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An analytic approach to the theory of optical defect modes in chiral liquid crystals (CLCs) is developed. The
analytic study is facilitated by the choice of the problem parameters. Specifically, an isotropic layer (with the
dielectric susceptibility equal to the average CLC dielectric susceptibility) sandwiched between two CLC layers is
studied. The chosen model allows eliminating the polarization mixing and reducing the corresponding equations
to the equations for light of diffracting polarization only. The dispersion equation relating the defect mode (DM)
frequency to the isotropic layer thickness and an analytic expression for the field distribution in the DM structure
are obtained and the corresponding dependences are plotted for some values of the DM structure parameters.
Analytic expressions for the transmission and reflection coefficients of the DM structure (CLC—defect layer—CLC)
are presented and analyzed for nonabsorbing, absorbing, and amplifying CLCs. The anomalously strong light
absorption effect at the DM frequency is revealed. The limit case of infinitely thick CLC layers is considered in
detail. It is shown that for distributed feedback lasing in a defect structure, adjusting the lasing frequency to the
DM frequency results in a significant decrease in the lasing threshold. The DM dispersion equations are solved
numerically for typical values of the relevant parameters. Our approach helps clarify the physics of the optical
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DMs in CLCs and completely agrees with the corresponding results of the previous numerical investigations.

1. INTRODUCTION

Recently, there was a very intense activity in the
field of localized optical modes, in particular, defect
modes (DMs) in chiral liquid crystals (CLCs), mainly
due to the prospects of reaching a low lasing threshold
for mirrorless distributed feedback lasing [1-4], using
the DMs as narrow-band filters [5,6], and enhancing
the nonlinear optical high-harmonic generation [7] in
CLCs. The DMs existing as a localized electromag-
netic eigenstate with its frequency in the forbidden
band gap for the structure defect were initially inves-
tigated in three-dimensional periodic dielectric struc-
tures [5]. The corresponding DMs in CLCs and, more
generally, in spiral media are very similar to the DMs
in one-dimensional scalar periodic structures. They re-
veal anomalous reflection and transmission inside the
forbidden band gap [1,2] and allow distributed feed-
back lasing at a low lasing threshold [3]. The qualita-
tive difference from the case of scalar periodic media
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consists in the polarization properties. The DM in a
CLC is associated with a circular polarization of the
electromagnetic field eigenstate whose chirality sense
coincides with the one of the CLC helix. There are
two main types of defects in chiral liquid crystals stud-
ied up to now. One of them is a planar layer of some
substance differing from a CLC that divides a perfect
cholesteric structure into two parts and is perpendicu-
lar to the helical axes of the cholesteric structure [1].
The other one is a jump of the cholesteric helix phase
at some plane perpendicular to the helical axes (with-
out insertion of any substance at the location of this
plane) [2]. Recently, numerous new types of defect lay-
ers were studied [8-14], for example, a CLC layer with
the pitch differing from the pitch of two layers sand-
wiching the defect layer [8]. It is evident that there
are many versions of the dielectric properties of the de-
fect layer, but we restrict outself in what follows to the
above two main types of defects in CLCs.

Almost all studies of DMs in chiral and scalar perio-
dic media were performed by means of numerical ana-
lysis, with the exceptions in [15, 16], where the known
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exact analytic expression for eigenmodes propagating
along the helix axes [17,18] were used for a general
study of the DM associated with a jump of the he-
lix phase. The approach used in [15,16] seems to be
very fruitful because it allows easily understanding the
DM physics, and therefore deserves further implemen-
tation in the study of DMs and, in particular, in specific
cases offering essential simplification of the general rela-
tions for the DMs. In general, the helical media are the
unique periodic structures admitting a simple exact an-
alytic solution of the Maxwell equations; naturally, this
advantage of the helical media compared to other pe-
riodic media has to be completely exploited in solving
specific boundary value problems related to the DMs.
In this paper, an analytic solution of the DM associ-
ated with an insertion of an isotropic layer in a perfect
cholesteric structure is presented and some limit cases
simplifying the problem are considered.

2. GENERAL EQUATIONS

To consider the DM associated with an insertion of
an isotropic layer in a perfect cholesteric structure, we
have to solve the Maxwell equations and a boundary
value problem for the electromagnetic wave propaga-
ting along the cholesteric helix for the layered structure
depicted in Fig. 1.

The Maxwell equations for a wave propagating
along the helix axes have the form

O’E 1 I’E
9.2 = 0—25(2)%, (1)
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Scheme of the CLC DM structure with an
isotropic defect layer

Fig.1.

where
e(z) =
go[l4+0 cos(Tz)]  epdsin(rz) 0
= +egdsin(rz)  eo[l—dcos(rz)] O (2)
0 0 EL

is the dielectric tensor of the CLC [17-21] (two signs
in the expression for e(z) correspond to the right
and left CLC chiralities), ¢o = (g + €1)/2, 0 =
= (g —e1)/(g| +€1) is the dielectric anisotropy, ¢
and ¢ are the local principal values of the liquid crys-
tal dielectric tensor [17-22], and 7 is the reciprocal lat-
tice vector of the CLC spiral (7 = 47 /p, where p is the
cholesteric pitch).

It is well known that in a perfect cholesteric struc-
ture, i.e., in each cholesteric layer depicted in Fig. 1,
there are four eigensolutions of the Maxwell equations
(first studied in [17,18]), each of them being a super-
position of two plane waves. Two of these eigensolu-
tions correspond to the wave nondiffracting in the CLC
and the other two correspond to the wave diffracting in
the CLC and having one frequency band (around the
Bragg frequency) forbidden for wave propagation (the
so-called stop band). The diffracting eigensolutions are
related to the circular polarization with the same sense
of chirality as the chirality sense of the cholesteric he-
lix, and the nondiffracting eigensolutions are related
to the circular polarization with the opposite sense of
chirality. Therefore, solving the boundary value prob-
lem requires expressing the electromagnetic wave in the
CLC as a linear superposition of the four eigensolu-
tions in each cholesteric layer of the structure depicted
in Fig. 1. For the entire structure, the boundary value
problem is reduced to the four problems related to the
four interfaces of the structure. In addition to the pa-
rameters entering the eigensolutions (see below), the
system, in particular, involves the parameter given by
the ratio of the dielectric constant of the layer to the
average dielectric constant of the CLC. Therefore, if we
assume simple dielectric properties of the defect layer
(its isotropy, for example), then the exact solution of
the boundary value problem is presented analytically
as a solution of the system of eight linear equations.
The vanishing of the determinant of this system deter-
mines the eigensolution of the boundary value problem,
i.e., the DM. However, the corresponding analytic solu-
tion and the equation for the eigenmode are sufficiently
cumbersome in the general case.

