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OPTICAL DEFECT MODES IN CHIRAL LIQUID CRYSTALSV. A. Belyakov a*, S. V. Semenov baLandau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es142432, Chernogolovka, Mos
ow Region, RussiabRussian Resear
h Center �Kur
hatov Institute�123182, Mos
ow, RussiaRe
eived July 6, 2010An analyti
 approa
h to the theory of opti
al defe
t modes in 
hiral liquid 
rystals (CLCs) is developed. Theanalyti
 study is fa
ilitated by the 
hoi
e of the problem parameters. Spe
i�
ally, an isotropi
 layer (with thediele
tri
 sus
eptibility equal to the average CLC diele
tri
 sus
eptibility) sandwi
hed between two CLC layers isstudied. The 
hosen model allows eliminating the polarization mixing and redu
ing the 
orresponding equationsto the equations for light of di�ra
ting polarization only. The dispersion equation relating the defe
t mode (DM)frequen
y to the isotropi
 layer thi
kness and an analyti
 expression for the �eld distribution in the DM stru
tureare obtained and the 
orresponding dependen
es are plotted for some values of the DM stru
ture parameters.Analyti
 expressions for the transmission and re�e
tion 
oe�
ients of the DM stru
ture (CLC�defe
t layer�CLC)are presented and analyzed for nonabsorbing, absorbing, and amplifying CLCs. The anomalously strong lightabsorption e�e
t at the DM frequen
y is revealed. The limit 
ase of in�nitely thi
k CLC layers is 
onsidered indetail. It is shown that for distributed feedba
k lasing in a defe
t stru
ture, adjusting the lasing frequen
y to theDM frequen
y results in a signi�
ant de
rease in the lasing threshold. The DM dispersion equations are solvednumeri
ally for typi
al values of the relevant parameters. Our approa
h helps 
larify the physi
s of the opti
alDMs in CLCs and 
ompletely agrees with the 
orresponding results of the previous numeri
al investigations.1. INTRODUCTIONRe
ently, there was a very intense a
tivity in the�eld of lo
alized opti
al modes, in parti
ular, defe
tmodes (DMs) in 
hiral liquid 
rystals (CLCs), mainlydue to the prospe
ts of rea
hing a low lasing thresholdfor mirrorless distributed feedba
k lasing [1�4℄, usingthe DMs as narrow-band �lters [5; 6℄, and enhan
ingthe nonlinear opti
al high-harmoni
 generation [7℄ inCLCs. The DMs existing as a lo
alized ele
tromag-neti
 eigenstate with its frequen
y in the forbiddenband gap for the stru
ture defe
t were initially inves-tigated in three-dimensional periodi
 diele
tri
 stru
-tures [5℄. The 
orresponding DMs in CLCs and, moregenerally, in spiral media are very similar to the DMsin one-dimensional s
alar periodi
 stru
tures. They re-veal anomalous re�e
tion and transmission inside theforbidden band gap [1; 2℄ and allow distributed feed-ba
k lasing at a low lasing threshold [3℄. The qualita-tive di�eren
e from the 
ase of s
alar periodi
 media*E-mail: bel�landau.a
.ru


onsists in the polarization properties. The DM in aCLC is asso
iated with a 
ir
ular polarization of theele
tromagneti
 �eld eigenstate whose 
hirality sense
oin
ides with the one of the CLC helix. There aretwo main types of defe
ts in 
hiral liquid 
rystals stud-ied up to now. One of them is a planar layer of somesubstan
e di�ering from a CLC that divides a perfe
t
holesteri
 stru
ture into two parts and is perpendi
u-lar to the heli
al axes of the 
holesteri
 stru
ture [1℄.The other one is a jump of the 
holesteri
 helix phaseat some plane perpendi
ular to the heli
al axes (with-out insertion of any substan
e at the lo
ation of thisplane) [2℄. Re
ently, numerous new types of defe
t lay-ers were studied [8�14℄, for example, a CLC layer withthe pit
h di�ering from the pit
h of two layers sand-wi
hing the defe
t layer [8℄. It is evident that thereare many versions of the diele
tri
 properties of the de-fe
t layer, but we restri
t outself in what follows to theabove two main types of defe
ts in CLCs.Almost all studies of DMs in 
hiral and s
alar perio-di
 media were performed by means of numeri
al ana-lysis, with the ex
eptions in [15; 16℄, where the known798
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al defe
t modes in 
hiral liquid 
rystalsexa
t analyti
 expression for eigenmodes propagatingalong the helix axes [17; 18℄ were used for a generalstudy of the DM asso
iated with a jump of the he-lix phase. The approa
h used in [15; 16℄ seems to bevery fruitful be
ause it allows easily understanding theDM physi
s, and therefore deserves further implemen-tation in the study of DMs and, in parti
ular, in spe
i�

ases o�ering essential simpli�
ation of the general rela-tions for the DMs. In general, the heli
al media are theunique periodi
 stru
tures admitting a simple exa
t an-alyti
 solution of the Maxwell equations; naturally, thisadvantage of the heli
al media 
ompared to other pe-riodi
 media has to be 
ompletely exploited in solvingspe
i�
 boundary value problems related to the DMs.In this paper, an analyti
 solution of the DM asso
i-ated with an insertion of an isotropi
 layer in a perfe
t
holesteri
 stru
ture is presented and some limit 
asessimplifying the problem are 
onsidered.2. GENERAL EQUATIONSTo 
onsider the DM asso
iated with an insertion ofan isotropi
 layer in a perfe
t 
holesteri
 stru
ture, wehave to solve the Maxwell equations and a boundaryvalue problem for the ele
tromagneti
 wave propaga-ting along the 
holesteri
 helix for the layered stru
turedepi
ted in Fig. 1.The Maxwell equations for a wave propagatingalong the helix axes have the form�2E�z2 = 1
2 "(z)�2E�t2 ; (1)
d

L

L

CLC

CLC

Fig. 1. S
heme of the CLC DM stru
ture with anisotropi
 defe
t layer

where"(z) == 0B� "0 [1+Æ 
os(�z)℄ �"0Æ sin(�z) 0�"0Æ sin(�z) "0 [1�Æ 
os(�z)℄ 00 0 "? 1CA (2)is the diele
tri
 tensor of the CLC [17�21℄ (two signsin the expression for "(z) 
orrespond to the rightand left CLC 
hiralities), "0 = ("k + "?)=2, Æ == ("k � "?)=("k + "?) is the diele
tri
 anisotropy, "kand "? are the lo
al prin
ipal values of the liquid 
rys-tal diele
tri
 tensor [17�22℄, and � is the re
ipro
al lat-ti
e ve
tor of the CLC spiral (� = 4�=p, where p is the
holesteri
 pit
h).It is well known that in a perfe
t 
holesteri
 stru
-ture, i. e., in ea
h 
holesteri
 layer depi
ted in Fig. 1,there are four eigensolutions of the Maxwell equations(�rst studied in [17; 18℄), ea
h of them being a super-position of two plane waves. Two of these eigensolu-tions 
orrespond to the wave nondi�ra
ting in the CLCand the other two 
orrespond to the wave di�ra
ting inthe CLC and having one frequen
y band (around theBragg frequen
y) forbidden for wave propagation (theso-
alled stop band). The di�ra
ting eigensolutions arerelated to the 
ir
ular polarization with the same senseof 
hirality as the 
hirality sense of the 
holesteri
 he-lix, and the nondi�ra
ting eigensolutions are relatedto the 
ir
ular polarization with the opposite sense of
hirality. Therefore, solving the boundary value prob-lem requires expressing the ele
tromagneti
 wave in theCLC as a linear superposition of the four eigensolu-tions in ea
h 
holesteri
 layer of the stru
ture depi
tedin Fig. 1. For the entire stru
ture, the boundary valueproblem is redu
ed to the four problems related to thefour interfa
es of the stru
ture. In addition to the pa-rameters entering the eigensolutions (see below), thesystem, in parti
ular, involves the parameter given bythe ratio of the diele
tri
 
