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We investigate the photon emission from the electrosphere of a quark star. We show that at temperatures
T =~ 0.1-1 MeV, the dominating mechanism is the bremsstrahlung due to bending of electron trajectories in
the mean Coulomb field of the electrosphere. The radiated energy for this mechanism is much larger than that
for the Bethe—Heitler bremsstrahlung. The energy flux from the mean field bremsstrahlung also exceeds the
one from the tunnel eTe™ pair creation. We demonstrate that the LPM suppression of the photon emission is

negligible.
1. INTRODUCTION

The hypothesis of quark stars made of stable
strange quark matter (SQM) [1-3] has been attracting
much attention for many years. It is possible that quark
stars (if they exist) may be (at least in the initial hot
stage) without a crust of normal matter [4]. In contrast
to neutron stars, the density of SQM for bare quark
stars should drop abruptly at the scale ~ 1 fm. The
SQM in the normal phase and in the two-flavor super-
conducting (2SC) phase should also contain electrons
(for the normal phase, the electron chemical potential
w is about 20 MeV [2, 5]). In contrast to the quark den-
sity, the electron density decreases smoothly above the
star surface at the scale ~ 10® fm [2, 5]. For the star
surface temperature T <y, e.g. T <109 K ~ 1 MeV,
this “electron atmosphere” (usually called the electro-
sphere) may be regarded as a strongly degenerate rela-
tivistic electron gas [2, 5].

From the standpoint of distinguishing bare quark
stars from neutron stars, it is very important to have
theoretical predictions for the photon emission from
bare quark stars. Unlike for neutron stars (or quark
stars with a crust of normal matter), the photon emis-
sion from quark stars made of stable self-bound SQM
may potentially exceed the Eddington limit. This fact
may be used for detecting a bare quark star. However,
the SQM itself is a very poor emitter at 7' < wj [6, 7]
(here, wf ~ 20 MeV is the plasma frequency of SQM
[6]). At such temperatures, the photon emission from
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the quark surface is a tunnel process, and the radia-
tion rate turns out to be negligibly small compared to
the black body radiation [6]. However, for the electro-
sphere, the plasma frequency wy is much smaller than
that for the SQM. Therefore, the photon emission from
the electrosphere may potentially dominate the lumi-
nosity of a quark star. For understanding the prospects
of detecting bare quark stars, it is highly desirable to
have quantitative predictions for the photon emission
from the electrosphere. This is also interesting in the
context of the scenario of gamma-ray repeaters due to
reheating of a quark star by the impact of a massive
comet-like object [8], and the dark matter model in the
form of matter/antimatter SQM nuggets [9].

An obvious candidate for the photon emission from
the electrosphere is the bremsstrahlung from electrons.
It may be due to either the electron—electron interac-
tion (the Bethe-Heitler bremsstrahlung) or the inter-
action of electrons with the mean electric field of the
electrosphere. One more mechanism is related to the
tunnel eTe™ pair creation [4, 10]. The point is that the
electric field of the electrosphere must be very strong.
It may be about several tens of the critical field for the
tunnel Schwinger pair production E.,. = m?/e [11] (we
use the units where ¢ = h = kg = 1). In this scenario,
the photons appear through ete™ annihilation in the
outflowing e* wind [12].

The bremsstrahlung from the electrosphere due to
the electron—electron interaction has been addressed
in [13, 14]. The authors of [13] used the soft-photon
approximation and factored the e”e™ — e~e™ cross
section in the spirit of Low’s theorem. In [14], it was
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pointed out that this approximation is inadequate be-
cause it neglects the effect of the photon energy on
the electron Pauli blocking, which should lead to a
strong suppression of the radiation rate. But the au-
thors of [14] did not treat this problem consistently
either. To take the effect of the minimal photon en-
ergy into account, they suggested some restrictions
on the initial electron momenta imposed by hand.
Thus they obtained the radiated energy flux from the
e~e” — e~ e~ process that was much smaller than
that in [13] and than the energy flux from the tunnel
ete™ pair creation [4, 10]. In [15], the first attempt
was made to include the effect of the mean Coulomb
field of the electrosphere on the photon emission. The
authors obtained a considerable enhancement of the ra-
diation rate. But similarly to [13], the analysis in [15]
treated the Pauli blocking effect incorrectly. We also
note that the photon quasiparticle mass was neglected
in [14,15]. As we show in what follows, this approxi-
mation is clearly inadequate because the finite photon
mass suppresses the radiation rate strongly.

