the Chaplygin gas onto an RNbla
k hole. When a phantom �uid a

retes onto a bla
khole, the latter loses its mass. This result is 
onsistentwith the �ndings in Ref. [5℄ on the phantom a

retiononto a S
hwarzs
hild bla
k hole.We �nd that under reasonable physi
al assump-tions, a perfe
t �uid does not a

rete onto the RNnaked singularity, i. e., when M2 < Q2, where M is*E-mail: eugeny.babi
hev�physik.uni-muen
hen.de**E-mail: doku
haev�ms2.inr.a
.ru***E-mail: eroshenko�ms2.inr.a
.ru

the mass and Q is the ele
tri
 
harge of the naked sin-gularity. Namely, steady-state a

retion onto a nakedsingularity is only possible in two unphysi
al 
ases. Inthe �rst 
ase, the a

reting �uid is superluminal andan additional boundary 
ondition on the 
entral singu-larity is spe
i�ed. In the se
ond 
ase, the �uid may besti� or subluminal, but we have to postulate that thein�ow and out�ow 
oexist in the spa
e�time manifold,and the solution passes somehow through a singularpoint. We show that instead of a steady-state a

re-tion, a stati
 atmosphere around a naked singularity isformed1).We also show that the extreme state of an ele
tri-
ally 
harged bla
k hole is rea
hed in a �nite time dueto phantom �uid a

retion, when gravitational ba
krea
tion of the a

reting �uid is negle
ted. We argue,however, that the test �uid approximation may be vio-lated when the RN bla
k hole or naked singularity isalmost extreme. This implies that ba
k rea
tion of the�uid on the ba
kground geometry may prevent trans-formation of a bla
k hole into a naked singularity, ina

ordan
e with the third law of bla
k hole thermody-nami
s [7℄.The paper is organized as follows. In Se
. 2, we
onstru
t the general formalism for steady-state sphe-ri
ally symmetri
 a

retion of a test perfe
t �uid in the1) A similar result for the Kerr naked singularity was foundin [6℄ using numeri
al methods.899 5*
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. In Se
. 3, we give an alternative des
riptionof the a

retion in terms of a s
alar �eld. In Se
. 4, weapply the results of the previous se
tions to parti
ularexamples of perfe
t �uid, namely, we study a

retionof a �uid with a linear equation of state and a

retionof the Chaplygin gas. A stati
 atmosphere of �uidsaround a naked singularity is des
ribed in Se
. 5. Abla
k hole approa
hing the extreme state by a

retionof phantom �uid and the possibility of violation of thethird law of thermodynami
s are dis
ussed in Se
. 6.We 
on
lude in Se
. 7.2. STEADY-STATE ACCRETIONIn this se
tion, we study spheri
ally symmetri
steady-state a

retion of a test perfe
t �uid with a ge-neral equation of state in the RN metri
. We 
loselyfollow the approa
h in [5℄ to gas a

retion in theS
hwarzs
hild metri
.The RN metri
 is given byds2 = fdt2 � f�1dr2 � r2(d�2 + sin2 � d�2); (1)where f = 1� 2Mr + Q2r2 :Here, M is the bla
k hole (or naked singularity) mass,and Q is its total 
harge. It is 
onvenient to introdu
edimensionless 
oordinates,� � tM ; x � rM ;and the dimensionless ele
tri
 
harge of the bla
k holee � Q=M . In the 
ase e2 < 1, the equation f(x) = 0has two roots x� = 1�p1� e2:The larger root, x+, 
orresponds to the event horizon ofthe RN bla
k hole, and x = x� is the so-
alled Cau
hy(or inner) horizon. In the opposite 
ase, e2 > 1, theRN metri
 (1) des
ribes a naked singularity without anevent horizon. The marginal 
ase e2 = 1 
orrespondsto an extreme bla
k hole.The energy�momentum of a perfe
t �uid isT�� = (�+ p)u�u� � pg�� ; (2)where � and p are the �uid energy density and pressurerespe
tively, and u� = dx�=ds is the �uid four-velo
itynormalized by u�u� = 1. We assume that the pressureis an arbitrary fun
tion of the density alone, p = p(�).To �nd integrals of motion, we use the proje
tion of

the equation for the energy�momentum tensor 
onser-vation onto the 4-velo
ity, u�T��;� = 0. This gives the
ontinuity equationu��;� + (�+ p)u�;� = 0: (3)Integrating (3) on
e, we �nd the integral of motion (theenergy 
onservation)ux2n = �A; (4)where n � exp24 �Z�1 d�0�0 + p(�0)35 ;u = dr=ds < 0 in the 
ase of in�ow motion (a