onstant of the layer to theaverage diele
tri
 
onstant of the CLC. Therefore, if weassume simple diele
tri
 properties of the defe
t layer(its isotropy, for example), then the exa
t solution ofthe boundary value problem is presented analyti
allyas a solution of the system of eight linear equations.The vanishing of the determinant of this system deter-mines the eigensolution of the boundary value problem,i. e., the DM. However, the 
orresponding analyti
 solu-tion and the equation for the eigenmode are su�
iently
umbersome in the general 
ase.An example of the exa
t solution of a simplerboundary value problem for a 
holesteri
 layer sur-799
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 medium (the upper half inFig. 1) is presented in [20�22℄.As a result of the general analysis of solutions of thepresent boundary value problem and of the boundaryvalue problem for a single 
holesteri
 layer, we 
on-
lude that no truly lo
alized DM exists for the bound-ary value problem under 
onsideration. This is be
auseat the isotropi
 layer boundaries, the di�ra
ting eigen-solutions are 
onverted into nondi�ra
ting eigensolu-tions es
aping from the external 
holesteri
 layer sur-fa
es. In the general 
ase, we 
an therefore speak ofa quasilo
alized DM (see also [15; 16℄ for the DMs re-lated to the helix phase jump). However, in the mostfavorable 
ase where the diele
tri
 
onstant of the layeris equal to the average diele
tri
 
onstant of the CLC,the polarization 
onversion is low (proportional to thediele
tri
 anisotropy of the 
holesteri
). This is whyin this 
ase, for thi
k CLC layers, the DM is virtually
ompletely lo
alized (see below for the 
ase of in�nitelythi
k CLC layers).In what follows, to 
larify the general results, wepresent the expli
it form of the eigensolutions and thespe
i�
 
ases simplifying the solution of the boundaryvalue problem, namely, the 
ase where the diele
tri

onstant of the isotropi
 defe
t layer is equal to theaverage diele
tri
 
onstant of the 
holesteri
 and, inparti
ular, the 
ase of di�ra
tion thi
k 
holesteri
 lay-ers shown in Fig. 1.3. EIGENWAVES IN A CLCIt is known [17�21℄ that the eigenwaves 
orrespon-ding to propagation of light along the spiral axis ina CLC, i. e., the solutions of Maxwell equation (1), aregiven by a superposition of two plane waves of the formE(z; t) = exp(�i!t)�� �E+n+ exp(iK+z) +E�n� exp(iK�z)� ; (3)where ! is the light frequen
y, 
 is the speed of light,n� = (ex � ey)p2 are 
ir
ular polarization ve
tors,where ex and ey are unit ve
tors along the 
orrespond-ing axes, and the wave ve
torsK+ satisfy the 
onditionK+ �K� = �: (4)The wave ve
tors K� in four eigensolutions of (1) aredetermined by Eq. (4) and the formulaK+j = �2 � �s1 + � �2��2 �r� ���2 + Æ2 ; (5)

where � = !p"0=
 and j labels the eigensolutions, withthe ratio of amplitudes E�=E+ in (3) given by�j = E�jE+j = Æ(K+j � �)2=�2 � 1 : (6)Two of the eigenwaves 
orresponding to the 
ir
ular po-larization with the 
hirality sense 
oin
iding with theone of the liquid 
rystal spiral experien
e strong di�ra
-tion s
attering at the frequen
ies in the stop band re-gion. The other two eigenwaves, 
orresponding to theopposite 
ir
ular polarizations, are almost una�e
tedby the di�ra
tion s
attering even at the stop band fre-quen
ies for the �rst pair.Be
ause the spe
i�
 features of the DMs in CLCsare related to the eigenwaves of di�ra
ting polarization(see [2; 3; 15; 16℄), we restri
t ourself in what followsto the 
onsideration of the propagation of light of adi�ra
ting polarization only.4. BOUNDARY VALUE PROBLEMIn this se
tion, the boundary value problem dis-
ussed above in the general form is 
onsidered underthe assumption that the spe
i�
 parameters allow asimpli�
ation of the problem. We assume (see Fig. 1)that the CLC is given by a planar layer with the spi-ral axis perpendi
ular to the layer surfa
es. We alsoassume that the average CLC diele
tri
 
onstant "0
oin
ides with the diele
tri
 
onstant of the isotropi
external medium and of the isotropi
 layer inserted be-tween two 
holestri
 layers. This assumption allowsnegle
ting the 
onversion of one 
ir
ular polarizationinto another at the layer surfa
es [20; 21℄ be
ause it isproportional to the small parameter Æ, the 
holesteri
diele
tri
 anisotropy; the assumption also allows ta-king only two eigenwaves (and 
orrespondingly onlytwo wave ve
tors in Eq. (5)) with di�ra
ting 
ir
ularpolarization into a

ount.We �rst 
onsider a linear boundary value problemin the formulation where two plane waves of the dif-fra
ting polarization and of the same frequen
y are as-sumed to be in
ident along the spiral axis on both CLClayers (see Fig. 1) from opposite sides, and the diele
-tri
 tensor may have a nonzero imaginary part of anysign. Two di�ra
ting eigensolutions with the stru
turedetermined by Eq. (3) are ex
ited in both 
holesteri
layers. The amplitudes of the two di�ra
ting eigen-waves are denoted by E+u+ and E+u� for the upper layerand by E+d+ and E+d� for the bottom layer; they haveto satisfy the system of four linear equations [20; 21℄800
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al defe
t modes in 
hiral liquid 
rystals(following from the 
ontinuity of the tangential 
om-ponents of the ele
tri
 and magneti
 �elds at the fourboundaries of 
holesteri
 layers depi
ted in Fig. 1)E+u+ +E+u� = Eiu;exp[i�d℄ exp[iK++L�℄E+u+ ++ exp[i�d℄ exp[iK+�L�℄E+u� == exp[iK++L+℄E+d+ + exp[iK+�L+℄E+d� ;�+ exp[iK�+L�℄E+u+ + �� exp[iK��L�℄E+u� == exp[i�d℄�+ exp[iK�+L+℄E+d+ ++ exp[i�d℄�� exp[iK��L+℄E+d� ;exp[2iK�+L℄�+E+d+ + exp[2iK��L℄��E+d� = Eid: (7)
Here, Eiu and Eid are the respe
tive amplitudes ofthe waves of di�ra
ting polarization in
ident at the
holesteri
 layers from the top (Eiu) and the bot-tom (Eid) of the stru
ture in Fig. 1, 2L is the totalCLC layer thi
kness, d is the isotropi
 layer thi
kness,L� = L� d=2, andK+� = �2 � q; K�� = K+� � � = ��2 � q;�� = E��E+� = Æ(K+� � �)2=�2 � 1 ; (8)where q = �s1 + � �2��2 �r� ���2 + Æ2 : (9)We note that for the further study of the DM, it isquite essential that q given by Eq. (9) is purely imag-inary at the DM frequen
ies (lo
ated inside the stopband). The frequen
y at the stop band 
enter (theBragg frequen
y !B) is given by!B = 2�
pp"0 = �
2p"0 ;and the band-edge frequen
ies are !�e = !B=p1� Æ.If we assume Eiu (Eid) to be the only nonzero amp-litude, then Eqs. (7) des
ribe the re�e
tion and trans-mission of light in
ident on the stru
ture (see Fig. 1)from above (below). In this 
ase, the re�e
tion R andtransmission T 
oe�
ients of the defe
t stru
ture aregiven by the formulasR(d; L) = �+E+u+ + ��E+u� ; (10)T (d; L) = exp �i(2K++L+ �d)�E+d+ ++ exp �i(2K+�L+ �d)�E+d� ; (11)