Therefore, the theoretical situation with the pho-
ton bremsstrahlung from the electrosphere is still con-
troversial and uncertain. The main problem here,
which was not solved in the previous analyses [13-15],
is an accurate account for the photon energy in the
electron Pauli blocking. In this paper, we address
the bremsstrahlung from the electrosphere in a way
similar to the Arnold-Moore—Yaffe (AMY) [16] ap-
proach to the collinear photon emission from a hot
quark—gluon plasma based on the thermal field the-
ory. We use a reformulation of the AMY formalism
given in [17]. It is based on the light-cone path integral
(LCPI) approach [18-20] (see [21, 22] for reviews) to
in-medium radiation processes. For an infinite homo-
geneous plasma (with zero mean field), the formalism
in [17] reproduces the AMY results [16]. The LCPI for-
mulation in [17] has the advantage that it also works for
plasmas with a nonzero mean field. It allows evaluating
the photon emission accounting for bending of the elec-
tron trajectories in the mean Coulomb potential of the
electrosphere. Contrarily to very crude and qualitative
methods in [13-15], the treatment of the Pauli blocking
effects in [16, 17] has robust quantum field theoretical
grounds. Of course, our approach is only valid in the
regime of collinear photon emission when the domina-
ting photon energies exceed several units of the photon
quasiparticle mass. Numerical calculations show that
even at T ~ 0.1 MeV, the effect of noncollinear confi-
gurations is relatively small.

We demonstrate that for the temperatures
T ~ 0.1-1 MeV, the radiated energy flux from the
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e~ — e v transition in the mean electric field
is much larger than that from the Bethe—Heitler
bremsstrahlung. It also exceeds the energy flux from
the tunnel eTe™ pairs. We also demonstrate that
contrary to conclusions in [13], the Landau-Pomeran-
chuk-Migdal (LPM) suppression [23, 24] of photon
bremsstrahlung is negligible. Our results show that
the photon emission from the electrosphere may be of
the same order as the black body radiation. Therefore,
the situation with distinguishing a bare quark star
made of SQM in the normal (or 2SC) phase from a
neutron star using the luminosity [4, 25] may be more
optimistic than in the scenario with the tunnel ete~
pair creation [4].

The results of this work were briefly described in
[26]. In this paper, we present our results in a more
detailed form. The plan of the paper is as follows. In
Sec. 2, we review the basic formulas and approxima-
tions. In Sec. 3, we discuss the evaluation of photon
emission from a given electron in the electromagnetic
field of the electrosphere, which includes both the mean
Coulomb field and the ordinary fluctuation field gener-
ated by neighboring electrons. In Sec. 4, we present nu-
merical results for the radiated energy flux. Section 5
is devoted to the conclusions.

2. BASIC FORMULAS AND
APPROXIMATIONS

For the electrosphere, as in Refs. [4, 13, 14], we use
the model of a relativistic strongly degenerate electron
gas in the Thomas—Fermi approximation. In this ap-
proximation, the local electron number density is given
b

’ ne(h) = M3(h),
32
where h is the distance from the quark surface. The
h dependence of the chemical potential is governed
by the Poisson equation for the electrostatic potential
V = p/e. For h > 0, this gives [2, 5]

14(0)
pu(h) = Axh/a)

H = +/31/2a/u(0), o« =¢*/4n.

We assume that the electrosphere is optically thin.
This means that the photon absorption and stimulated
emission can be neglected. In this regime, the lumino-
sity may be expressed in terms of the energy radiated
spontaneously per unit time and volume, usually called
the emissitivity Q. In the formalism in [17], the emis-
sitivity per unit photon energy w at a given h can be
written as

(1)

where
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dQ(h,w) _ w(k) dk
dw  4m® dw
< [ Rue(B)it - neE Mo - HTED ()

where k denotes the photon momentum, E and E’ are
the electron energies before and after the photon emis-
sion,

np(E) = [exp(E — p)/T) +1]7!

is the local electron Fermi distribution (we omit the
argument h in the functions in the right-hand side
of (2)), and =z = k/p is the photon longitudinal (along
the initial electron momentum p) fractional momen-
tum. The function dP/dxdL in (2) is the proba-
bility of the photon emission per unit x and length
from an electron in the potential generated by other
electrons, which includes both the smooth collective
Coulomb field and the usual fluctuating plasma part
related to the field generated by the neighboring elect-
rons. We note that formula (2) accounts for photons
emitted to all directions, because in an optically thin
electrosphere, practically all the photons radiated to
the hemisphere directed to the quark surface are re-
flected either in the electrosphere (at the level with
wy, = w) or from the quark surface. Only the photons
with w 2 wp & 20 MeV may be absorbed in the quark
matter. But such photons are not important at tem-
peratures ' < 1 MeV considered in this paper. For
the above reasons, it would be incorrect to exclude the
photons emitted toward the star surface, as was done
in [14].