retion),and A > 0 is a 
onstant of integration, whi
h is relatedto the radial energy �ux.Integration of the time 
omponent of the 
onserva-tion law T��;� = 0 gives another integral of motion (therelativisti
 Bernoulli equation),(�+ p)(f + u2)1=2x2u = C1; (5)where u � dr=ds and C1 is a 
onstant of integration.From (4) and (5), we 
an easily obtain that�+ pn (f + u2)1=2 = C2; (6)where C2 � �C1A = �1 + p(�1)n(�1) ;with �1 being the energy density at in�nity.Equations (4) and (6) along with the equation ofstate p = p(�) form a 
losed system for a

retion ontoan RN bla
k hole (or naked singularity). This system isto be supplied with appropriate boundary 
onditions.The obtained system of equations des
ribes a

retion ofa perfe
t �uid with a general equation of state p = p(�),and may be applied, in parti
ular, to a

retion of theChaplygin gas [8℄ or dark energy des
ribed by the gen-eralized linear equation of state [9℄.The 
onstant C2 is �xed by the boundary 
onditionat in�nity. Fixing A in (4) and, respe
tively, the �ux ismore tri
ky. This is provided by the physi
al require-ment of a smooth transition through the 
riti
al soundpoint (see the details, e. g., in [2℄). The resulting so-lution should be 
ontinuous from in�nity down to thebla
k hole horizon. Following [2℄, we �nd relations atthe 
riti
al point,u2� = x� � e22x2� ; 
2s(��) = x� � e22x2� � 3x� + e2 ; (7)900
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t �uid and s
alar �eld : : :where 
s(�) � (�p=��)1=2 is the speed of sound, andthe subs
ript ��� indi
ates that the values are taken atthe 
riti
al point. It follows from (7) thatx�� = 1 + 3
2�4
2� (1� �1� 8
2�(1 + 
2�)(1 + 3
2�)2 e2�1=2) ; (8)where 
� � 
s(x�). Criti
al points exist only ife2 � �1 + 3
2��28
2� (1 + 
2�) :It is worthwhile to note that in 
ontrast to the 
aseof a S
hwarzs
hild bla
k hole, there are formally twodi�erent 
riti
al points, 
orresponding to the plus andminus signs in (8). We also note that x�� ! 0 as e! 0.Depending on the values of e and 
s one 
an identifythe following �ve 
ases.1. e < 1, 
2s < 1 (
2s = 1). In this 
ase, the eventand the Cau
hy horizons exist, x+ > x�, as well asboth 
riti
al points; the outer 
riti
al point is outsidethe event horizon, x+� > x+ (x+� = x+), the inner 
riti-
al point is between the event and the Cau
hy horizons,x� < x�� < x+ (x�� = x�).2. e < 1, 
2s > 1. Similarly to the previous 
ase,the event and the Cau
hy horizons, and both 
riti
alpoints exist; but the outer 
riti
al point is in betweenthe event and the Cau
hy horizons, x� < x�� < x+(x+� = x� = x+); the inner 
riti
al point is inside theCau
hy horizon, x�� < x+.3. e = 1. The event and the Cau
hy horizons 
o-in
ide, x+ = x� = 1, and both 
riti
al points exist: inthe subluminal 
ase, x+� > 1 and x�� = 1; for a sti��uid, 
2s = 1, we �nd x�� = 1; in the superluminal 
ase,x+� = 1 and x�� < 1.4. 1 < e < 3=2p2. The RN metri
 des
ribes anaked singularity (the horizons are absent). Criti
alpoints exist for two di�erent bran
hes,
2s � �4e2 + 3� 4epe2 � 18e2 � 9 (subluminal);or 
2s � �4e2 + 3 + 4epe2 � 18e2 � 9 (superluminal):5. e � 3=2p2. The RN metri
 des
ribes a nakedsingularity. In 
ontrast to the previous 
ase, the 
riti
alpoints exist only for subluminal bran
h.In Fig. 1, the 
riti
al radii are shown as fun
tionsof the speed of sound for several values of e.Substituting the value of x+� from (8) in the �rst re-lation in (7) and then substituting x� and u� expressed