obtained by solving Eqs. (7) under the assumption thatonly the wave in
ident from above exists (Eiu 6= 0,Eid = 0).We now 
onsider the solutions of system (7) in somespe
i�
 situations in more detail.5. PERFECT CHOLESTERIC LAYERThe 
ase of a perfe
t 
holesteri
 layer 
orrespondsto two limits in Eqs. (7) and is 
onsidered here for 
om-pleteness (the 
orresponding results 
an also be foundin [20; 21℄). One option 
orresponds to d = 0 and an-other to d = 0, but the thi
kness L of one of the layersin Fig. 1 is also equal to zero. The �rst and the se
ondoptions respe
tively 
orrespond to a perfe
t CLC layerof thi
knesses 2L and L. Solving system (7) in theselimits yields the following expressions for the amplitudere�e
tion R and transmission T 
oe�
ients of a CLClayer of thi
kness L:R(L) = iÆ sin(qL)nq��2 
os(qL) ++ i �� �2��2 + � q��2 � 1� sin(qL)��1 ;T (L) = exp� i�L2 � q��2 nq��2 
os(qL) ++ i �� �2��2 + � q��2 � 1� sin(qL)��1 ; (12)
where the phases of T and R 
orrespond to the assump-tion that the 
oordinate z = 0 at the entran
e surfa
eand 
orrespondingly the dire
tor orientation at the en-tran
e surfa
e are determined by expression (2) for thediele
tri
 tensor "(z) of the 
holestri
 liquid 
rystal atz = 0 (see also [18�21℄).6. REFLECTION AND TRANSMISSION FORTHE DEFECT-MODE STRUCTUREAs we have noted, system (7) determines the ampli-tude light transmission T (d; L) and re�e
tion R(d; L)
oe�
ients for the DM stru
ture (see (10) and (11)) ifone of the amplitudes, Eiu or Eid, is assumed to va-nish. For a �nite value of L, we have to solve system(7) and use Eqs. (10) and (11) to �nd the transmissionand re�e
tion 
oe�
ients.But there is another possibility to obtain formu-las for the opti
al properties of the stru
ture depi
tedin Fig. 1. If we use expressions (12) for the ampli-tude transmission and re�e
tion 
oe�
ients for a sin-gle 
holesteri
 layer (see also [20; 21℄), then the 
orre-12 ÆÝÒÔ, âûï. 4 801
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oe�
ients jT (d; L)j2 and jR(d; L)j2for the entire stru
ture 
an be represented asjT (d; L)j2 = ����TeTd exp(i�d)1� exp(2i�d)RdRu ����2 ; (13)jR(d; L)j2 == ����Re +RuTeTu exp(2i�d)1� exp(2i�d)RdRu ����2 ; (14)where Re(Te), Ru(Tu), and Rd(Td) are the respe
tiveamplitude re�e
tion (transmission) 
oe�
ients of theCLC layer in (12) (see Fig. 1) for the light in
iden
e onthe outer top layer surfa
e, for the light in
iden
e onthe inner top CLC layer surfa
e from the inserted defe
tlayer, and for the light in
iden
e on the inner bottomCLC layer surfa
e from the inserted defe
t layer. It isassumed in deriving Eqs. (13) and (14) that the exter-nal beam is in
ident on the stru
ture from above only.We also easily �nd the expressions for the eigen-mode amplitudes ex
ited by the in
ident wave on bothCLC layers of the stru
ture depi
ted in Fig. 1 by usingthe expressions for the amplitude transmission and re-�e
tion 
oe�
ients in Eqs. (13) and (14). The eigen-mode amplitudes at the CLC entran
e layer are ex-pressed in terms of R(d; L) asE+u+ = Eiu �� �R(d; L)�� � �+ ;E+u� = �Eiu �+ �R(d; L)�� � �+ : (15)The eigenmode amplitudes at the CLC exit layer areexpressed in terms of T (d; L) similarly, asE+d+ = Eiu ��T (d; L)�� � �+ exp ��i(2K++L+ �d)� ;E+d� = �Eiu �+T (d; L)�� � �+ exp ��i(2K+�L+ �d)� : (16)The 
orresponding 
al
ulations of the amplitudesE+u+ , E+u� , E+d+ , and E+d� of the eigenwaves ex
ited inthe layer (see Se
. 7) reveal a nontrivial frequen
y de-penden
e of these amplitudes. Namely, 
lose to the DMfrequen
ies (inside the stop band, see below), the eigen-mode amplitudes 
hange sharply. However, in 
ontrastto the 
orresponding amplitude 
hanges for lo
alizededge modes, where the 
hanges are huge [22℄, the am-plitude 
hanges are of the order of unity in the 
aseof the DM. Nevertheless, an essential enhan
ement ofthe �eld magnitude relative to the in
ident wave am-plitude (in 
al
ulations, the in
ident wave amplitude is