An example of the exact solution of a simpler
boundary value problem for a cholesteric layer sur-
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rounded by an isotropic medium (the upper half in
Fig. 1) is presented in [20-22].

Asg a result of the general analysis of solutions of the
present boundary value problem and of the boundary
value problem for a single cholesteric layer, we con-
clude that no truly localized DM exists for the bound-
ary value problem under consideration. This is because
at the isotropic layer boundaries, the diffracting eigen-
solutions are converted into nondiffracting eigensolu-
tions escaping from the external cholesteric layer sur-
faces. In the general case, we can therefore speak of
a quasilocalized DM (see also [15,16] for the DMs re-
lated to the helix phase jump). However, in the most
favorable case where the dielectric constant of the layer
is equal to the average dielectric constant of the CLC,
the polarization conversion is low (proportional to the
dielectric anisotropy of the cholesteric). This is why
in this case, for thick CLC layers, the DM is virtually
completely localized (see below for the case of infinitely
thick CLC layers).

In what follows, to clarify the general results, we
present the explicit form of the eigensolutions and the
specific cases simplifying the solution of the boundary
value problem, namely, the case where the dielectric
constant of the isotropic defect layer is equal to the
average dielectric constant of the cholesteric and, in
particular, the case of diffraction thick cholesteric lay-
ers shown in Fig. 1.

3. EIGENWAVES IN A CLC

It is known [17-21] that the eigenwaves correspon-
ding to propagation of light along the spiral axis in
a CLC, i.e., the solutions of Maxwell equation (1), are
given by a superposition of two plane waves of the form

E(z,t) = exp(—iwt) x

x [ETnyexp(iKtz) + E n_exp(iK~z)], (3)
where w is the light frequency, ¢ is the speed of light,
ny = (e, £ e,)V/2 are circular polarization vectors,
where e, and e, are unit vectors along the correspond-
ing axes, and the wave vectors KT satisfy the condition

(4)

The wave vectors K * in four eigensolutions of (1) are
determined by Eq. (4) and the formula

Kt-K =r.

T

,+_7'
K _§im\/1+(2
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where k = w,/Z0/c and j labels the eigensolutions, with
the ratio of amplitudes E~/E™ in (3) given by

)
(K;‘ —7)2/K2 -1

(6)

J

Two of the eigenwaves corresponding to the circular po-
larization with the chirality sense coinciding with the
one of the liquid crystal spiral experience strong diffrac-
tion scattering at the frequencies in the stop band re-
gion. The other two eigenwaves, corresponding to the
opposite circular polarizations, are almost unaffected
by the diffraction scattering even at the stop band fre-
quencies for the first pair.

Because the specific features of the DMs in CLCs
are related to the eigenwaves of diffracting polarization
(see [2,3,15,16]), we restrict ourself in what follows
to the consideration of the propagation of light of a
diffracting polarization only.

4. BOUNDARY VALUE PROBLEM

In this section, the boundary value problem dis-
cussed above in the general form is considered under
the assumption that the specific parameters allow a
simplification of the problem. We assume (see Fig. 1)
that the CLC is given by a planar layer with the spi-
ral axis perpendicular to the layer surfaces. We also
assume that the average CLC dielectric constant &g
coincides with the dielectric constant of the isotropic
external medium and of the isotropic layer inserted be-
tween two cholestric layers. This assumption allows
neglecting the conversion of one circular polarization
into another at the layer surfaces [20,21] because it is
proportional to the small parameter ¢, the cholesteric
dielectric anisotropy; the assumption also allows ta-
king only two eigenwaves (and correspondingly only
two wave vectors in Eq. (5)) with diffracting circular
polarization into account.

We first consider a linear boundary value problem
in the formulation where two plane waves of the dif-
fracting polarization and of the same frequency are as-
sumed to be incident along the spiral axis on both CLC
layers (see Fig. 1) from opposite sides, and the dielec-
tric tensor may have a nonzero imaginary part of any
sign. Two diffracting eigensolutions with the structure
determined by Eq. (3) are excited in both cholesteric
layers. The amplitudes of the two diffracting eigen-
waves are denoted by Ef* and ET" for the upper layer
and by Eid and EF? for the bottom layer; they have
to satisfy the system of four linear equations [20,21]
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(following from the continuity of the tangential com-
ponents of the electric and magnetic fields at the four
boundaries of cholesteric layers depicted in Fig. 1)

EX" 4 BT = Ei,

explird] exp[iK L _|ET" +
+ explird]) exp[iKTL_|E*T" =
=exp[iK{ Ly |Ef? + exp[iK Ly |ETY,
EtexpliK, L_)Ef" + ¢ exp[iK_L_|E™" = (7)
= explird)¢ T exp[iK T Ly ET? +
+ explird]é exp[iK =L |ET,
exp[2i KT LI ET? + exp[2i K L)¢~ BT = Eyy.
Here, E;, and E;; are the respective amplitudes of
the waves of diffracting polarization incident at the
cholesteric layers from the top (E;,) and the bot-
tom (E;q) of the structure in Fig. 1, 2L is the total

CLC layer thickness, d is the isotropic layer thickness,
Ly =L+d/2, and

I&’I:%:I:q, I(;ZI(I—TZ—%:E%
gi—g— 5 (8)

N Ej: N (KI —7)2/K2 -1’

q:f«u\/u(i)z)—m. (9)

We note that for the further study of the DM, it is
quite essential that ¢ given by Eq. (9) is purely imag-
inary at the DM frequencies (located inside the stop

where

band). The frequency at the stop band center (the
Bragg frequency wg) is given by
27e TC
wp = = )
PVEo 2o

and the band-edge frequencies are w* = wp/v/1F 4.