x+� x+� x+�x+�x�� x��x��
e = 0

1:0 2:0 
2s00:5
1:01:5
2:02:5x+� ; x�� 11:010:9

Fig. 1. The outer 
riti
al radius x+� (thi
k lines) andinner 
riti
al radius x�� (thin lines) are shown as fun
-tions of the sound speed 
s for several values of theele
tri
 
harge e = Q=M . We note that the outer 
rit-i
al radius 
oin
ides with the event horizon, x+� = 1,for the extreme bla
k hole (e = 1) in the 
ase 
s � 1in terms of 
� in (6), we �nd a 
losed equation for � atthe 
riti
al point,��+p��1+p1 n1n� = 1 + 3
2� +Dp2 [1+3
2�+4e2
2�(
2��1)+D℄ ; (9)where D =q(1 + 3
2�)2 � 8e2
2�(
2 + 1):For e = 0, Eq. (9) redu
es to the equation for the 
riti-
al point in the 
ase of the S
hwarzs
hild bla
k hole [5℄.The bla
k hole mass 
hanges at the rate _M == �4�r2T r0 due to �uid a

retion. With the help of (4)and (6), this expression 
an be written as_M = 4�AM2[�1 + p1℄: (10)It is 
lear from this equation that the a

retion of phan-tom energy, de�ned by the 
ondition �1 + p(�1) < 0,is always a

ompanied with a de
rease in the bla
k holemass. This is in a

ordan
e with previous �ndings [5℄.We stress that the result is valid for any equation ofstate p = p(�) with �+ p(�) < 0.3. PERFECT FLUID AS A SCALAR FIELDIt is well known that the dynami
s of a relativisti
perfe
t �uid in the absen
e of vorti
ity 
an be des
ribed901
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haev, Yu. N. Eroshenko ÆÝÒÔ, òîì 139, âûï. 5, 2011in terms of a s
alar �eld. In parti
ular, a sti� �uid
orresponds to a 
anoni
al massless s
alar �eld. Todes
ribe more 
ompli
ated equations of state, we intro-du
e a generalized non
anoni
al s
alar �eld Lagrangianof the form L = L(X); X � 12������: (11)The energy�momentum tensor 
orresponding to La-grangian (11) isT�� = LXr��r��� g��L;where the subs
ript X denotes the derivative with re-spe
t to X . The 
orresponden
e between the s
alar�eld and the perfe
t �uid with energy�momentum ten-sor (2) is a
hieved by the identi�
ation (see, e. g., [10℄)u� � r��p2X ;where the pressure p 
oin
ides with the Lagrangiandensity of the s
alar �eld, p = L(X), and the energydensity is � (X) = 2XL;X �L:The sound speed 
an be expressed as
2s = L;X�;X = �1 + 2XLXXLX ��1 :Apart from the energy density " and pressure p, we 
anformally de�ne the �parti
le number density�n � exp�Z d��+ p� = pXL;Xand the enthalpy h � �+ pn = 2pX:Equations of motion following from (11) are�� �p�gLX g������ = 0: (12)A steady-state �ow is des
ribed by the ansatz�(t; x) = a1t+  (x); (13)where the 
onstant a1 de�nes the �
osmologi
al� valueof _� at spatial in�nity. For ansatz (13), it is easy to seethat X = 12 �a21f � f 02� ;and equation of motion (12) 
an be integrated on
e togive x2fLX 0(x) = p2A: (14)

Equation (14) is in fa
t another form of (3), writtenin terms of the s
alar �eld. Moreover, Eq. (14) is analgebrai
 equation for the fun
tion  0. Therefore, thegeneral solution must 
ontain A, whi
h should be de-termined via an analog of 
riti
al point (7). From (12),we 
an �nd  00 in terms of  0 (this expression also 
on-tains LX and LXX ). The 
riti
al point is then found byequating both the nominator and the denominator ofthe obtained expression to zero. As a result, we obtain 0�2 = a21 x�f 0�f2 (x�f 0� + 4f�) ; f� 0�2LXX = LX ; (15)whi
h is another form of (7). We now have three equa-tions (14) and (15) whi
h 
an be used to �nd  0�, x�,and A. This pro
edure is fully equivalent to �xing the
riti
al point for the �uid a

retion. This des
riptionis very useful for some parti
ular tasks.In parti
ular, we analyze (14) in the limit x ! 0.We have 2X � x2e2 B2 � e2x2 02:Be
ause X > 0 for the �uid, this leads toX ! 0;  02 ! 0 as x! 0: (16)On the other hand, it follows from (14) thatLX 0 ! 
onst; x! 0: (17)Combining (16) and (17), we 
on
lude that the �uidrea
hes x = 0 during a steady-state a