Our basic formula (2) assumes that the photon
emission is a local process, i.e., the photon formation
length (denoted by [) is small compared to the thick-
ness of the electrosphere!). Evidently, only in this case
alocal emissitivity can be defined. We note that Eq. (2)
defines the rate of photon production at a given pho-
ton energy, which remains constant during the photon
propagation in the electrosphere. The photon momen-
tum in this process changes adiabatically according to
the photon quasiparticle dispersion relation in the elec-
tron plasma. Also, formula (2) assumes that on the
scale ~ I, the electron trajectories are smooth. This
means that besides the evident condition Iy < R,
(where R, is the curvature radius of the electron tra-
jectory in the mean field), the typical scattering an-

D Physically, the photon formation length (sometimes called
the coherence length) is a longitudinal scale at which the photon
and electron wave packets become separated. It appears natu-
rally in the LCPI approach [18, 21] formulated in the coordinate
space as a dominating scale of the integrals in the longitudinal
coordinate.
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gle related to the random walk of an electron due to
electron—electron interaction should also be small. It
can be shown that these conditions are satisfied for
the electrosphere. An important consequence of the
smoothness of electron trajectories at the scale ~ [
is the longitudinal factorization of the Pauli blocking
factor 1 — np(E") for the final state of the radiating
electron in (2). Just the fact that the trajectories are
smooth in the process of photon emission allows ne-
glecting the statistics effects in treating the small-angle
scattering. Indeed, the typical space scale for soft fluc-
tuating modes of the electromagnetic field is about the
inverse Debye mass 1/mp ~ 1/eu. This scale is much
larger than the typical separation ~ 1/u between elec-
trons. From the standpoint of electrons with energy
~ u, the soft electromagnetic field at the space scale
~ 1/mp > 1/p can therefore be viewed as a uniform
field at the scale ~ 1/pu. In a uniform field, all electrons
in the same spin state scatter the same, and small-angle
scattering leads simply to some shift of the distribution
function in the momentum space. Any statistics effects
are suppressed by some power of the electron charge e.
Calculations within the real time thermal field theory
performed in [16] corroborate this physical picture of
collinear photon emission.

In our approximation of an optically thin medium,
the differential radiated energy flux from the electro-
sphere, dF'/dw, is expressed in terms of the emissitivity
as

hmaz

dF dQ(h, w)
> - / an ) 3)
0

For chemical potential (1), the h-integration in (3) can
be approximated by the integration over u as

©(0)
AN
do =V 2a 12

Hmin

dQ(h(p),w)
0 (4)

with ftymin = (hmaz). In numerical calculations, we
take fmin = 2me. Of course, the relativistic approxi-
mation we made is not good at u ~ me, but the con-
tribution of this region is small, and the corresponding
errors are not big.

3. CALCULATION OF dP/dxdL

The essential ingredient of Eq. (2) is the probability
distribution dP/dxz dL for the photon emission in the
electromagnetic field of the electrosphere. Due to the
presence of the product ng(E)[1 — np(E")] in (2), the
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emissitivity is dominated by the photon emission from
electrons near the Fermi surface with p ~ p > me,.
This allows using semiclassical relativistic formulas for
the photon spectrum dP/dx dL. In this paper, we eval-
uate this spectrum within the LCPI formalism [18, 21].
In this approach, it can be written as

P T
Trdl :2Re/d§g(x) X
0
X [K(p2,€lp1,0) = Ku(p2,€lp1,0)] | —  (5)
p1=p2=0
where
gy =20 2 0 (6)

M?2 (1‘) 8[)1 8[)2
is the spin vertex operator with

_a(l—z+42?/2)

gl(x) - fa
(z) = am?z3
gZ - 2M2(x)7

M(z) = pa(1 - o),

K is the Green’s function for a two-dimensional
Schrédinger equation with the Hamiltonian

i =5 (%) ule)

Here

2
"Y7

Lo =2M(z)/€*, € =m2z”> + (1 —x)m
m~ is the photon quasiparticle mass, and the form of
the potential v is given below. In Egs. (5)—(7), p is
the coordinate transverse to the electron momentum p,
and the longitudinal (along p) coordinate & plays the
role of time. The function K, in (5) is the free Green’s
function at v = 0. We note that at a low density and
vanishing mean field, the quantity Lo coincides with
the real photon formation length [, [18] that charac-
terizes the dominating scale in the {-integration in the
right-hand side of (5).

The potential in Hamiltonian (7) can be written as

V= Uy + V.

The terms v,, and vy correspond to the mean and fluc-
tuating components of the vector potential of the elec-
tron gas. We note that when [y is small compared
to the scale of variation of u (along the electron mo-
mentum), the {-dependence of the potential v can be
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neglected in evaluating dP/dx dL. The mean field com-
ponent is purely real,

Uy = —af - P,
with av
f=ell
eap

(see [21, 27]). Tt is related to the transverse force from
the mean field. Similarly to the classical radiation [28],
the effect of the longitudinal force along the electron
momentum p is suppressed by a factor ~ (m./E)?,
and can be safely neglected. The term vy can be eval-
uated similarly to the case of the quark—gluon plasma
discussed in [17]. This part is purely imaginary

vr(p) = —iP(zp),
where
P(p) = ¢* / dEG(€,01.6) - G(.p. )], (8)

G(z —y) = uyu, D",
D* = (A*(x)A” (y))

is the correlation function of the electromagnetic po-
tential (the mean field is assumed to be subtracted) in
the electron plasma, and u, = (1,0,0, —1) is the light-
cone 4-vector along the electron momentum. We note
that the function P(p) is gauge invariant by construc-
tion, and D*¥ can be used in any gauge. Formula (8)
can be rewritten as (below we replace the argument of
P(p) by p = |p| since P(p) does not depend on the
direction of the vector p)

(2m)?

where the function D is expressed in terms of the cor-
relator G in momentum representation as

P(p) = / da.[1 - expliaL - P)ID(@L),  (9)

oo

/ ddodq-0(q0 — 4:)G/(q0, a1,q2) . (10)

—0o0

D(qy) or

The function D(q, ) can be expressed in terms of
the longitudinal and transverse photon self-energies
I, 7. We use the formulas of the hard dense loop ap-
proximation (HDL) for them [30, 31]. The details of
the calculations are given in Appendix A.