assumed to be equal to unity) 
lose to the defe
t layero

urs. The reason is in an exponential in
rease in the�eld as the distan
e from the CLC layer external sur-fa
e toward the defe
t layer in
reases. As the result,the thi
ker a layer is, the higher the enhan
ement ofthe �eld at the defe
t layer.7. NONABSORBING LIQUID CRYSTALWe 
onsider the formulas in the pre
eding se
-tion in more detail for nonabsorbing 
holesteri
 layers.The 
al
ulated re�e
tion jR(d; L)j2 and transmissionjT (d; L)j2 spe
tra at normal in
iden
e inside the stopband for the stru
ture in Fig. 1 are presented in Fig. 2.The maxima in jT (d; L)j2 and minima in jR(d; L)j2 atsome frequen
ies inside the stop band at positions thatdepend on the defe
t layer thi
kness d are shown. Itis known [1�3; 15; 16℄ that the 
orresponding minimaof jR(d; L)j2 and maxima of jT (d; L)j2 
orrespond tothe DM frequen
ies. For the layer thi
kness d = p=4,whi
h is half of the diele
tri
 tensor period in a CLC,these maxima and minima are lo
ated just at the stopband 
enter. In the interval 0 < d=p < 0:5, the DMfrequen
y value moves from the high-frequen
y stopband edge to the low-frequen
y stop band edge. Asthe defe
t-layer thi
kness in
reases further, the DM fre-quen
y os
illates between the high-frequen
y and low-frequen
y stop band edges. However, this is true ifonly ��d is less than approximately 2�, where �� isthe 
hange of the wave ve
tor at the frequen
y width ofthe stop band. When ��d ex
eeds 2�, the se
ond DMfrequen
y appears in the stop band. As d in
reases fur-ther, additional DM frequen
ies appear, whose numbermay be estimated as ��d=2�. The des
ribed appear-an
e of many DM frequen
ies inside the stop band isillustrated in Fig. 3, where only jT (d; L)j2 or jR(d; L)j2is presented be
ause jR(d; L)j2 + jT (d; L)j2 = 1 for anonabsorbing stru
ture.Figure 2 shows that the re�e
tion vanishes at somefrequen
y. From (14), we �nd the equation for the fre-quen
ies of the re�e
tion 
oe�
ient zeros:Re �1� e2i�dRdRu�+RuTeTue2i�d = 0: (17)It is quite instru
tive to 
ompare the frequen
y de-penden
e of the re�e
tion 
oe�
ient and of the eigen-mode amplitudes E+u+ , E+u� , E+d+ , and E+d� ex
ited inthe defe
t stru
ture. Comparing Figs. 2 and 3 withFig. 4 shows that the positions of the sharp ampli-tude os
illations just 
oin
ide with (or are very 
loseto, for an absorbing or amplifying liquid 
rystal) thepositions of re�e
tion 
oe�
ient minima 
orresponding802



ÆÝÒÔ, òîì 139, âûï. 4, 2011 Opti
al defe
t modes in 
hiral liquid 
rystals

0

0.2

0.4

0.6

0.8

1.0

|R|2 |R|2

−0.2 −0.1 0.10
ν ν

0.10−0.1−0.2

a

c

b

d

d/p = 0.1 d/p = 0.25

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

|T |2 |T |2

d/p = 0.1

d/p = 0.25

1.0

0.8

0.6

0.4

0.2

0

−0.2 −0.1 0.10
ν ν

0.10−0.1−0.2

e

−0.2 −0.1 0.10
ν

|T |2

0

0.2

0.4

0.6

0.8

1.0

d/p = 0.4

Fig. 2. Re�e
tion (a,b) and transmission (
�e) 
o-e�
ients versus the dimensionless frequen
y � == 2(!�!B)=Æ!B�1 for a nonabsorbing CLC (
 = 0)for various values of d=p and Æ = 0:05, l = L� == 2�N = 200, where N is the dire
tor half-turn num-ber at the CLC layer thi
kness L
to R(d; L) = 0 for the nonabsorbing CLC. This may be
onsidered as an indi
ation of the existen
e of eigen-states of DM stru
tures just at these frequen
ies.8. DEFECT MODE (A NONABSORBINGLIQUID CRYSTAL)The solution of Eq. (7) in the general 
ase is a linearsuperposition of a propagating wave and a pure DM,i. e., a standing wave of a 
ompli
ated stru
ture (notredu
ed to two plane 
ounter-propagating waves). Thepure DM is determined by Eq. (7) with Eiu = Eid = 0,

i. e., in the 
ase where no waves are in
ident from out-side on the stru
ture shown in Fig. 1.The DM frequen
y !D is determined by the zerovalue of the determinant of system (7):det(d; L) = 4e2i�d sin2(qL)� 4e�i�LÆ2 ����q�2 
os(qL)+i �� �2��2 + � q��2 � 1� �� sin(qL)�2 : (18)803 12*
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Fig. 3. Re�e
tion (a) and transmission (b) 
oe�
ients versus the dimensionless frequen
y for a nonabsorbing CLC for variousd=p, Æ = 0:05, and N = 33
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Fig. 4. The 
al
ulated eigenmode amplitude (jE+u+ j) at the external surfa
e of a CLC layer of the DM stru
ture ex
ited bythe in
ident wave of a unit amplitude for two values of d=p, Æ = 0:05, and N = 33We note that at a �nite length L, det(d; L) does notrea
h zero for a real value of ! for a nonabsorbing CLC,but rea
hes zero for a 
omplex value of !. The largerthe thi
knesses L of the CLC layers in the DM stru
-ture (see Fig. 1) are, the smaller the imaginary part of! is; in the limit of in�nite L, it redu
es to zero in thea

epted approa
h (see Se
. 9 below). Therefore, theDM is a quasistable mode and its lifetime is determinedby the imaginary part of !D.Using Eqs. (13) and (14), the dispersion equationfollowing from (18) 
an be redu
ed to the expression
ontaining the re�e
tion 
oe�
ients R of the CLC lay-ers: 1�RdRue2i�d = 0: (19)The DM �eld in the CLC is a superposition of twoCLC eigenmodes with their amplitudes satisfying the
ondition

E+u+ +E+u� = 0: (20)Relation (20) allows �nding the DM �eld inside theCLC layers using expression (3) for the CLC eigen-modes. For example, in an individual CLC layer ofthe DM stru
ture (see Fig. 1), the 
orresponding ex-pression for the 
oordinate �eld amplitude distributionbe
omesE(!D; z; t) = i exp(�i!Dt)���n+ exp� i�z2 � sin(qz) + n�Æ exp�� i�z2 � �� ��� �2��2 + � q��2 � 1� sin(qz) ��i �q�2 
os(qz)�� ; (21)804
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23 Æ = 0:0500:0400:025

jEj2; arb. un.
xFig. 5. Coordinate dependen
e (x = z=p) of thesquared DM �eld at the DM frequen
y being at thestop band 
enter for various diele
tri
 anisotropy Æ va-lues and the defe
t layer thi
kness d = p=4 for the
holesteri
 layer thi
kness L = 50(p=2)

0 2 4 6 8 10 12 1400:010:020:03jEj2; arb. un.
xFig. 6. Coordinate dependen
e (x = z=p) of thesquared amplitude of the DM waves inside the CLClayer dire
ted toward the defe
t layer (bold line) andout of the DM stru
ture (narrow line) at the DM fre-quen
y being at the stop band 
enter for the diele
tri
anisotropy Æ = 0:05 
lose to the external surfa
e of theCLC layerwhere q is determined by Eq. (9) and z = 0 
orrespondsto the external surfa
e of the CLC layer.The 
oordinate dependen
e of the squared modu-lus of the total �eld and its parts related to the wavepropagating toward the defe
t layer and in the oppositedire
tion 
lose to the external surfa
e of the CLC layerare presented at Figs. 5 and 6. Figure 5 shows thatthe larger the diele
tri
 anisotropy Æ is, the sharper thegrowth of the DM �eld toward the defe
t layer. Figu-re 6 shows that at the external surfa
es of the DM stru
-ture, only the amplitude of the wave dire
ted toward

the defe
t layer redu
es stri
tly to zero. The ampli-tude of the wave dire
ted outward is small, but it doesnot redu
e to zero. This is why there is a leakage ofthe DM energy outward through the external surfa
esof the DM stru
ture. The ratio of the 
orrespondingenergy �ow to the total DM energy a