retion only ifLX ! 1 as X ! 0. This means, in parti
ular, thata �uid des
ribed by the linear equation of state with� � 1 does not rea
h the 
entral singularity at x = 0 ife 6= 0.4. ACCRETION ONTO A BLACK HOLEIn this se
tion, we present and dis
uss several an-alyti
 solutions for steady-state a

retion of a perfe
t�uid onto a 
harged bla
k hole.4.1. Linear equation of stateAs the �rst example, we 
onsider the linear equationof state p = �(�� �0); (18)where � and �0 are 
onstants. This equation was int-rodu
ed in [5℄ (see also [9℄) to avoid hydrodynami
alinstability for a perfe
t �uid with negative pressure.The 
onstant � in (18) determines the squared speed902
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t �uid and s
alar �eld : : :of sound of small perturbations, � = 
2s, and it mustbe positive. We note that (18) 
an be regarded as alinear approximation to the general nonlinear equationof state p = p(�) around some point � = �1. Therefore,the results in this se
tion 
an be applied to a generi
equation of state if j�� �1j is small enough.Using (7) and (8), we 
an use (4) to 
al
ulate the di-mensionless 
onstant A for the linear equation of stateas A = �1=2x2�� 2�x2�x� � e2�(1��)=2� : (19)The velo
ity and the energy density as fun
tions of theradius are determined by solving (4) and (6),f + u2 = ��ux2A �2� ;�+ p�1 + p1 = �� Aux2�1+� : (20)It is possible to express the solutions of the above equa-tions through known analyti
 fun
tions for spe
i�
 va-lues of �, namely, � = 1=4, 1=3, 1=2, 2=3, 1, 3=2, and2. Below, we present solutions 
orresponding to someparti
ular values of �.We �rst 
onsider the 
ase of the sti� �uid: � = 1.For the radial velo
ity and the energy density we then�nd u2 = (x� x�)x4+(x+ x+)(x2 + x2+)x2 ;� = �02 + ��1 � �02 � (x+ x+)(x2 + x2+)(x� x�)x2 :The density at the horizon is�+ = �02 + ��1 � �02 � 2x+p1� e2 : (21)We note that the energy density diverges at the eventhorizon x+ of an extreme bla
k hole, e = 1.Solutions for a thermal photon gas, � = 1=3, 
anbe found a

ordingly. Indeed, the radial distribution ofthe energy density in this 
ase is� = �04 + ��1 � �04 ��1 + 2z3f �2 ;where z = 8>><>>: 
os 2� � �3 ; x+ � x � x�;
os �3 ; x > x�

and � = ar

os�1� 272 A2 f 2x4 � :Phantom energy in this parti
ular 
ase 
orresponds tothe 
hoi
e �0 > 4�1. At the event horizon x = x+, wehave �+ = �(x+) = �04 + ��1 � �04 � A2x4+ :The 
ase of a superluminal �uid is also worth study-ing. As an example, we take � = 2. The in�ow then
onsists of two hydrodynami
al bran
hes:u1;2 = 1p2 A2x4 s1�r1 + 4f x8A4 ;�1;2 = � Au1;2x2�3 : (22)At the outer and inner horizons, we �ndu1(x�) = A2x4� ; u2(x�) = 0:The energy density diverges at r�, and the solutiondoes not exist for r < r�. The behavior of superlumi-nal �uids (
s > 1) is quite unusual. Apart from thetransoni
 solution in (22), there is an in�nite family ofsolutions that are regular at r > 0 and are paramete-rized by A with A > A�. These solutions 
onsist ofa single hydrodynami
al bran
h, and the soni
 horizonis absent. A solution with A > A� allows probing thesingularity of a bla
k hole with small perturbations. Infa
t, it is not 
lear how to 
hoose the �
orre
t� physi
alsolution for a superluminal �uid2).Contrary to a

retion of a superluminal �uid, a so-lution for a subluminal �uid exists only above someminimal radius rmin, 0 < rmin < r�, and hen
e the in-�owing �uid does not rea
h the 
entral singularity (seeSe
. 3). The energy density of the �uid has the maxi-mum at rmin. For example, rmin = 2(p2 � 1)M and�(rmin) = (8=3)2(12p2+17)�1 in the 
ase of a