If we assume Ej;, (E;q) to be the only nonzero amp-
litude, then Eqs. (7) describe the reflection and trans-
mission of light incident on the structure (see Fig. 1)
from above (below). In this case, the reflection R and
transmission T coefficients of the defect structure are
given by the formulas

R(d,L) = ¢TET" + ¢ BT, (10)

T(d,L) = exp [i(2K]L + rd)] ET? +
+exp [i2KTL +kd)] EXY, (1)

12 ZKOT®, Brin. 4

obtained by solving Eqs. (7) under the assumption that
only the wave incident from above exists (E;, # 0,
Eiq =0).

We now consider the solutions of system (7) in some
specific situations in more detail.

5. PERFECT CHOLESTERIC LAYER

The case of a perfect cholesteric layer corresponds
to two limits in Eqs. (7) and is considered here for com-
pleteness (the corresponding results can also be found
in [20,21]). One option corresponds to d = 0 and an-
other to d = 0, but the thickness L of one of the layers
in Fig. 1 is also equal to zero. The first and the second
options respectively correspond to a perfect CLC layer
of thicknesses 2L and L. Solving system (7) in these
limits yields the following expressions for the amplitude
reflection R and transmission T coefficients of a CLC
layer of thickness L:

R(L) = idsin(qL) {Z—Z cos(qL) +

SICSRIO R

it qt (qT
T(L) = exp <T> = {E cos(qL) +

(12)

G+ (s}

where the phases of T and R correspond to the assump-
tion that the coordinate z = 0 at the entrance surface
and correspondingly the director orientation at the en-
trance surface are determined by expression (2) for the
dielectric tensor e(z) of the cholestric liquid crystal at
z = 0 (see also [18-21]).

6. REFLECTION AND TRANSMISSION FOR
THE DEFECT-MODE STRUCTURE

As we have noted, system (7) determines the ampli-
tude light transmission T'(d, L) and reflection R(d, L)
coefficients for the DM structure (see (10) and (11)) if
one of the amplitudes, E;, or E;q, is assumed to va-
nish. For a finite value of L, we have to solve system
(7) and use Egs. (10) and (11) to find the transmission
and reflection coefficients.

But there is another possibility to obtain formu-
las for the optical properties of the structure depicted
in Fig. 1. If we use expressions (12) for the ampli-
tude transmission and reflection coefficients for a sin-
gle cholesteric layer (see also [20,21]), then the corre-
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sponding intensity coefficients |T'(d, L)|? and |R(d, L)|?
for the entire structure can be represented as

2

ikd)
TP < | exp(ik 1
| ( ) )| dl_exp(Qih}d)RdRu , ( 3)
|R(d, L)|* =
exp(?i,‘id) ?
= e uTeT’M ) ’ 14
‘R +R 1 — exp(2ird) Ry Ry 4

where R.(T.), Ry.(Ty), and Ry4(T;) are the respective
amplitude reflection (transmission) coefficients of the
CLC layer in (12) (see Fig. 1) for the light incidence on
the outer top layer surface, for the light incidence on
the inner top CLC layer surface from the inserted defect
layer, and for the light incidence on the inner bottom
CLC layer surface from the inserted defect layer. It is
assumed in deriving Eqs. (13) and (14) that the exter-
nal beam is incident on the structure from above only.

We also easily find the expressions for the eigen-
mode amplitudes excited by the incident wave on both
CLC layers of the structure depicted in Fig. 1 by using
the expressions for the amplitude transmission and re-
flection coefficients in Eqs. (13) and (14). The eigen-
mode amplitudes at the CLC entrance layer are ex-
pressed in terms of R(d, L) as

e, & @1

Chan W
Ei-u:_Eiug _R(a )

£ —&

The eigenmode amplitudes at the CLC exit layer are
expressed in terms of T'(d, L) similarly, as

Eid = Ezu% exp [_Z(2A’iL + h:d)] )
(16)
Etd = —Eiu% exp [—i(QI(i'L + Hd)] .

The corresponding calculations of the amplitudes
EI“, Etu, Ej_'d, and EX? of the eigenwaves excited in
the layer (see Sec. 7) reveal a nontrivial frequency de-
pendence of these amplitudes. Namely, close to the DM
frequencies (inside the stop band, see below), the eigen-
mode amplitudes change sharply. However, in contrast
to the corresponding amplitude changes for localized
edge modes, where the changes are huge [22], the am-
plitude changes are of the order of unity in the case
of the DM. Nevertheless, an essential enhancement of
the field magnitude relative to the incident wave am-
plitude (in calculations, the incident wave amplitude is
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assumed to be equal to unity) close to the defect layer
occurs. The reason is in an exponential increase in the
field as the distance from the CLC layer external sur-
face toward the defect layer increases. As the result,
the thicker a layer is, the higher the enhancement of
the field at the defect layer.