umulated inits stru
ture determines the inverse lifetime (and 
or-respondingly the DM frequen
y width), whi
h may bepresented by an analyti
 expression.For nonabsorbing CLC layers (whi
h are under the
onsideration in this se
tion), the only sour
e of de
ayis the energy leakage through their external surfa
es.The de
rease in the DM energy in unite time is equal tothe energy �ow of the leaking waves (2
=p"0 )jEoutj2,where Eout is the amplitude of the wave exiting the DMstru
ture through the external surfa
es of CLC layers,and therefore, using (21), we easily obtain the DM life-time �D as�D = Z jE(!D; z; t)j2dz ��� ddt Z jE(!D; z; t)j2dz��1 == jEoutj�22
=p"0 Z jE(!D; z; t)j2dz == �Æ�2�q �2 Lp"02
 �����1� 2qL sin 2(qL)���� �� 1 + 1Æ2 �� �2��2 + � q��2 � 1�2!++ 1Æ2 ������q�2 �2 �1 + 2qL sin 2(qL)������ ; (22)where the integration due to the symmetry of the DMstru
ture is restri
ted to one half of the stru
ture only.The analysis of Eq. (22) shows that the DM lifetime �Ddepends on the position of its frequen
y !D inside thestop band and rea
hes a maximum for !D just at themiddle of the stop band, i. e., at � = �=2.In the general 
ase, the des
ription of the DMrequires solving dispersion equation (18) numeri
ally.But be
ause Re!D is determined by the frequen
ies
orresponding to the zeros of the re�e
tion 
oe�
ientfor nonabsorbing CLC layers, it is easier to investigateDMs in general. In parti
ular, be
ause the DM lifetime
an be written as 1= Im!D, Eq. (22) for the lifetime �Dmay be used for 
al
ulating Im!D. There are also limit
ases simplifying the des
ription of the DM 
onsideredbelow. As the analysis shows, the thi
ker CLC lay-ers are, the larger �D and 
orrespondingly less the DMfrequen
y width. The DM lifetime in the limit of in-805
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k CLC layers is in�nite in our model (thisis dire
tly shown in the next se
tion).9. INFINITELY THICK CLC LAYERSWe study system (7) in the simplest 
ase of verythi
k 
holesteri
 layers in Fig. 1. In this 
ase, the am-plitudes of the waves exponentially in
reasing towardthe external surfa
es of 
holesteri
 layers have to va-nish. Formally, we may put L to be in�nitely large. Inthe 
holesteri
 layers, nonzero amplitudes then 
orre-spond only to the eigenwaves propagating toward theisotropi
 defe
t layer. This means that in system (7),in the absen
e of waves in
ident at the DM stru
turefrom outside, the amplitudes E+u� and E+d+ are equal tozero and the system redu
es to the two linear equationsexp(i�d) exp(iK++L�)E+u+ = exp(iK+�L+)E+d� ;�+ exp(iK�+L�)E+u+ == exp(i�d)�� exp(iK��L+)E+d� : (23)The DM frequen
y !D in this 
ase is determined bya zero value of the determinant of system (23), whi
hredu
es to the relation� 2Æ exp [i(�� q) d℄n�q�2 
os ((�=2� �) d) ++ i �� �2��2+� q��2�1� sin ((�=2� �) d)� = 0: (24)For the light frequen
ies inside the sele
tive re�e
tionband, determinant (24) vanishes if the isotropi
 layerthi
kness d is related to the light frequen
y asdp �1� ��=2� = 12� �� ar
tg 2(�=2�)qp4(�=2�)2+Æ2�1�(�=2�)22(�=2�)2 �p4(�=2�)2 + Æ2 : (25)This relation means that for any frequen
y inside thesele
tive re�e
tion band, the DM exists, but the exis-ten
e 
ondition demands a spe
i�
 value of the isotropi
layer thi
kness for ea
h 
hosen frequen
y value.The relation of the DM frequen
y to the isotropi
layer thi
kness d given by (25) for in�nitely thi
k CLClayers is shown in Fig. 7. Again, the DM frequen
yjust at the stop band 
enter 
orresponds to the layerthi
kness d=p = 1=4. The same results follow dire
tlyfrom (25) if we assume that !D is lo
ated just in themiddle of the stop band, i. e., �=2� = 1; in that 
ase,Eq. (25) results indp = 12� ar
tg 2pp4 + Æ2 � 2 � 12� ar
tg 4Æ ; (26)

0:98 0:99 1:00 1:01 1:0200:10:20:30:40:5d=p
�Fig. 7. Cal
ulated relation between d=p and the DMfrequen
y for nonabsorbing CLC layers of an in�nitelylarge thi
kness (Æ = 0:05)whi
h approximately 
orresponds to d=p = 1=4 + n=2,where n is zero or an integer number.The shift �! of the DM frequen
y in the intervalj�!=!Bj < Æ due to small variations in d (�d) 
lose tothe d=p = 1=4 is approximately given by the relation�!!B = �4�dp ; (27)with the Bragg frequen
y (frequen
y at the stop band
enter) given below Eq. (9).The 
al
ulations show that the DM frequen
y de-pends on the CLC layer thi
kness L only slightly. Thisis why the 
orresponding dependen
e of !D on d=p foran in�nitely large L may be regarded as a good ap-proximation for !D at any L.It is known that the DM �eld is lo
alized in thedefe
t layer and 
losely by around it [1�3; 15; 16℄. Anillustration of su
h a lo
alization is presented by the 
o-ordinate �eld distribution of the DM for in�nitely thi
kCLC layers in Fig. 8. The maximum of the �eld ampli-tude is lo
ated at the defe
t layer and the �eld ampli-tude attenuates exponentially in the CLC outside thedefe
t layer. The strongest attenuation o

urs for thelayer thi
kness d=p = 1=4, i. e., for the DM frequen
yjust at the stop band 
enter, with the attenuation de-
reasing as the DM frequen
y approa
hes the stop bandedges. The attenuation also in
reases with an in
reasein the CLC layer diele
tri
 anisotropy Æ.Equations (24)�(26) show that for in�nitely thi
kCLC layers, the DM frequen
y is a real quantity in themodel under 
onsideration and hen
e the DM lifetimeis in�nite. This is not the 
ase for a limited CLC layerthi
kness. For nonabsorbing CLC layers of �nite thi
k-ness, determinant (18) vanishes at a 
omplex frequen
y.806
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0 2 4�2�400:20:4
0:60:81:0jEj2