retionof a �uid with � = 1=3 (thermal photon gas) onto theextremely 
harged bla
k hole.2) One 
an argue, however, that all these problems are due tothe unphysi
al 
hoi
e of the equation of state (18). We note that� ! 0 as x ! 0. The equation of state (18) is unphysi
al for� 6= 1 at �! 0, due to the pathologi
al behavior of the equationsof motion for  in the limit � ! 0, as it was shown in [10℄. To
ure the model in (18) with � 6= 1 for small densities, one 
anmodify the equation of state, su
h that p ! � as � ! 0. Forexample, in terms of the s
alar �eld, the LagrangianL = (� +X)3=4 � �; (23)with small � satis�es this requirement, also giving a �superlumi-nal� �uid with p = 2� for large densities.903
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haev, Yu. N. Eroshenko ÆÝÒÔ, òîì 139, âûï. 5, 2011We note that similar behavior was found forgeodesi
 motion of test parti
les with a nonzero mass[11, 12℄ in the RN metri
. In parti
ular, the radial 
om-ponent of the 4-velo
ity for paraboli
 radial geodesi
s(i. e., for parti
les with zero velo
ity at in�nity) isup(x) = �p2x� e2x : (24)The parti
le boun
es at rmin = Q2=2M andup(rmin) = 0, but ju0p(rmin)j =1 a

ording to (24).The 
orresponding solutions for an a

reting sublu-minal �uid are singular at r = rmin, namely, u0(rmin) ==1 and �0(rmin) = �1 (although both the 4-velo
ityand the energy density are �nite at r = rmin). As a re-sult, 
ontinuity equation (3) is ill-de�ned at r = rmin.In what follows, we assume that (i) the �uid 
an havedouble-valued solutions, and hen
e in�ow and out�owsolutions 
an 
oexist at the same point of the mani-fold, and (ii) the �uid passes through the singularityin the solution at r = rmin. Formally, these assump-tions imply that we 
an mat
h solutions for the in�owand out�ow at rmin, su
h that �inflow(x) = �outflow(x)and uinflow(x) = �uoutflow(x). A physi
al interpreta-tion is then as follows: the �uid a

retes onto a bla
khole, then it boun
es at rmin and �ows outwards to theasymptoti
ally �at internal spa
etime. Be
ause the in-�ow and the out�ow are symmetri
 by 
onstru
tion, wepresent the results for the in�ow only.The resulting distribution for the energy density�(x) for the thermal photon gas is shown in Fig. 2.In Fig. 3, the 
orresponding distributions for the ra-dial 
omponent of the 4-velo
itiy are shown. In Fig. 4,we plot the radial 3-velo
ity v(x) with respe
t to lo-
al stati
 observers. We note that v(x) is equal to thespeed of sound, v(rmin) = 
s, at the minimal radiusrmin for a generi
 equation of state.In Fig. 5, we depi
t a part of the Carter�Penrosediagram for the the RN metri
 [13, 14℄, 
ontaining ana

reting �uid. This diagram is symmetri
 and time-reversible due to the stationarity of the pro
ess. Wenote that for �astrophysi
al� bla
k holes formed bygravitational 
ollapse of massive obje
ts, the internalspa
e�times are absent and the in�owing �uid 
an beexpe
ted to modify the metri
 inside the event horizon(see, e. g., [15�25℄ and the referen
es herein).In the Carter�Penrose diagram, the streamlines ofthe out�owing �uid interse
t the in�owing ones in theregion rmin < r < r� (note the interse
ting dashedlines in Fig. 5). As we dis
ussed before, we assumethe in�ow and out�ow do not intera
t and they freelypass through ea
h other (similarly to the motion of testparti
les). If the �uid is vis
ous, the pi
ture should be

0:5 1:0 1:5 2:0 x0100200300�=�1

Fig. 2. Energy density �(x) for the in�owing �uid with� = 1=3 (thermal photon gas) in the RN metri
 withthe 
harge e = 0:99. After rea
hing the boun
e point(marked by the dot) at the minimal radius rmin, the�uid expands to the internal asymptoti
ally �at uni-verse. x+� = 2:04, x+ = 1:14, x�� = 0:96, x� = 0:86,xmin = 0:79