The function P(p) was first introduced in the prob-
lem of propagation of relativistic positroniums through
amorphous media [29], where the atomic size plays the
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Fig.1. The function P(p) in (9) in units of the Debye mass versus pmp for different values of the ratio 7 =T/mp. a —

the total L + T contribution, b and c respectively — the
correspond to 7 = 0 (solid line), 7 = 0.5 (dotted line), 7 =

longitudinal (L) and transverse (T) contributions. The curves
1 (short dashes), and 7 = 2 (long dashes). The thick solid line

in panel (a) shows the prediction of the static model obtained with dipole cross section (11)

role of the inverse Debye mass. In our approach, the
function P(p) contains all the information about the
electron—electron interaction that is necessary for de-
scribing multiple scattering of a given electron in the
fluctuating electromagnetic field generated by other
electrons. In particular, all the Pauli blocking effects
in the process of electron multiple scattering are auto-
matically accumulated in P(p). It is worth noting that
in the approximation of static Debye-screened scatter-
ing centers, the function P(p) reduces to no(p)/2 [17],
where n is the number density of the medium, and

7(p) = 80° [ dg

[1 — exp(iq - p)]
(a® +m}p)?
_ 8ra?

D)
mp

(L —pmpKi(pmp)] (11)
is the well-known dipole cross section for scattering of
an eTe™ pair of size p on the Debye-screened scatter-
ing center (and K is the Bessel function). In the static
approximation at p < 1/mp, we can obtain

P(p) = nCp®/2
from (11), where
C ~ 4ma’In(2/pmp)

is a smooth function of p. In the limit p < 1/mp, the
function P(p) in the HDL approximation also becomes
almost quadratic.

The quadratic approximation P(p) o p? in the
LCPI approach is equivalent to the Fokker—Planck ap-
proximation in Migdal’s approach [21]. It is not very

accurate but reasonable for bremsstrahlung in ordi-
nary materials. In this case, the dominating p-scale
is ~ 1/mex, and the spectrum is controlled by behav-
ior of P(p) at the scale ~ 1/m,, which is much smaller
than the screening radius ~ 1/am,Z"/? (where Z is the
atomic number). For the relativistic electron gas, the
situation is quite different. In the dominating p-region,
the argument of P(p) is p ~ (0.1-2)/mp. In this re-
gion, P(p) is essentially nonquadratic. This is seen well
in Fig. 1a, where we plot the results of numerical cal-
culations of P(p) for several values of the ratio T'/mp.
The results are presented in a dimensionless form. For
comparison, we also show the predictions of the static
approximation at 7' = 0 (when mp = p+/4a/7) ob-
tained with dipole cross section (11). It can be seen
that at p ~ (0.1-2)/mp, the function P(p) is almost
linear in p.

In Figs. 1b,¢, to demonstrate the relative effect of
the longitudinal and transverse modes, we show the
contributions related to I1;, and IIr separately. We see
that at p < 1/mp, the longitudinal and transverse con-
tributions are close to each other. But at p 2> 2/mp,
the longitudinal part flattens, while the transverse mag-
netic one continues to increase (for T'/mp not very close
to zero). This increase in the transverse part is a con-
sequence of the well-known absence of static magnetic
screening in the electron plasma. We note, however,
that from the standpoint of the photon emission, the
increase in the magnetic contribution with p is not im-
portant because the photon spectrum is dominated by
p<1l/e~1/mp.

The growth of P(p) with temperature is due to the
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presence of the Bose—Einstein factor in the function D,
Eq. (A.1). Tt follows from Fig. 1a that the prediction
of the HDL approximation at T" < mp, similarly to
the static model, flattens at p 2 2/mp. But the static
model prediction exceeds the HDL approximately by
a factor 2.5. The fact that the static approximation
overestimates P(p) at T' = 0 is quite natural, because
the Pauli blocking effects reduce the effective number of
scatterers. However, it would be incorrect to interpret
the increase in P(p) with temperature as an artefact
associated only with the decrease in the Pauli blocking
at high temperatures. The function P(p) in the HDL
approximation accumulates all the collective effects in
soft modes of the electromagnetic field in the electron
plasma at the momentum scale ~ mp < p. In par-
ticular, it accounts for the temperature dependence of
the density of the plasmon excitations. We note that
physically, the appearance of P(p) is due to Landau
damping of the longitudinal and transverse modes.