7. NONABSORBING LIQUID CRYSTAL

We consider the formulas in the preceding sec-
tion in more detail for nonabsorbing cholesteric layers.
The calculated reflection |R(d,L)|?> and transmission
|T'(d,L)|* spectra at normal incidence inside the stop
band for the structure in Fig. 1 are presented in Fig. 2.
The maxima in |T'(d, L)|* and minima in |R(d, L)|* at
some frequencies inside the stop band at positions that
depend on the defect layer thickness d are shown. It
is known [1-3,15, 16] that the corresponding minima
of |R(d,L)|* and maxima of |T'(d,L)|* correspond to
the DM frequencies. For the layer thickness d = p/4,
which is half of the dielectric tensor period in a CLC,
these maxima and minima are located just at the stop
band center. In the interval 0 < d/p < 0.5, the DM
frequency value moves from the high-frequency stop
band edge to the low-frequency stop band edge. As
the defect-layer thickness increases further, the DM fre-
quency oscillates between the high-frequency and low-
frequency stop band edges. However, this is true if
only Akrd is less than approximately 2w, where Ak is
the change of the wave vector at the frequency width of
the stop band. When Axd exceeds 27, the second DM
frequency appears in the stop band. As d increases fur-
ther, additional DM frequencies appear, whose number
may be estimated as Axd/2m. The described appear-
ance of many DM frequencies inside the stop band is
illustrated in Fig. 3, where only |T'(d, L)|? or |R(d, L)|?
is presented because |R(d,L)|> + |T(d,L)|> = 1 for a
nonabsorbing structure.

Figure 2 shows that the reflection vanishes at some
frequency. From (14), we find the equation for the fre-
quencies of the reflection coefficient zeros:

R. (1 —€*9RyR,) + R, T.T,e*""* = 0. (17)

It is quite instructive to compare the frequency de-
pendence of the reflection coefficient and of the eigen-
mode amplitudes ET*, ET*, ET% and E*? excited in
the defect structure. Comparing Figs. 2 and 3 with
Fig. 4 shows that the positions of the sharp ampli-
tude oscillations just coincide with (or are very close
to, for an absorbing or amplifying liquid crystal) the
positions of reflection coefficient minima corresponding
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Fig.2. Reflection (a,b) and transmission (c—e) co-

efficients versus the dimensionless frequency v =

= 2(w—wp)/dwp — 1 for a nonabsorbing CLC (v = 0)

for various values of d/p and § = 0.05, | = LT =

= 27N = 200, where N is the director half-turn num-
ber at the CLC layer thickness L

AN

to R(d, L) = 0 for the nonabsorbing CLC. This may be
considered as an indication of the existence of eigen-
states of DM structures just at these frequencies.

8. DEFECT MODE (A NONABSORBING
LIQUID CRYSTAL)

The solution of Eq. (7) in the general case is a linear
superposition of a propagating wave and a pure DM,
i.e., a standing wave of a complicated structure (not
reduced to two plane counter-propagating waves). The

pure DM is determined by Eq. (7) with E;, = E;q =0,

i.e., in the case where no waves are incident from out-
side on the structure shown in Fig. 1.

The DM frequency wp is determined by the zero
value of the determinant of system (7):

det(d, L) = 4e***¢sin®(qL) —

803
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X {;—Z cos(qL)+i [(i)z + (%)2 - 1] X

X sin(qL)} . (18)
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The calculated eigenmode amplitude (|E1“|) at the external surface of a CLC layer of the DM structure excited by

the incident wave of a unit amplitude for two values of d/p, § = 0.05, and N = 33

We note that at a finite length L, det(d, L) does not
reach zero for a real value of w for a nonabsorbing CLC,
but reaches zero for a complex value of w. The larger
the thicknesses L of the CLC layers in the DM struc-
ture (see Fig. 1) are, the smaller the imaginary part of
w is; in the limit of infinite L, it reduces to zero in the
accepted approach (see Sec. 9 below). Therefore, the
DM is a quasistable mode and its lifetime is determined
by the imaginary part of wp.

Using Eqs. (13) and (14), the dispersion equation
following from (18) can be reduced to the expression
containing the reflection coefficients R of the CLC lay-
ers:

1 — RgR,e*" = 0. (19)

The DM field in the CLC is a superposition of two
CLC eigenmodes with their amplitudes satisfying the
condition

Ef*+E™ =0. (20)

Relation (20) allows finding the DM field inside the
CLC layers using expression (3) for the CLC eigen-
modes. For example, in an individual CLC layer of
the DM structure (see Fig. 1), the corresponding ex-
pression for the coordinate field amplitude distribution
becomes

E(wp,2,t) = iexp(—iwpt) X

R P S ESE
(G (%)2 1) i) -

—i% cos(qz)} } . (21)
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Fig.5. Coordinate dependence (z z/p) of the
squared DM field at the DM frequency being at the
stop band center for various dielectric anisotropy 4 va-
lues and the defect layer thickness d = p/4 for the
cholesteric layer thickness L = 50(p/2)
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Fig.6.

Coordinate dependence (z
squared amplitude of the DM waves inside the CLC
layer directed toward the defect layer (bold line) and
out of the DM structure (narrow line) at the DM fre-
quency being at the stop band center for the dielectric
anisotropy 0 = 0.05 close to the external surface of the
CLC layer

z[p) of the

where ¢ is determined by Eq. (9) and z = 0 corresponds
to the external surface of the CLC layer.

The coordinate dependence of the squared modu-
lus of the total field and its parts related to the wave
propagating toward the defect layer and in the opposite
direction close to the external surface of the CLC layer
are presented at Figs. 5 and 6. Figure 5 shows that
the larger the dielectric anisotropy ¢ is, the sharper the
growth of the DM field toward the defect layer. Figu-
re 6 shows that at the external surfaces of the DM struc-
ture, only the amplitude of the wave directed toward

the defect layer reduces strictly to zero. The ampli-
tude of the wave directed outward is small, but it does
not reduce to zero. This is why there is a leakage of
the DM energy outward through the external surfaces
of the DM structure. The ratio of the corresponding
energy flow to the total DM energy accumulated in
its structure determines the inverse lifetime (and cor-
respondingly the DM frequency width), which may be
presented by an analytic expression.