0 1:0 2:0 3:000:20:40:60:8
us

r+r� x

u

Fig. 3. Radial 4-velo
ity u(r) (thi
k 
urve) for the in-�owing �uid with � = 1=3 (thermal photon gas) in theRN metri
 with the 
harge e = 0:999. Thin 
urves
orrespond to the unphysi
al hydrodynami
al bran
hesand us is the 4-velo
ity at the 
riti
al (sound) point904
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Fig. 4. Radial 3-velo
ity v(x) for the in�owing �uid(� = 1=2, e = 0:999) with respe
t to the lo
alstati
 observers in the R-regions r+ < r < 1 and0 < r < r�. In the T -region r� < r < r+, the lo
alstati
 observers do not exist, and hen
e the 3-velo
ityis unde�nedmodi�ed (at least for r < r�, but not for r > r�),be
ause interse
ting streamlines intera
t. The result-ing �ow may be
ome time dependent, turbulent or/anda

ompanied by formation of sho
ks.4.2. Chaplygin gasAnother analyti
ally solvable example we 
onsiderhere is the Chaplygin gas,p = ��� ;where a 
onstant � > 0 
orresponds to a hydrodyna-mi
ally stable �uid. The Chaplygin gas with �2 < �represents phantom energy with a superluminal speedof sound. The opposite 
ase, �2 > �, 
orresponds todark energy with �+ p > 0 and 0 < 
2s < 1.We �nd the following relations at the 
riti
al point:f� = � � 1� ;x�� = � "1�s1� e2� # ; A = x2�p� ; (25)where � = �21=�. The soni
 point exists and the a
-
retion is transoni
 for � � e2, i. e., when the square
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i
−Fig. 5. Carter�Penrose diagram of the Reissner�Nord-ström metri
 
ontaining a steady-state a

reting �uid.The �uid streamlines are shown by dashed lines. Theminimal radius rmin is a boun
e point for in�owing�uidroot in (25) is real. We note that for the nonphantomChaplygin gas, this is always the 
ase. On the otherhand, in the phantom 
ase, the 
riti
al point is absentfor some range of parameters, implying that a physi
alsolution does not exist. This, however, is merely a 
on-sequen
e of pathologi
al behavior of the Chaplygin gasin the phantom regime. For the radial dependen
e ofthe energy density and the radial 4-velo
ity u, we �nd905
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haev, Yu. N. Eroshenko ÆÝÒÔ, òîì 139, âûï. 5, 2011u = � Ax2s � � 1�(�=�1)2 � 1 ; (26)��1 =sf �A2(� � 1)x�4�(f � 1) + 1 : (27)The value of the energy density at the event horizonis �(r+)=�1 = A=x2+. In the spe
ial 
ase � = 1, so-lution (26) 
orresponds to the va
uum state with p == �� = ��1 and u = 0. The energy density of thenonphantom Chaplygin gas diverges at the inner 
riti-
al point xmin = x�� = � �1�p1� e2=� � :5. SOLUTIONS FOR A NAKED SINGULARITYAs was dis
ussed in Se
. 3, only �superluminal� �u-ids rea
h a naked singularity in steady-state a

retion.More pre
isely, when formulated in terms of a s
alar�eld, a solution well-behaved at r > 0 exists onlyif the Lagrangian satis�es the relation dL=dX ! 1as X ! 03). In this 
ase one 
an spe
ify the se
-ond boundary 
ondition for a

retion at the singularity,r = 0.In the 
ase of a �subluminal� �uid, the 
riti
al so-lution for steady-state a

retion exists not for all r butonly for r > rmin. This is in fa
t similar to the 
ase ofan RN bla
k hole, when a �uid boun
es from the singu-larity, as was dis
ussed in Se
. 4. The radial 4-velo
ityas a fun
tion of r is similar to that for the RN bla
khole, plotted in Fig. 3. But the 3-velo
ity does not havea gap with unde�ned values, in 
ontrast to the 
ase ofthe bla
k hole. Thinking in terms of a super�uid, thesolution for the 
riti
al �ow 
an be interpreted as twophysi
al solutions: the in�ow and the out�ow, mat
hedat the point rmin. We note, however, that in the 
ase ofa bla
k hole, the mat
hing point rmin (where the solu-tion be
omes singular) is hidden by the horizon, whilein the 
ase of an RN naked singularity, the singularmat
hing point is rea
hable by a stati
 observer. Itshould be expe
ted that an arbitrarily small vis
osityof the �uid drasti
ally 
hanges the solution, be
ausethe in�owing and out�owing 
omponents of the �uidintera
t in the whole spa
e�time. We 
an therefore
on
lude that for any realisti
 �uid, the steady-statea

retion does not o

ur for the RN singularity.3) As was dis
ussed in Se
. 3, the 
ondition dL=dX ! 
onst asX ! 0 must hold for the �uid to be nonpathologi
al. Therefore,stri
tly speaking, a �nonpathologi
al� superluminal �uid does notrea
h a naked singularity either.