It is worth noting that the collective effects can-
not be consistently taken into account in the naive
modification of the photon propagator in the elastic
e"e” — e e scattering amplitude, as was assumed
in [13]. One of the consequence of the inadequacy of
this prescription is a strong overestimate of the mag-
netic contribution in [13]. It is connected with the 1/6*
(where 6 is the scattering angle) behavior of the mag-
netic contribution to the elastic e”e™ — e~e™ cross
section. To perform the f-integration, the authors
of [13] introduced some minimal momentum transfer.
In contrast to [13], the magnetic contribution to the
function D(qy) behaves?) as 1/q> at q. — 0 and
the q -integration in formula (9) for P(p) converges
at small q;. This change in the small-angle behavior
of the magnetic contribution in our approach compared
with the prescription of [13] is connected with the dy-
namical magnetic screening, which was not consistently
accounted for in [13]. In principle, physically, it is evi-
dent that the concept of the elastic e e~ — e e~ am-
plitude itself is ill-defined for the momentum transfer
< mp, where the collective effects become significant.

We note that in terms of P(p), the transverse mo-
mentum broadening distribution of an electron propa-
gating over a distance L through the electron gas can
be written as [29]

2) The same occurs in the hard thermal loop approximation
for a hot relativistic plasma with zero chemical potential [32].
We note, however, that a very elegant formula for the analogue
of our function D(q ) obtained in [32] is not valid for a strongly
degenerate electron plasma.
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Iaw) = s [ doexvlias -p=LP()). (12

This formula looks like the prediction of the eikonal ap-
proximation, which neglects the variation of the elec-
tron tranverse coordinate. But path-integral calcula-
tions in [29] show that it is valid beyond the eikonal
approximation as well.

We turn to the calculation of the spectrum us-
ing (5). Treating vy as a perturbation, we can write

K(&a, p2léi, p1) = K (&2, p2|&i, p1) —i/dfdp X

X Km (&2, p2|&, p)vr (p) K (&, P&, p1) + ..., (13)

where Ky, is the Green’s function at vy = 0. Then (5)
can be written as

AP _ dP.  dP;
dedlL ~— dxdlL = dxdL’

where the first term in the right-hand side comes from
Km — Ky in (5) after representing K in form (13). It
corresponds to the photon emission in a smooth mean
field. The second term comes from the series in vy
in (13) and can be viewed as the radiation rate due to
the electron multiple scattering in the fluctuating field
in the presence of a smooth external field.

The analytic expression for the Green’s function for
the Hamiltonian with a constant force is known (see,
e.g., [33]). In our case, K, can be written as

(14)

Km (&, p2161,01) = omic X

X exp {z {M(ng p1)® _ wtf - (1322 +p1)

1‘2f2€3 f
24M _L_o]} 1)

with

§=86—-64.
With this expression, simple calculations show that
Eq. (5) yields a spectrum similar to the well-known
semiclassical synchrotron spectrum [34], which can be
written in terms of the Airy function

. 1 /z
AI(Z) = ;\/;31/3(223/2/3)

(where K3 is the Bessel function). In the case of in-
terest, for a nonzero photon quasiparticle mass, it is
given by [27]

dP,, _a
dedl &k

Ai (k) +b / dyAi(y) , (16)
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where

2¢2g; €2g1 €2
= PEMe TS RS GEepns

Inspecting the longitudinal integrals for the photon ra-
diation in an external field shows that the effective pho-
ton formation length for the mean field mechanism is
given by

Ly ~min(Lg, Ly,),
where

Ly = (24M/27£2)!/3

(see [27]). A similar estimate can be obtained from the
criterion of separation of the photon and electron wave
packets. We note that the analytic expression for the
Green’s function for the oscillator with a constant force
is also known (see [33]).

For P(p) o p?, using this Green’s function allows
obtaining the radiation rate in the form given in [35],
where Migdal’s approach within the Fokker—Planck ap-
proximation was generalized to the case with an ex-
ternal field. The formulas in [35] were used in [15].
However, as was already noted, the approximation
P(p) o p? is clearly not adequate for the electrosphere.

We now discuss the fluctuation component
dPy /dx dL. We represent it in the form
dP dPBH dPLPM
i R (17)
drdL dx dx

where the first term in the right-hand side corresponds
to the leading order in the expansion in vy in (13),
and the second term to the sum of higher-order terms.
The expression dPP" /dxdL is an analogue of the
Bethe—Heitler spectrum in ordinary materials, while
deLPM/dx dL describes the LPM correction. For the
Bethe-Heitler term, it follows from (5) and (13) that

deBH
FRY / dpW (z,p,)P(pz),  (18)

W(z,p,f) =

= —Re§(2)®(z, p, p1,f)®(2, p, p2,f) , (19

p1=p2=0

0
(. p,p',f) = / dEKm(p, 010 6). (20)

We note that for a nonzero f, the function W cannot be
viewed as a probability density for the |ye) Fock com-
ponent of the physical photon (it is even not positive

6 ZKIOT®, Beim. 1

definite). This is connected with the fact that in an ex-
ternal field, the |ye) Fock component is not stable and
decays through the tunnel transition into a free photon
and an electron. The analogue of the representation for
the LPM correction derived in [19] for a nonzero mean
field is given by

dPLPM *
b =2Reg(o) [ d¢ [ dpd(e.p.pait) %
0

x P(px)®(z, p, p1,£,€) ., (21)

pP1=p2=0

where the function ®(z, p, py1,f,€) is the solution of
the two-dimensional Schrédinger equation with Hamil-
tonian (7) and with the boundary condition

®(z, p, p1,£,0) = ®(z, p, p1,£) P(pz) .