For nonabsorbing CLC layers (which are under the
consideration in this section), the only source of decay
is the energy leakage through their external surfaces.
The decrease in the DM energy in unite time is equal to
the energy flow of the leaking waves (2¢/\/20 )| Eout|?,
where E,,; is the amplitude of the wave exiting the DM
structure through the external surfaces of CLC layers,
and therefore, using (21), we easily obtain the DM life-
time 7p as

™D = /|E(wD727t)|2dZ X

d —1
X <%/|E(wp,z,t)|zdz>

LB (g, s -
N

() Iy
- (&

2c

2
{‘1 - q—LsinQ(qL) X

(oA -@-1)
|G [ e[} e

where the integration due to the symmetry of the DM
structure is restricted to one half of the structure only.
The analysis of Eq. (22) shows that the DM lifetime 7p
depends on the position of its frequency wp inside the
stop band and reaches a maximum for wp just at the
middle of the stop band, i.e., at kK = 7/2.

In the general case, the description of the DM
requires solving dispersion equation (18) numerically.
But because Rewp is determined by the frequencies
corresponding to the zeros of the reflection coefficient
for nonabsorbing CLC layers, it is easier to investigate
DMs in general. In particular, because the DM lifetime
can be written as 1/ Imwp, Eq. (22) for the lifetime 7p
may be used for calculating Imwp. There are also limit
cases simplifying the description of the DM considered
below. As the analysis shows, the thicker CLC lay-
ers are, the larger 7p and correspondingly less the DM
frequency width. The DM lifetime in the limit of in-
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finitely thick CLC layers is infinite in our model (this
is directly shown in the next section).

9. INFINITELY THICK CLC LAYERS

We study system (7) in the simplest case of very
thick cholesteric layers in Fig. 1. In this case, the am-
plitudes of the waves exponentially increasing toward
the external surfaces of cholesteric layers have to va-
nish. Formally, we may put L to be infinitely large. In
the cholesteric layers, nonzero amplitudes then corre-
spond only to the eigenwaves propagating toward the
isotropic defect layer. This means that in system (7),
in the absence of waves incident at the DM structure
from outside, the amplitudes EX* and Ej_'d are equal to
zero and the system reduces to the two linear equations

exp(ird) exp(iK T L_)Ef" = exp(iKT L )ET?,
texp(iK{L )Ef" = (23)
= exp(ird)¢ exp(i K~ Ly)E*?.

The DM frequency wp in this case is determined by
a zero value of the determinant of system (23), which
reduces to the relation

—%exp[i(n—q)d]{;—gcos((T/Q—n)d) +
+i{(7)2+(2)2—1] sin((r/Z—n)d)}:O. (24)

2k K

For the light frequencies inside the selective reflection
band, determinant (24) vanishes if the isotropic layer
thickness d is related to the light frequency as

d( n) 1
Sl L) =«
P 7/2 27

2(r/20)\/ V/A(T 2R P82~ 1 (7 /25
2(1/2k)% = \/4(7/2K)? + §2

X arctg (25)
This relation means that for any frequency inside the
selective reflection band, the DM exists, but the exis-
tence condition demands a specific value of the isotropic
layer thickness for each chosen frequency value.

The relation of the DM frequency to the isotropic
layer thickness d given by (25) for infinitely thick CLC
layers is shown in Fig. 7. Again, the DM frequency
just at the stop band center corresponds to the layer
thickness d/p = 1/4. The same results follow directly
from (25) if we assume that wp is located just in the
middle of the stop band, i.e., 7/2k = 1; in that case,
Eq. (25) results in

2 1 4
~ — arctg 5 (26)

ctg ——
VVA+o2 -2 27

d/p
0-5 ~ T T T T =

BAN |

0.3F J

0.2+ J

0.1+ J

(1) 1 1 1 1 o
0.98 0.99 1.00 1.01 1.02

Fig.7. Calculated relation between d/p and the DM
frequency for nonabsorbing CLC layers of an infinitely
large thickness (6 = 0.05)

which approximately corresponds to d/p = 1/4 4 n/2,
where n is zero or an integer number.

The shift Aw of the DM frequency in the interval
|[Aw/wp| < § due to small variations in d (Ad) close to
the d/p = 1/4 is approximately given by the relation
Aw __4Ad o

wB p
with the Bragg frequency (frequency at the stop band
center) given below Eq. (9).

The calculations show that the DM frequency de-
pends on the CLC layer thickness L only slightly. This
is why the corresponding dependence of wp on d/p for
an infinitely large L may be regarded as a good ap-
proximation for wp at any L.

It is known that the DM field is localized in the
defect layer and closely by around it [1-3,15,16]. An
illustration of such a localization is presented by the co-
ordinate field distribution of the DM for infinitely thick
CLC layers in Fig. 8. The maximum of the field ampli-
tude is located at the defect layer and the field ampli-
tude attenuates exponentially in the CLC outside the
defect layer. The strongest attenuation occurs for the
layer thickness d/p = 1/4, i.e., for the DM frequency
just at the stop band center, with the attenuation de-
creasing as the DM frequency approaches the stop band
edges. The attenuation also increases with an increase
in the CLC layer dielectric anisotropy .

Equations (24)-(26) show that for infinitely thick
CLC layers, the DM frequency is a real quantity in the
model under consideration and hence the DM lifetime
is infinite. This is not the case for a limited CLC layer
thickness. For nonabsorbing CLC layers of finite thick-
ness, determinant (18) vanishes at a complex frequency.
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1.0 - = being at the stop band center, A is the smallest at a
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0.6 -

0.4

0.2

Fig.8. Calculated distribution (see Eq. (21)) of the

squared field modulus versus the distance from the de-

fect layer center (z = z/p) for nonabsorbing infinitely
thick CLC layers for various 6 and d/p =1/4

The physical meaning of the complex frequency is quite
clear. As was mentioned above, for nonabsorbing CLC
layers of a finite thickness, there is a leakage of the DM
electromagnetic field through the external surfaces of
the CLC layers, which results in a decay of the DM.
Just the imaginary part of the frequency and the finite
lifetime of the DM are determined by this leakage.

10. THICK CLC LAYERS

In the case of a DM structure with thick CLC layers
(lg]L > 1), some analytic results related to the DM can
also be obtained. These results may also be obtained
from dispersion equation (18) or from expressions (13)
and (14) for the DM structure transmission and reflec-
tion coefficients.