5.1. Stati
 �uid atmosphereIt is interesting that in 
ontrast to the bla
k hole
ase, a stati
 solution for a naked singularity 
an be
onstru
ted. Su
h a solution des
ribes a stati
 light at-mosphere with zero in�ux. Indeed, from (6), assumingu = 0, we �nd a stati
 distribution of a test perfe
t�uid around the RN naked singularity�+ p�1 + p(�1) exp24� �Z�1 d�0�0 + p(�0)35 = f�1=2:In the parti
ular 
ase of linear equation of state (18),we obtain�(r) = ��01 + � +��1 � ��01 + �� f�(1+�)=2� (28)for a stati
 atmosphere. The energy density of ordinarymatter (with �0 = 0 and � > 0) approa
hes zero at thesingularity, � / x1+1=� as x! 0. The phantom energydensity is �nite at x = 0, and hen
e the phantom �uid�over
omes� the naked singularity repulsiveness.In the 
ase e2 > 1, setting u = A = 0 in Eq. (26), we�nd a stati
 distribution of the Chaplygin gas arounda naked singularity.5.2. Stati
 s
alar �eld atmosphereWe note that the solutions for a stati
 atmosphereof the �uid 
onsidered above 
orresponds to the follo-wing solution in terms of the s
alar �eld,���t = 
onst; ���r = 0:However, zero energy �ux,T 10 = �fLX�0� �1� = 0;is also a
hieved by setting �0� = 0. Then the equationof motion be
omes��r �r2LXf ���r� = 0: (29)We restri
t ourselves to the 
anoni
al s
alar �eld,L(X) = X . The respe
tive solutions of (29) for anRN bla
k hole and a naked singularity are�(x) = �1M(x+ � x�) ln ����x� x+x� x� ����+ �2;�(x) = �1Mpe2 � 1ar
tg� x� 1pe2 � 1�+ �2; (30)906
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t �uid and s
alar �eld : : :where �1 and �2 are 
onstants. We note that �(1) = 0in (30) for any e 6= 0, but �(0) is not ne
essarily zero.The energy density of the s
alar �eld is T 00 = �21=2r4f .In the 
ase of an RN bla
k hole, it diverges at the hori-zon, while for a naked singularity, the energy densityis singular at r = 0. However this singularity is inte-grable and the mass of the s
alar �eld atmosphere is�nite inside any �nite r.6. APPROACH TO THE EXTREME STATEA bla
k hole 
an approa
h the extreme state by 
ap-turing parti
les with an ele
tri
 
harge and/or angularmomentum, but an in�nite time is required to rea
hthe extreme state [7, 26, 27℄. This is a manifestation ofthe third law of the bla
k hole thermodynami
s [7℄. Wenote that during a

retion of neutral phantom energy,the ele
tri
 
harge of the RN bla
k hole is un
hanged,Q = 
onst, while the bla
k hole mass de
reases. As aresult, the bla
k hole approa
hes a near-extreme statebe
ause the ratio e = Q=M(t) in
reases. In the test�uid approximation, the bla
k hole rea
hes the extremestate in a �nite time t = tNS de�ned by the relationQ = M(tNS). Indeed, using (10), the time tNS for abla
k hole with the initial mass M = M(0) and theele
tri
 
harge Q = 
onst 
an be 
al
ulated from theequation tNSZ0 _mdt = Q�M(0): (31)If we negle
t the 
osmologi
al evolution of �1, then inthe parti
ular 
ase of phantom with the sti� equationof state (
s = 1), it follows from (10), (19) and (31)that tNS = e30 � 3e20 + 2� 2(1� e20)3=23e40 �; (32)where e0 = Q=M(0) and � = �f4�[�1+p(�1)℄M(0)g�1is the 
hara
teristi
 a

retion time.The �niteness of the time tNS in (32) implies viola-tion of the third law of the bla
k hole thermodynami
sin the 
onsidered test �uid approximation4).We note that in deriving the above result, we as-sumed that the �uid does not ba
k-rea
t. But this as-sumption may not be valid for the near-extreme bla
kholes/naked singularities. Indeed, in the 
ase � � 1,the energy density of the a

reting �uid diverges at4) Possibility for a bla
k hole to be transformed into a nakedsingularity by phantom a

retion was �rst dis
ussed in [28℄.