In the case of zero f, the function W can be written
as a density for the |ye) Fock state,

Wirp) =5 3 W o AP, (22)
{A}

where ¥ (z, p, {\;}) is the light-cone wave function for
the e — ~e’ transition and {\;} = (Ae,Aer, Ay) IS A
set of helicities. We note that contrary to the case
f #£ 0, the light-cone wave functions now have definite
azimuthal quantum numbers due to the azimuthal sym-
metry of the Hamiltonian. The LPM correction in this
case can also be written in terms of the light-cone wave
functions. The results is similar to that for ordinary
materials [19, 21]:

dPLPM s
:lx = —Re Z /dg X

{Xit o

x / dp U™ (z, p. (M} P(o2)® (. p N 1.6). (23)

The boundary condition for ®(z, p, {\;},€) is now

The light-cone wave functions appear in formulas (22)
and (23) from the {-integrals in (5) and (13) of the
Green’s function KC,, and from the action of the vertex
operator written in terms of the helicity projectors as
was done in [17].

The formulas for the light-cone wave functions are
given in Appendix B. Using the formulas given there,
we can obtain the probability distribution W for the
e — ve' transition at f = 0 as
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dP/dzdL, MeV
10° . . . ;

107t L J

1072

1073

1074

10°

0 0.2

dP/dzdL, MeV
10° : . . ;

107tL ]

Fig.2. The contributions to the spectrum dP/dx dL from the mean field mechanism (solid line) and the fluctuation mech-

anism (dashes) for 4 = 10 MeV at T = 0.2 (a) and 1 (b) MeV. The thick curves are for a nonzero photon mass, and the

thin lines are for a massless photon. The contribution of the fluctuation mechanism is calculated using the Bethe—Heitler
term with distribution (24)

W(z,p) = X

>< {
where Ky ; are the Bessel functions. Because Kg 1 de-

crease exponentially in (24), the dominating p scale in
formula (18) for the fluctuation term is ~ 1/e.

2
e R < ) B

For a nonzero f, the azimuthal symmetry is ab-
sent. This makes the problem considerably more com-
plicated. In this paper, we first calculated the spec-
trum dPy/dxdL for f 0. We observed that the
LPM correction in (17) is negligible compared to the
Bethe-Heitler term. Also, the Bethe—Heitler term it-
self turns out to be much smaller than the mean field
term dP,,/dzdL. 1t is clear that a nonzero f makes
dPy/dx dL even smaller. Therefore, an accurate cal-
culation of the fluctuation term for nonzero f does not
make much sense. We have taken the effect of the trans-
verse force into account using qualitative arguments
based on the estimates of the coherence lengths with
and without a tranverse force. The mean field should
suppress the coherence length. The suppression of the
radiation rate should be approximately the same [36].
Hence, the mean field suppression factor can be written
as the ratio of the formation lengths with and without
the mean field. The coherence length in the presence of
the mean field is ~ L,,. Without the mean field in the
regime of weak LPM suppression, the coherence length
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is given by Lg. Therefore, the mean field suppression
factor is

We note that due to reduction in the effective forma-
tion length, the LPM effect should become even smaller
for a nonzero mean field.

To illustrate the relative contributions of the mean
field and fluctuation mechanisms to dP/dx dL, we plot
them in Fig. 2 for 4 = 10 MeV and 7" = 0.2 and 1 MeV.
The mean field part shown in Fig. 2 corresponds to the
spectrum averaged over all directions of the electron
momentum. The fluctuation contribution was calcu-
lated without the mean field suppression factor. The
calculations are performed with the k-dependent pho-
ton quasiparticle mass extracted from the relation?)

m?y = HT(Q/kZ + m?y,k)

This gives m., increasing from mp/V3 at k < mp to
mD/\/§ at k > mp with the Debye mass

4o
2 _ 2
mD—ﬂ_(u-l-

3) We ignore the influence of the medium effects on me [37]
because the photon bremsstrahlung in the region x < 1, which
dominates the emissitivity, is not very sensitive to the electron
quasiparticle mass.

™

2
7).

3
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It follows from Fig. 2 that the fluctuation contribu-
tion is suppressed by a factor ~ 1072. To illustrate
the role of a finite photon quasiparticle mass, we also
present the results for zero m., in Fig. 2 (thin curves).
It is seen that the photon mass suppression (usually
called the Ter-Mikaelian effect) is very strong at small
x. The effect is especially dramatic for the fluctuation
part, where the well-known 1/x form of the spectrum
changes to o< . This effect was ignored in the analy-
ses in [14, 15], where the massless formulas were used.
The results shown in Fig. 2 indicate clearly that the
massless approximation is inadequate.