Instead of directly solving the equation for a
complex frequency following from expression (18)
(det(d,L) = 0), we can use Egs. (13) and (14) for
the DM structure transmission and reflection coeffi-
cients to estimate the imaginary part of the DM fre-
quency. We have to allow a nonzero imaginary addi-
tion to the frequency (defined, for example, by the re-
lation w/Rew = 1 +iA, where A is a small quantity)
and search for extrema of Eqgs. (13) and (14) relative
to this imaginary addition ¢A. The results of the cor-
responding calculations of the transmission |T'(d, L)|?
and reflection |R(d, L)|? intensity coefficients demon-
strate that the imaginary addition to wp decreases as
the CLC layer thickness increases, and the addition also
decreases as Rewp approaches the stop band center at
a fixed CLC layers thickness. In particular, the calcula-

fixed CLC layer thicknesses. The DM lifetime 7 deter-
mined as 7p = 1/| Imwp| increases correspondingly as
the CLC layer thickness increases, and reaches a maxi-
mum for the DM frequency at the stop band center at
a fixed CLC layers thickness.

We analytically find the law of the lifetime 7 in-
crease with the CLC layer thickness, i. e., find the value
of A (in the limit |¢|L >1) corresponding to diver-
gence of the defect-mode structure transmission and
reflection coefficients, by expanding the denominators
in Egs. (13) and (14) in the small parameter A.

The corresponding expression for A is

Aq

A= oy (28)

where Ag is the change of ¢ due to the imaginary addi-
tion to the DM frequency wp, ensuring the divergence
of the DM structure transmission and reflection coeffi-

cients,
F(6?) _1+ 1/2\/(1/K)% + 82 — (7/2k)?
- (/) + 6% + (7/2k)?
and

22
Ag =2 —2lq|L].
=7 exp [—2|q|L]

Because the DM lifetime is 7p = 1/ Imwp, expression
(28) reveals an exponential increase in 7p with an in-
crease in the CLC thickness L, also showing a strong
dependence of the increase rate on the position of wp
inside the stop band. For the position of wp just in the
middle of the stop band, expression (28) for A becomes

A= —33 T &xp [—27dL/p]. (29)

The dependence of the DM lifetime on the position
of wp inside the stop band in the limit of thick CLC
layers (|g|L > 1) is shown in Fig. 9, where the results of
calculations according to (28) are presented for the fre-
quency range inside the stop band, where the condition
lg|L > 1 holds.

The value of A found from (28) and (29) can be
regarded as an initial approximation in numerical cal-
culations in the case of an arbitrary CLC layer thick-
ness L. The same result for the DM lifetime 7 for
thick CLC layers in a DM structure (|¢|L > 1) follows
from Eq. (22) for the finite lifetime resulting from the
electromagnetic wave leakage from the DM structure:
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Fig.9. The DM lifetime (normalized by the time

70 = 2L./20/c of light flight through the DM struc-

ture) dependence on the DM frequency wp location

inside the stop band calculated for thick CLC layers

according to Eq. (28) (6 = 0.05, N = 40, and the

frequency of the middle point of the stop band corre-
sponds to the abscissa value —0.05)

5k2\° LyE 1
D = —_— X
Tq 2¢  02¢gL

A1~ @ -1 @)

x exp(2lq|L).  (30)

For the DM frequency at the middle of the stop band,
Eq. (30) gives

™ = M £exp (27r6£> .
TC P P

Again, as was already mentioned above, the maximum
of the DM lifetime 7p corresponds to the location of
the DM frequency just in the middle of the stop band
(i.e., at k = 7/2), where |g| reaches a maximum.

11. ABSORBING LIQUID CRYSTAL

We now examine formulas (13) and (14) for absor-
bing CLC layers. This case, for example, is directly
related to the lasing in CLC: at the lasing frequency,
the CLC has to be amplifying, whereas at the frequency
of the pumping wave, it is absorbing. To take the ab-
sorption into account, we let v be the ratio of the di-
electric constant imaginary part to the real part of ¢,
i.e., e = go(1l +1iv). We note that v <« 1 in real situa-
tions. A natural consequence of the nonzero absorption
(v > 0) is areduction in the transmission and reflection

|R[*

0.6 | J

0.4+ J

0.2+ J

—0.2 ~01 0 0.1
T|?
0.35 .
0.30 | .
025 b ]
0.20 | i
0.15 | i
0.10 | i
0.05 | i

-0.2 —-0.1 0 0.1

Atot

0.6 | J
0.5 J

0.3+ J
0.2+ J

—-0.2 —-0.1 0 0.1

AN

Fig.10. Reflection (a) and transmission (b) coefficients

and the total absorption A:o: (c) versus the dimen-

sionless frequency for an absorbing CLC, v = 0.005,
d/p=0.1,5=0.05 and N = 33

coefficients. However, there are some interesting pecu-
liarities of the optical properties of the structure under
consideration (see Fig. 1). The calculation results pre-
sented in Figs. 10-13 reveal these peculiarities. For
absorbing structures, |T'(d, L)|* + |R(d,L)|* < 1, and
the quantity Aot = 1—|T'(d, L)|*—|R(d, L)|? presented
in Figs. 10-13 gives the total absorption in the struc-
ture. Up to a relatively strong absorption (y = 0.005
in Fig. 10), the spectral shapes of the reflection and
transmission curves are typical for the DM minima and
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maxima in the reflection and transmission coefficients,
although they deviate from the case of a nonabsorbing
CLC (see Figs. 2 and 3). As 7 decreases, the spectral
shapes of reflection and transmission curves almost ap-
proach the corresponding shapes for a nonabsorbing
CLC (see Fig. 13a,b corresponding to v = 0.0003), but
the total absorption at the DM frequency behaves un-

usually.