Æ = 0:050:10:2 xFig. 8. Cal
ulated distribution (see Eq. (21)) of thesquared �eld modulus versus the distan
e from the de-fe
t layer 
enter (x = z=p) for nonabsorbing in�nitelythi
k CLC layers for various Æ and d=p = 1=4The physi
al meaning of the 
omplex frequen
y is quite
lear. As was mentioned above, for nonabsorbing CLClayers of a �nite thi
kness, there is a leakage of the DMele
tromagneti
 �eld through the external surfa
es ofthe CLC layers, whi
h results in a de
ay of the DM.Just the imaginary part of the frequen
y and the �nitelifetime of the DM are determined by this leakage.10. THICK CLC LAYERSIn the 
ase of a DM stru
ture with thi
k CLC layers(jqjL� 1), some analyti
 results related to the DM 
analso be obtained. These results may also be obtainedfrom dispersion equation (18) or from expressions (13)and (14) for the DM stru
ture transmission and re�e
-tion 
oe�
ients.Instead of dire
tly solving the equation for a
omplex frequen
y following from expression (18)(det(d; L) = 0), we 
an use Eqs. (13) and (14) forthe DM stru
ture transmission and re�e
tion 
oe�-
ients to estimate the imaginary part of the DM fre-quen
y. We have to allow a nonzero imaginary addi-tion to the frequen
y (de�ned, for example, by the re-lation !=Re! = 1 + i�, where � is a small quantity)and sear
h for extrema of Eqs. (13) and (14) relativeto this imaginary addition i�. The results of the 
or-responding 
al
ulations of the transmission jT (d; L)j2and re�e
tion jR(d; L)j2 intensity 
oe�
ients demon-strate that the imaginary addition to !D de
reases asthe CLC layer thi
kness in
reases, and the addition alsode
reases as Re!D approa
hes the stop band 
enter ata �xed CLC layers thi
kness. In parti
ular, the 
al
ula-

tions show that for d=p = 1=4 
orresponding to Re!Dbeing at the stop band 
enter, � is the smallest at a�xed CLC layer thi
knesses. The DM lifetime �D deter-mined as �D = 1=j Im!Dj in
reases 
orrespondingly asthe CLC layer thi
kness in
reases, and rea
hes a maxi-mum for the DM frequen
y at the stop band 
enter ata �xed CLC layers thi
kness.We analyti
ally �nd the law of the lifetime � in-
rease with the CLC layer thi
kness, i. e., �nd the valueof � (in the limit jqjL �1) 
orresponding to diver-gen
e of the defe
t-mode stru
ture transmission andre�e
tion 
oe�
ients, by expanding the denominatorsin Eqs. (13) and (14) in the small parameter �.The 
orresponding expression for � is� = �qiqF (Æ2) ; (28)where �q is the 
hange of q due to the imaginary addi-tion to the DM frequen
y !D, ensuring the divergen
eof the DM stru
ture transmission and re�e
tion 
oe�-
ients,F (Æ2) = 1 + 1=2p(�=�)2 + Æ2 � (�=2�)21�p(�=�)2 + Æ2 + (�=2�)2and �q = 2�2q�L exp [�2jqjL℄ :Be
ause the DM lifetime is �D = 1= Im!D, expression(28) reveals an exponential in
rease in �D with an in-
rease in the CLC thi
kness L, also showing a strongdependen
e of the in
rease rate on the position of !Dinside the stop band. For the position of !D just in themiddle of the stop band, expression (28) for � be
omes� = � 23� pL exp [�2�ÆL=p℄ : (29)The dependen
e of the DM lifetime on the positionof !D inside the stop band in the limit of thi
k CLClayers (jqjL� 1) is shown in Fig. 9, where the results of
al
ulations a

ording to (28) are presented for the fre-quen
y range inside the stop band, where the 
onditionjqjL� 1 holds.The value of � found from (28) and (29) 
an beregarded as an initial approximation in numeri
al 
al-
ulations in the 
ase of an arbitrary CLC layer thi
k-ness L. The same result for the DM lifetime �D forthi
k CLC layers in a DM stru
ture (jqjL� 1) followsfrom Eq. (22) for the �nite lifetime resulting from theele
tromagneti
 wave leakage from the DM stru
ture:807
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Fig. 9. The DM lifetime (normalized by the time�0 = 2Lp"0=
 of light �ight through the DM stru
-ture) dependen
e on the DM frequen
y !D lo
ationinside the stop band 
al
ulated for thi
k CLC layersa

ording to Eq. (28) (Æ = 0:05, N = 40, and thefrequen
y of the middle point of the stop band 
orre-sponds to the abs
issa value �0:05)�D = �Æ�2�q �2 Lp"02
 1Æ2qL ��(�� �2��2 + � q��2 � 1�2 + ������q�2 �2����)�� exp(2jqjL): (30)For the DM frequen
y at the middle of the stop band,Eq. (30) gives�D = 3�p"0�
 Lp exp�2�ÆLp� :Again, as was already mentioned above, the maximumof the DM lifetime �D 
orresponds to the lo
ation ofthe DM frequen
y just in the middle of the stop band(i. e., at � = �=2), where jqj rea
hes a maximum.11. ABSORBING LIQUID CRYSTALWe now examine formulas (13) and (14) for absor-bing CLC layers. This 
ase, for example, is dire
tlyrelated to the lasing in CLC: at the lasing frequen
y,the CLC has to be amplifying, whereas at the frequen
yof the pumping wave, it is absorbing. To take the ab-sorption into a

ount, we let 
 be the ratio of the di-ele
tri
 
onstant imaginary part to the real part of ",i. e., " = "0(1 + i
). We note that 
 � 1 in real situa-tions. A natural 
onsequen
e of the nonzero absorption(
 > 0) is a redu
tion in the transmission and re�e
tion
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Fig. 10. Re�e
tion (a) and transmission (b) 
oe�
ientsand the total absorption Atot (
) versus the dimen-sionless frequen
y for an absorbing CLC, 
 = 0:005,d=p = 0:1, Æ = 0:05, and N = 33
oe�
ients. However, there are some interesting pe
u-liarities of the opti
al properties of the stru
ture under
onsideration (see Fig. 1). The 
al
ulation results pre-sented in Figs. 10�13 reveal these pe
uliarities. Forabsorbing stru
tures, jT (d; L)j2 + jR(d; L)j2 < 1, andthe quantity Atot = 1�jT (d; L)j2�jR(d; L)j2 presentedin Figs. 10�13 gives the total absorption in the stru
-ture. Up to a relatively strong absorption (
 = 0:005in Fig. 10), the spe
tral shapes of the re�e
tion andtransmission 
urves are typi
al for the DM minima and808
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Fig. 11. The same as in Fig. 10 for 
 = 0:002maxima in the re�e
tion and transmission 
oe�
ients,although they deviate from the 
ase of a nonabsorbingCLC (see Figs. 2 and 3). As 
 de
reases, the spe
tralshapes of re�e
tion and transmission 
urves almost ap-proa
h the 
orresponding shapes for a nonabsorbingCLC (see Fig. 13a,b 
orresponding to 
 = 0:0003), butthe total absorption at the DM frequen
y behaves un-usually.As regards the total absorption, it demonstrates anon
onventional frequen
y dependen
e. At small 
 forsome frequen
ies, the absorption turns out to be mu
hgreater than the absorption outside the stop band (seeFigs. 10�13). If 
 is not too small (Fig. 10
, 
 = 0:005),
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Fig. 12. The same as in Fig. 10 for 
 = 0:001the total absorption in
rease reveals itself at the stopband edges (at the frequen
ies of the stop band edgemodes). This is a manifestation of the so-
alled anoma-lously strong absorption e�e
t known for perfe
t CLClayers at the edge mode frequen
y [20; 23℄. For smaller
, the total absorption begins to ex
eed the absorp-tion outside the stop band at the DM frequen
y !Dthat has the same value as for the stop band edgemodes (Fig. 11
, 
 = 0:002). As 
 de
reases fur-ther, the anomalously strong absorption e�e
t be
omesmore pronoun
ed at the DM frequen
y than at the edgemode frequen
ies (Fig. 12
, 
 = 0:001 and Fig. 13
,809