Ag mentioned previously, our calculations show that
for the fluctuation mechanism the LPM suppression is
negligible. This contradicts the analysis in [13], where
the authors found a very strong LPM suppression
(about ~ 1/300 at the photon momentum &k = 0.5 MeV
for the electron energy 10 MeV). To calculate the LPM
suppression, the authors of [13] used Migdal’s formulas
with zero photon mass, setting Z = 1 there. But it can
easily be shown that Migdal’s formulas become inap-
plicable for the electrosphere. We explain this in the
language of the LCPT approach. Migdal’s approach [24]
corresponds in the LCPI formalism to the quadratic pa-
rameterization

P(p) =~ nCp*/2.

As described above, this approximation is not accurate
for the electrosphere, but is nevertheless suitable for
our qualitative analysis. In the quadratic approxima-
tion, Hamiltonian (7) takes the oscillator form with

QN =+/—inCx? /M (z).

The LPM suppression factor S;pys can be written in
terms of the dimensionless parameter n = |Q|Lo [18,
21]. The LPM suppression becomes strong at n > 1.

In this limit,
3

Scpv & —=
2
(see [18]). The LPM effect is negligible for n < 1, when

Srear(n) =1 —16n*/21

(see [18]). We note that even at n ~ 1, the LPM sup-
pression is relatively small because Sypy (1) & 0.86.
A very strong suppression obtained in [13] is mostly
due to the neglect of the photon mass. The finite pho-
ton mass strongly reduces Ly and correspondingly the
parameter 1 (by about a factor ~ 400 for £ = 0.5
and p ~ 10 MeV). Also, for the electrosphere, there
is no well-known large Coulomb logarithm In(1/a) ~ 5
(which comes from the logarithm in the dipole cross

section [20]) in ||, which is present in Migdal’s formu-
las derived for ordinary materials. Both these effects
drastically reduce the value of n for the electrosphere
compared to that in Migdal’s approach. As a result,
the LPM suppression in the electrosphere turns out to
be negligible.

4. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results for
the emissitivity and radiated energy flux. The results
were obtained with some modification of the spectrum
dP/dx dL in the noncollinear region. As we mentioned
above, the collinear approximation we use becomes in-
valid for very soft photons with £ < m.,. In this region,
the formalisms [16-18] do not apply. In particular, the
LCPI approach [18], which assumes that the transverse
momentum integration extends to infinity, should over-
estimate the photon spectrum at k& < m». To take this
effect into account (at least, qualitatively) in calculat-
ing the radiated energy flux, we multiplied dP/dz dL
by the kinematical suppression factor

Skin(k) =1— exp(—kQ/m?Y).

This factor does not give a large effect. It suppresses
the radiated energy by ~ 10-15% at T ~ 0.1-0.2 MeV
and ~ 1-2% at T~ 1 MeV. This shows that the errors
from the noncollinear configurations are small.

In Fig. 3, we show the emissitivity for 4 = 5 and
10 MeV evaluated at 7' = 0.2 and 1 MeV as a function
of w. We see that the contribution of the mean field
emission (the thick solid line) exceeds the fluctuation
emission without mean field suppression (dashes) by
a factor ~ 10%2. The mean field suppression addition-
ally reduces the fluctuation contribution (the thin solid
line) by a factor ~ 3—4. We note that there is no photon
emission at w < wp in our semiclasscal approximation
at a given p. For this reason, the differential emissitiv-
ity shown in Fig. 3 vanishes abruptly at w = wj = m,
(k = 0). We see from Fig. 3 that despite the Pauli
blocking suppression, even at 7' = 0.2 MeV, the con-
tribution of energetic photons with the energy about
several units of w¢ is important. This demonstrates

p
that the restriction

w <y fws? +m?

for the photon energy imposed by the authors of [13] is
clearly inadequate.

In Fig. 4, we plot the differential radiated energy
flux dF/dw for ;(0) = 10 and 20 MeV obtained at

6*
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dQ/dw, MeV*

10-4 [ p=>5MeV, T =0.2MeV ]

1075 L
1076 L
1077 L

1078 |

10~°

107 L ]

10~° .