As regards the total absorption, it demonstrates a
nonconventional frequency dependence. At small v for
some frequencies, the absorption turns out to be much
greater than the absorption outside the stop band (see
Figs. 10-13). If 7 is not too small (Fig. 10¢, v = 0.005),

—-0.1

0.1

g.11. The same as in Fig. 10 for v = 0.002
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Fig.12. The same as in Fig. 10 for v = 0.001

the total absorption increase reveals itself at the stop
band edges (at the frequencies of the stop band edge
modes). This is a manifestation of the so-called anoma-
lously strong absorption effect known for perfect CLC
layers at the edge mode frequency [20,23]. For smaller
v, the total absorption begins to exceed the absorp-
tion outside the stop band at the DM frequency wp
that has the same value as for the stop band edge
modes (Fig. 11¢, v = 0.002).
ther, the anomalously strong absorption effect becomes
more pronounced at the DM frequency than at the edge
mode frequencies (Fig. 12¢, v = 0.001 and Fig. 13¢,

As 7 decreases fur-
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Fig.13. The same as in Fig. 10 for v = 0.0003

~v = 0.0003). It follows that at the DM frequency wp,
the effect of anomalously strong absorption similar to
the one for the edge mode [23,24] exists and, more-
over, the absorption enhancement for the DM at small
~ is higher than for the edge mode. It is clear that the
anomalously strong absorption effect at the DM fre-
quency is solely due to the localized DM, i.e., to the
defect layer in the structure. Its realization assumes
some relation between v and other parameters of the
liquid crystal. This relation is determined by the con-
dition

9Asor

B =0.

(31)
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Fig.14. The gain ~ corresponding to a maximum ab-

sorption versus the DM frequency location inside stop

band is calculated for thick CLC layers according to

Eq. (32); 0 = 0.05, N = 40, and the frequency of the

middle point of stop band corresponds to the abscissa
value —0.05

In the general case, Eq. (31) can be solved only
numerically. But in the case of thick CLC layers
(lg|L > 1), the dependence of v on L and other pa-
rameters ensuring the maximal absorption can be found
analytically:

4ir2e2lall
TeT ¢>tL
1/2,/ 2402 — (1/2k)?

(/ ) + 62 + (7/2K)2

+

(32)

The value of v given by Eq. (32) may be regarded as
an initial approximation in numerical calculations in
the case of an arbitrary CLC layer thickness L. In
Fig. 14, the frequency dependence of v that corresponds
to the maximum absorption for a thick CLC in the limit
|g|L > 1 is presented. Figure 14 shows that the maxi-
mum absorption enhancement occurs just in the centre
of the stop band.

For the position of wp just in the middle of the stop
band, expression (32) for v becomes

4 p

727r(5L/p
3r L '

V= (33)

We note that the anomalously strong absorption ef-
fect at the DM frequency and its realization under some
relation between v and other liquid crystal parameters
reveal themselves in the calculations of the total ab-
sorption at the DM frequency as a function of vy per-
formed in [15] (the absorption reaches a maximum at
a small finite value of v, see Fig. 8 in [15]).
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12. AMPLIFYING LIQUID CRYSTAL

We examine formulas (13) and (14) for amplifying
cholesteric layers. As previously, we assume that
the dielectric constant is given by the same formula
e =¢eo(1 +1iv), but with v < 0. The calculation results
for the transmission and reflection coefficients at v < 0
are presented in Figs. 15-18. For small absolute val-
ues of 7, the shape of the transmission and reflection

811
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—-0.2 -0.1 0 0.1

Fig.16. The same as in Fig. 15 for v = —0.0006

coefficients is qualitatively the same as for zero ampli-
fication (y = 0) (Figs. 15a,b). But the absorption is
a small negative quantity (which means amplification)
at all frequencies with some amplification enhancement
at the DM frequency and at the edge mode frequencies
(Fig. 15¢). As the absolute value of 7 increases, the
shape of the reflection coefficient |R(d, L)|* changes at
some value of vy (a typical minimum in |R(d, L)|? is
superseded by a small maximum close to 1 and the
transmission |T'(d, L)|? exceeds 1 noticeably (Fig. 16)).
As the absolute value of v increases further, the reflec-
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tion and transmission coefficients at the DM frequency
for the chosen values of the problem parameters exceed
100 (Fig. 17), with no signs of noticeable maxima at
other frequencies. The corresponding value of v may
be regarded as being close to the threshold value of
the gain « for the distributed feedback lasing at the
DM frequency. With the continuing increase in the
absolute value of v, we find that diverging maxima of
|R(d, L)|? at the edge mode frequencies appear (with-
out traces of a maximum at the DM frequency) for
the gain five time greater than the threshold gain for
the DM (Fig. 18). At even greater absolute values of
v, we find that new edge mode frequencies, more dis-
tant from the stop band edge [22, 24], appear. The ob-
served result shows that the DM lasing threshold gain
is lower than the corresponding threshold for the stop
band edge modes. Another conclusion following from
this study is the revealed existence of some interconnec-
tion between the liquid crystal parameters at the lasing
threshold, which for thick CLC layers was found ana-
lytically for the DM (see Eq. (34)) and for edge modes
(see [22,24]). In fact, a continuous increase in the gain
results in the appearance of lasing at new modes, with
the disappearance of lasing at the previous modes cor-
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responding to lower thresholds (this was observed ex-
perimentally in [3]).

To find the interconnection between the liquid crys-
tal parameters at the lasing threshold mentioned above,
we have to solve the DM dispersion equation following
from Eq. (18) under the assumption that the CLC lay-
ers are amplifying (v < 0). In the general case, this
should be done numerically. But in the case of thick
CLC layers (J¢|L > 1), the dependence of the threshold
~ on L and other parameters can be found analytically.
For example, if the DM frequency wp is located at the
stop band center, the corresponding relation for the
threshold gain is given by

i b e 2m0L/p.