V. A. Belyakov, S. V. Semenov ÆÝÒÔ, òîì 139, âûï. 4, 2011

b

a

|R|2

0.8

0.6

0.4

0.2

0

1.0

|T |2

0

0.2

0.4

0.6

0.8

0

0−0.1−0.2 0.1
ν

ν
0.1−0.1−0.2

c

Atot

−0.2 −0.1 0 0.1
ν

0.3

0.1

0.2
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 = 0:0003). It follows that at the DM frequen
y !D,the e�e
t of anomalously strong absorption similar tothe one for the edge mode [23; 24℄ exists and, more-over, the absorption enhan
ement for the DM at small
 is higher than for the edge mode. It is 
lear that theanomalously strong absorption e�e
t at the DM fre-quen
y is solely due to the lo
alized DM, i. e., to thedefe
t layer in the stru
ture. Its realization assumessome relation between 
 and other parameters of theliquid 
rystal. This relation is determined by the 
on-dition �Atot�
 = 0: (31)

�0:08 �0:07 �0:06 �0:05 �0:04 �0:03 �0:028:08:59:09:510
 � 105
�Fig. 14. The gain 
 
orresponding to a maximum ab-sorption versus the DM frequen
y lo
ation inside stopband is 
al
ulated for thi
k CLC layers a

ording toEq. (32); Æ = 0:05, N = 40, and the frequen
y of themiddle point of stop band 
orresponds to the abs
issavalue �0:05In the general 
ase, Eq. (31) 
an be solved onlynumeri
ally. But in the 
ase of thi
k CLC layers(jqjL � 1), the dependen
e of 
 on L and other pa-rameters ensuring the maximal absorption 
an be foundanalyti
ally:
 = �4i�2e�2jqjLq2�L ++ "1 + 1=2p(�=�)2 + Æ2 � (�=2�)21�p(�=�)2 + Æ2 + (�=2�)2 #�1 : (32)The value of 
 given by Eq. (32) may be regarded asan initial approximation in numeri
al 
al
ulations inthe 
ase of an arbitrary CLC layer thi
kness L. InFig. 14, the frequen
y dependen
e of 
 that 
orrespondsto the maximum absorption for a thi
k CLC in the limitjqjL� 1 is presented. Figure 14 shows that the maxi-mum absorption enhan
ement o

urs just in the 
entreof the stop band.For the position of !D just in the middle of the stopband, expression (32) for 
 be
omes
 = 43� pL e�2�ÆL=p: (33)We note that the anomalously strong absorption ef-fe
t at the DM frequen
y and its realization under somerelation between 
 and other liquid 
rystal parametersreveal themselves in the 
al
ulations of the total ab-sorption at the DM frequen
y as a fun
tion of 
 per-formed in [15℄ (the absorption rea
hes a maximum ata small �nite value of 
, see Fig. 8 in [15℄).810
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Fig. 15. Transmission (a) and re�e
tion (b) 
oe�
ientsand the total absorption (
) for an amplifying CLC ver-sus the dimensionless frequen
y for 
 = �0:00005,d=p = 0:1, Æ = 0:05, and N = 3312. AMPLIFYING LIQUID CRYSTALWe examine formulas (13) and (14) for amplifying
holesteri
 layers. As previously, we assume thatthe diele
tri
 
onstant is given by the same formula" = "0(1 + i
), but with 
 < 0. The 
al
ulation resultsfor the transmission and re�e
tion 
oe�
ients at 
 < 0are presented in Figs. 15�18. For small absolute val-ues of 
, the shape of the transmission and re�e
tion
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Fig. 16. The same as in Fig. 15 for 
 = �0:0006
oe�
ients is qualitatively the same as for zero ampli-�
ation (
 = 0) (Figs. 15a,b ). But the absorption isa small negative quantity (whi
h means ampli�
ation)at all frequen
ies with some ampli�
ation enhan
ementat the DM frequen
y and at the edge mode frequen
ies(Fig. 15
). As the absolute value of 
 in
reases, theshape of the re�e
tion 
oe�
ient jR(d; L)j2 
hanges atsome value of 
 (a typi
al minimum in jR(d; L)j2 issuperseded by a small maximum 
lose to 1 and thetransmission jT (d; L)j2 ex
eeds 1 noti
eably (Fig. 16)).As the absolute value of 
 in
reases further, the re�e
-811
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Fig. 17. The same as in Fig. 15 for 
 = �0:00117tion and transmission 
oe�
ients at the DM frequen
yfor the 
hosen values of the problem parameters ex
eed100 (Fig. 17), with no signs of noti
eable maxima atother frequen
ies. The 
orresponding value of 
 maybe regarded as being 
lose to the threshold value ofthe gain 
 for the distributed feedba
k lasing at theDM frequen
y. With the 
ontinuing in
rease in theabsolute value of 
, we �nd that diverging maxima ofjR(d; L)j2 at the edge mode frequen
ies appear (with-out tra
es of a maximum at the DM frequen
y) forthe gain �ve time greater than the threshold gain forthe DM (Fig. 18). At even greater absolute values of
, we �nd that new edge mode frequen
ies, more dis-tant from the stop band edge [22; 24℄, appear. The ob-served result shows that the DM lasing threshold gainis lower than the 
orresponding threshold for the stopband edge modes. Another 
on
lusion following fromthis study is the revealed existen
e of some inter
onne
-tion between the liquid 
rystal parameters at the lasingthreshold, whi
h for thi
k CLC layers was found ana-lyti
ally for the DM (see Eq. (34)) and for edge modes(see [22; 24℄). In fa
t, a 
ontinuous in
rease in the gainresults in the appearan
e of lasing at new modes, withthe disappearan
e of lasing at the previous modes 
or-
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Fig. 18. The same as in Fig. 15 for 
 = �0:0045responding to lower thresholds (this was observed ex-perimentally in [3℄).To �nd the inter
onne
tion between the liquid 
rys-tal parameters at the lasing threshold mentioned above,we have to solve the DM dispersion equation followingfrom Eq. (18) under the assumption that the CLC lay-ers are amplifying (
 < 0). In the general 
ase, thisshould be done numeri
ally. But in the 
ase of thi
kCLC layers (jqjL� 1), the dependen
e of the threshold
 on L and other parameters 
an be found analyti
ally.For example, if the DM frequen
y !D is lo
ated at thestop band 
enter, the 
orresponding relation for thethreshold gain is given by
 = � 43� pL e�2�ÆL=p: (34)The exponentially small value of j
j following fromEq. (34) for thi
k CLC layers 
on�rms the above state-ment about lower lasing threshold for the DM 
om-pared to the edge mode. In fa
t, the lasing threshold forthe edge mode for thi
k CLC layers does not de
reaseexponentially with L, but is inversely proportional toonly the third power of L.812
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Fig. 19. The DM lifetime (normalized by the time�0 = 2Lp"0=
 of light �ight through the DM stru
-ture) dependen
e on the defe
t layer thi
kness foundnumeri
ally for two values of the CLC layers thi
knessesL (Æ = 0:05)13. CALCULATION RESULTSThe above plots obtained analyti
ally in the limit
ases may be 
ompared with numeri
al 
al
ulationsperformed for the problem parameters 
orresponding totheir typi
al values in experiment. Figure 19 presentsthe 
al
ulated values of the DM lifetime as a fun
tionof the defe
t layer thi
kness d=p at a �xed CLC layerthi
kness L. Figure 20a presents the 
al
ulated valuesof the lasing threshold j
j as a fun
tion of the defe
tlayer thi
kness d=p at a �xed CLC layer thi
kness L.Figure 21b presents the 
al
ulated values of the lasingthreshold j
j as a fun
tion of the CLC layer thi
kness L.In the appli
ability range of the analyti
 approa
h, theanalyti
 and 
al
ulated values are in good agreement.In parti
ular, Fig. 21b reveals that the lasing thresholdj
j exponentially de
reases with an in
rease in the CLClayer thi
kness L for thi
k layers in the middle of thestop band (d=p = 0:25), but at the same thi
knessesL 
lose to the stop band edge (d=p = 0:1), where thelimit of thi
k layers is inappli
able, there are deviationsfrom the exponential de
rease.14. CONCLUSIONOur analyti
 des
ription of the DMs negle
ting thepolarization mixing at the CLC boundaries in the stru
-ture under 
onsideration allows revealing a 
lear phy-si
al pi
ture of these modes, whi
h is appli
able to theDMs in general. For example, a lower lasing threshold