the horizon, as the bla
k hole approa
hes the extremestate. This 
an be seen from (19), (21), and (20). Si-milarly, violation of the test �uid approximation o

ursat the radius r = M for the stati
 atmosphere arounda near-extreme naked singularity due to the divergen
eof the energy density, as 
an be veri�ed from Eqs. (28).It is worth noting that in the 
ase of a near-extremeKerr�Newman naked singularity, the energy density di-verges at r =M for an atmosphere of a �uid [29℄.Meanwhile, when 0 < � < 1, the energy density ofthe a

reting �uid remains �nite even for the extremebla
k hole. It 
an nevertheless be argued that the test�uid approximation is violated for the following reason.The test �uid approximation is valid if the ba
k rea
-tion of an a

reting �uid is small. But for an almostextreme bla
k hole, with jm � ej � m, the ba
k re-a
tion 
an be 
al
ulated from the perturbed Einsteinequations, ÆG�� = 8�GT�� ; (33)where ÆG�� is the deviation of the Einstein tensor dueto the presen
e of the a

reting �uid with the ener-gy�momentum tensor T�� . Even if the perturbation ofthe metri
 
al
ulated from (33) is small, the presen
eof the �uid may have a drasti
 e�e
t on the metri
 inthe limit as M ! Q. Hen
e, the ba
k rea
tion e�e
tsin the 
ase of near-extreme bla
k holes must be 
on-sidered 
arefully, even if the a

reting �uid has a smallenergy�momentum tensor. The ba
k rea
tion of thea

retion �ow may prevent 
onversion of a bla
k holeinto a naked singularity5). This question, however, isbeyond the s
ope of this paper, and we leave it for fu-ture investigation.7. CONCLUSIONWe have studied the steady-state distribution ofa test perfe
t �uid with a general equation of state,p = p(�), and a s
alar �eld in the Reissner�Nordströmmetri
. Similarly to the 
ase of steady-state a

retionof a perfe
t �uid onto a S
hwarzs
hild bla
k hole, the
orresponding solution for the a

retion exists also inthe 
ase of the RN bla
k hole. On the other hand, nosteady-state a

retion of a perfe
t �uid exists onto theRN naked singularity, unless the double-valued velo
i-ty, energy density, and the pressure of a �uid are intro-du
ed in order to des
ribe the in�ow and the out�ow5) The importan
e of ba
k rea
tion was dis
ussed in [30℄ inthe 
ontext of absorption of s
alar parti
les with a large angularmomentum by a near-extreme bla
k hole.907
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urring in the same points of spa
e�time. Insteadof a steady-state a

retion, a stati
 atmosphere of the�uid is formed around a naked singularity. For both thebla
k hole and the naked singularity, we found analyti
solutions of the problem of the steady state 
on�gu-rations of perfe
t �uids with an arbitrary equation ofstate p = p(�). As parti
ular 
ases, we studied a �uidwith the linear equation of state, p = �(� � �0) andthe Chaplygin gas, p = �=�. We also found a stati
distribution of a s
alar �eld around the RN naked sin-gularity.When the a

reting �uid is phantom, � + p < 0,the mass of the RN bla
k hole de
reases. This resultis in agreement with the previous �ndings [5, 31℄. Thisposes a question of whether it is possible to 
onvertan RN bla
k hole into a naked singularity by a

retionof phantom. Under the assumptions we made, su
h a
onversion is possible, be
ause the a

reting phantomde
reases the bla
k hole mass, while the ele
tri
 
hargeof the bla
k hole remains the same. The 
onversion ofan RN bla
k hole into a naked singularity in the 
aseof a

retion of exoti
 matter with a negative energydensity � < 0 was already studied in [25, 32℄. It is in-teresting to verify the possibility of similar 
onversionin the 
ase of a phantom �uid with a positive energydensity � > 0 by taking ba
k rea
tion into a

ount,whi
h, as we expe
t, plays an important role in the
ase of near-extreme states. We leave this question forfuture study.Although the test �uid approximation seemsto break down for the near-extreme state of thebla
k hole/naked singularity, we stress that for thefar-from-extreme state of a bla
k hole (in parti
ular,for the S
hwarzs
hild solution), the parameters of theperfe
t �uid and the boundary 
ondition at the in�nity
an be tuned su
h that the test �uid approximationdes
ribes the a

retion pro
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