3 L (34)

’}l:

The exponentially small value of |y| following from
Eq. (34) for thick CLC layers confirms the above state-
ment about lower lasing threshold for the DM com-
pared to the edge mode. In fact, the lasing threshold for
the edge mode for thick CLC layers does not decrease
exponentially with L, but is inversely proportional to
only the third power of L.
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13. CALCULATION RESULTS

The above plots obtained analytically in the limit
cases may be compared with numerical calculations
performed for the problem parameters corresponding to
their typical values in experiment. Figure 19 presents
the calculated values of the DM lifetime as a function
of the defect layer thickness d/p at a fixed CLC layer
thickness L. Figure 20a presents the calculated values
of the lasing threshold |y| as a function of the defect
layer thickness d/p at a fixed CLC layer thickness L.
Figure 21b presents the calculated values of the lasing
threshold || as a function of the CLC layer thickness L.
In the applicability range of the analytic approach, the
analytic and calculated values are in good agreement.
In particular, Fig. 210 reveals that the lasing threshold
|7 exponentially decreases with an increase in the CLC
layer thickness L for thick layers in the middle of the
stop band (d/p = 0.25), but at the same thicknesses
L close to the stop band edge (d/p = 0.1), where the
limit of thick layers is inapplicable, there are deviations
from the exponential decrease.

14. CONCLUSION

Our analytic description of the DMs neglecting the
polarization mixing at the CLC boundaries in the struc-
ture under consideration allows revealing a clear phy-
sical picture of these modes, which is applicable to the
DMs in general. For example, a lower lasing threshold
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and stronger absorption (under the conditions of the
anomalously strong absorption effect) at the DM fre-
quency compared to the edge mode frequencies are the
features of any periodic media. We note that the expe-
rimental studies of lasing threshold [3] agree with the
corresponding theoretical result obtained above. More-
over, the experiment in [3] also confirms the existence of
some interconnection between the gain and other liquid
crystal parameters at the threshold pumping energy for
lasing at the DM (as well at the stop band edge mode)
frequency. Specifically, this was demonstrated by the
observations that an increase in the pumping energy
above the threshold value results in a decrease in the
lasing intensity (see Fig. 5 in [3]).

For a special choice of the parameters in the experi-
ment, the obtained formulas may be directly applied to
the experiment. Nevertheless, it should be kept in mind
that direct comparison of the theory and experiment
requires some conditions to be met. For example, the
defect layer thickness variations should be less than the
light wavelength. For comparison with a real experi-
ment, the dielectric susceptibility frequency dispersion
must also be taken into account. In the general case,
however, a mutual transformation at the boundaries of
the two circular polarizations of opposite sense must
also be taken into account. For example, the circular
polarization sense observed in experiment [3] for the
wave emitted from the defect structure above the las-
ing threshold may be opposite to the polarization sense
responsible for the DM existence. An evident expla-
nation of the “lasing” at the opposite (nondiffracting)
circular polarization is as follows. Due to the polariza-
tion conversion of the generated wave into a wave of
the opposite circular polarization, the converted wave
of a nondiffracting polarization freely escapes from the
structure. This polarization conversion phenomenon
also contributes to the frequency width of the DM.
Therefore, polarization mixing must also be taken into
account in calculations of the DM lifetime (frequency
width). In the general case, the DM field leakage from
the structure is also determined by the finite CLC layer
thickness, and hence by the leakage due to the polariza-
tion conversion. Only for sufficiently thin CLC layers
or in the case of the DM frequency being very close to
the stop band frequency edges, the main contribution
to the frequency width of the DM is determined by the
thickness effect and the model developed above may be
directly applied for describing experimental data.

Our model allows obtaining results that may simu-
late polarization conversion and may be quantitatively
applicable for the experiment description. Because the
polarization conversion at the CLC surfaces is of the
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order of the dielectric anisotropy ¢ (in the absence of
reflection at a dielectric boundary) [20, 21], the analy-
sis of the problem in the framework of our model and
its results would correspond to a real situation for very
thick CLC layers if the CLC layer thickness L is as-
sumed to be less than the actual CLC layer thickness,
and would correspond to the transmission coefficient
of the CLC layer inside the stop band being appro-
ximately equal to the CLC anisotropy 4. And, more
generally, for a real structure with a layer thickness L,
the structure with the CLC layer thickness less than
L has to be considered in our approach for simulation
of the polarization conversion. We note that the ap-
plied analytic approach helped reveal the anomalously
strong absorption effect at the DM frequency. The cor-
responding “observation” would be much more difficult
to do in a purely numerical approach.

The defect type considered above is a homogenous
layer. The developed approach is also applicable to
a defect of the “phase jump” type [2,3,15,16], and the
corresponding results are practically the same as above.
Namely, the equation related to the case of a “phase
jump” defect is obtained from the equations presented
above by substituting the quantity 2A¢ instead of 2xd
in the factor exp(2ird), where Ay is the spiral phase
jump at the defect plane. Based on the present results,
we may point out in advance one difference between the
two types of defects. Namely, for a phase jump defect,
in contrast to the considered homogenous layer defect,
only one DM frequency inside the stop band frequency
range is possible because the value of the phase jump
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is limited by the condition |Ap| < 27. In particular,
the DM frequency for a phase jump defect is located at
the stop band center at |Ap| = /2.

We also note that the localized DMs (as well as the
edge modes) reveal themselves in an enhancement of
some inelastic and nonlinear optical processes in pho-
tonic liquid crystals. For example, we mention the
experimentally observed effects of the enhancement of
nonlinear optical second harmonic generation [25] and
lowering of the lasing threshold [26] in photonic lig-
uid crystals, along with the theoretically predicted en-
hancement of Cherenkov radiation (Sec. 4 in [20] and
Ch. 5 in [21]).

To conclude, we state that the results obtained
here for the DMs (see also [27]) and in Refs. [22,24]
for the edge modes clarify the physics of these modes
and entirely agree with the previous numerical re-
sults [28]. Our results are qualitatively applicable to
the corresponding localized electromagnetic modes in
any periodic media and may be regarded as a useful
guide in the studies of localized modes in general.

The work is supported by the RFBR (grants
Nos. 09-02-90417-Ukr_f_a and 10-02-92103-Jp_a).
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