and stronger absorption (under the 
onditions of theanomalously strong absorption e�e
t) at the DM fre-quen
y 
ompared to the edge mode frequen
ies are thefeatures of any periodi
 media. We note that the expe-rimental studies of lasing threshold [3℄ agree with the
orresponding theoreti
al result obtained above. More-over, the experiment in [3℄ also 
on�rms the existen
e ofsome inter
onne
tion between the gain and other liquid
rystal parameters at the threshold pumping energy forlasing at the DM (as well at the stop band edge mode)frequen
y. Spe
i�
ally, this was demonstrated by theobservations that an in
rease in the pumping energyabove the threshold value results in a de
rease in thelasing intensity (see Fig. 5 in [3℄).For a spe
ial 
hoi
e of the parameters in the experi-ment, the obtained formulas may be dire
tly applied tothe experiment. Nevertheless, it should be kept in mindthat dire
t 
omparison of the theory and experimentrequires some 
onditions to be met. For example, thedefe
t layer thi
kness variations should be less than thelight wavelength. For 
omparison with a real experi-ment, the diele
tri
 sus
eptibility frequen
y dispersionmust also be taken into a

ount. In the general 
ase,however, a mutual transformation at the boundaries ofthe two 
ir
ular polarizations of opposite sense mustalso be taken into a

ount. For example, the 
ir
ularpolarization sense observed in experiment [3℄ for thewave emitted from the defe
t stru
ture above the las-ing threshold may be opposite to the polarization senseresponsible for the DM existen
e. An evident expla-nation of the �lasing� at the opposite (nondi�ra
ting)
ir
ular polarization is as follows. Due to the polariza-tion 
onversion of the generated wave into a wave ofthe opposite 
ir
ular polarization, the 
onverted waveof a nondi�ra
ting polarization freely es
apes from thestru
ture. This polarization 
onversion phenomenonalso 
ontributes to the frequen
y width of the DM.Therefore, polarization mixing must also be taken intoa

ount in 
al
ulations of the DM lifetime (frequen
ywidth). In the general 
ase, the DM �eld leakage fromthe stru
ture is also determined by the �nite CLC layerthi
kness, and hen
e by the leakage due to the polariza-tion 
onversion. Only for su�
iently thin CLC layersor in the 
ase of the DM frequen
y being very 
lose tothe stop band frequen
y edges, the main 
ontributionto the frequen
y width of the DM is determined by thethi
kness e�e
t and the model developed above may bedire
tly applied for des
ribing experimental data.Our model allows obtaining results that may simu-late polarization 
onversion and may be quantitativelyappli
able for the experiment des
ription. Be
ause thepolarization 
onversion at the CLC surfa
es is of the813
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Fig. 20. Lasing threshold at the DM frequen
y versus the defe
t layer thi
kness (a) and the CLC layers thi
kness (b) foundnumeri
ally for two values of the CLC layer thi
kness L (Æ = 0:05)order of the diele
tri
 anisotropy Æ (in the absen
e ofre�e
tion at a diele
tri
 boundary) [20; 21℄, the analy-sis of the problem in the framework of our model andits results would 
orrespond to a real situation for verythi
k CLC layers if the CLC layer thi
kness L is as-sumed to be less than the a
tual CLC layer thi
kness,and would 
orrespond to the transmission 
oe�
ientof the CLC layer inside the stop band being appro-ximately equal to the CLC anisotropy Æ. And, moregenerally, for a real stru
ture with a layer thi
kness L,the stru
ture with the CLC layer thi
kness less thanL has to be 
onsidered in our approa
h for simulationof the polarization 
onversion. We note that the ap-plied analyti
 approa
h helped reveal the anomalouslystrong absorption e�e
t at the DM frequen
y. The 
or-responding �observation� would be mu
h more di�
ultto do in a purely numeri
al approa
h.The defe
t type 
onsidered above is a homogenouslayer. The developed approa
h is also appli
able toa defe
t of the �phase jump� type [2; 3; 15; 16℄, and the
orresponding results are pra
ti
ally the same as above.Namely, the equation related to the 
ase of a �phasejump� defe
t is obtained from the equations presentedabove by substituting the quantity 2�' instead of 2�din the fa
tor exp(2i�d), where �' is the spiral phasejump at the defe
t plane. Based on the present results,we may point out in advan
e one di�eren
e between thetwo types of defe
ts. Namely, for a phase jump defe
t,in 
ontrast to the 
onsidered homogenous layer defe
t,only one DM frequen
y inside the stop band frequen
yrange is possible be
ause the value of the phase jump

is limited by the 
ondition j�'j � 2�. In parti
ular,the DM frequen
y for a phase jump defe
t is lo
ated atthe stop band 
enter at j�'j = �=2.We also note that the lo
alized DMs (as well as theedge modes) reveal themselves in an enhan
ement ofsome inelasti
 and nonlinear opti
al pro
esses in pho-toni
 liquid 
rystals. For example, we mention theexperimentally observed e�e
ts of the enhan
ement ofnonlinear opti
al se
ond harmoni
 generation [25℄ andlowering of the lasing threshold [26℄ in photoni
 liq-uid 
rystals, along with the theoreti
ally predi
ted en-han
ement of Cherenkov radiation (Se
. 4 in [20℄ andCh. 5 in [21℄).To 
on
lude, we state that the results obtainedhere for the DMs (see also [27℄) and in Refs. [22; 24℄for the edge modes 
larify the physi
s of these modesand entirely agree with the previous numeri
al re-sults [28℄. Our results are qualitatively appli
able tothe 
orresponding lo
alized ele
tromagneti
 modes inany periodi
 media and may be regarded as a usefulguide in the studies of lo
alized modes in general.The work is supported by the RFBR (grantsNos. 09-02-90417-Ukr�f�a and 10-02-92103-Jp�a).REFERENCES1. Y.-C. Yang, C.-S. Kee, J.-E. Kim et al., Phys. Rev. E60, 6852 (1999).2. V. I. Kopp and A. Z. Gena
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