3
w, MeV

dQ/dw, MeV*

10-2L p=>5MeV, T =1MeV ]

1073 L
10741
1075 L

107¢L

p=10 MeV, T = 1 MeV

Fig.3. The emissitivity versus the photon energy w for p = 5 and 10 MeV at T = 0.2 and 1 MeV. The thick solid line
shows the mean field bremsstrahlung. The contribution of the fluctuation mechanism is shown without (dashes) and with
(thin solid line) the mean field suppression

T = 0.2 and 1 MeV. For the fluctuation contribution,
we show the results with and without the mean field
suppression factor S,,. For comparison, the black body
spectrum is also shown. The mean Coulomb field of the
electrosphere reduces the fluctuation term by a factor
~ 3-4. It follows from Figs. 3 and 4 that the relative
contribution of the fluctuation mechanism is very small
compared to the mean field emission. In some sense,
we have a situation similar to that for photon radiation
from an atom with a large Z. We note that the form
of the spectrum for the mean field mechanism is quali-
tatively similar to that for the black body radiation.
In Fig. 5, we show the total energy flux

F:/dwdF/dw
0

scaled to the black body radiation as a function of tem-
perature. For comparison, we also plot the predictions
for bremsstrahlung obtained in [13-15]. We also show

the energy flux from the ete™ pair production [4, 10],
defined as

[ ©(0)
r- | thi(h)m\/% | Bautm. @)
0 Mmin

Here, @+ is the energy flux from ete™ pairs per unit
time and volume. We write it as in [4, 10],

Q:t = Ee+e—dNe+e— /dt dVa
where
EeJre* ~ 2(m6 + T)

is the typical energy of eTe™ pairs and dN,+,- /dt dV
the rate of ete™ pair production per unit time and
volume given by

dNote— 373 [a 2mee
atav. - 2w 7 5P <_ 7 )7© (20

2u |«
g_T\/;7

with
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dF/dw, MeV?
1072 : : ; .
u1(0) =10 MeV, T' = 0.2 MeV

dF/dw, MeV?
10° . . . .
10-1 1(0) =10 MeV, T =1 MeV

102

dF/dw, MeV?

1072 . . . .
1(0) =20 MeV, T = 0.2 MeV

10° : : . .

107!

102

Fig.4. The differential radiated energy flux from the electrosphere for the mean field bremsstrahlung (thick solid line) and
for the Bethe—Heitler bremsstrahlung with (thin solid line) and without (dashes) the mean field suppression. The dotted
lines show the black body spectrum

and the function .J is defined as in [10]:

J(x) = 231In (1 +2/x) moxt
© 3(140.0742)3  6(13.9+2)4 "

We see from Fig. 5 that in the region 7' ~ 0.1-1 MeV,
the mean field photon emission considerably exceeds
both the fluctuation bremsstrahlung and the energy
flux from eTe™ pair production.

Figures 4 and 5 demonstrate that the energy flux
from the mean field photon emission may be of the
same order of magnitude as the black body radiation.
In other words, the approximation of an optically thin
electrosphere is not very good, and the photon absorp-
tion and stimulated emission may be important. But
because the radiation rate we obtained does not exceed
the black body limit, they cannot modify our results
strongly. We note that the authors of [15] obtained
the energy flux for T < 1 MeV considerably exceeding
the black body limit. This can be seen from Fig. 5,
where the results in [15] at (0) = 20 MeV are shown.
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The authors of [15] claim that the electrosphere may
radiate stronger than a black body. This statement is
obviously incorrect. The violation of the black body
limit in [15] is just a signal that the thin-medium ap-
proximation becomes inapplicable at high emissitivity.
As regards the very large emissitivity obtained in [15],
we have already mentioned that it may be due to an
incorrect description of the Pauli blocking and neglect
of the photon mass.

As mentioned above, our assumption that the pho-
ton emission is a local process is valid if [z ~ L, € Ley,
where L.; is the typical scale of variation of the po-
tential v,, along the electron trajectory. For chemical
potential (1), it can be defined as

Lt ~ Hpu(0)/(h) cos,
where 6 is the angle between the electron momentum

and the star surface normal. Evidently, the contribu-
tion of the configurations with L,, = L¢; to the photon
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F/Fy,
10* . :

10° 1

I 1 1

1.0
T, MeV

Fig.5.

F/Fu
104 . . .

10° L N .

10% | . i

10°

10D T

0 0.5 1.0
T, MeV

The total radiated energy flux (scaled to the black body radiation) from the electrosphere for the mean field

bremsstrahlung (thick solid line) and for the Bethe—Heitler bremsstrahlung with (thin solid line) and without (short dashes)

the mean field suppression. The contribution from the tunnel eTe™ creation [4, 10] evaluated using (25) is also shown

(dotted line). The long dashes show the results for the e~ + e~ — e~ + e~ + 7 process obtained in [13]. The dot-dashed

lines show the results for the same process in [14]. The dot-dot-dashed line shows the bremsstrahlung contribution with
inclusion of the mean Coulomb field in [15]. 1(0) = 10 (a), 20 (b) MeV

spectrum are to be suppressed by the finite-size sup-
pression factor

st ~ ITlin(LE[7 I_/m)/l_/m

We verified numerically that this suppression factor
gives a negligible effect. This justifies the local approx-
imation.

According to the simulation of the thermal evolu-
tion of young quark stars performed in [25], the tem-
perature at the star surface becomes ~ 0.2 MeV at
t ~ 1 s. But the mean field bremsstrahlung was not
taken into account in the analysis in [25]. In the light
of our results, we can expect that the cooling of the
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bare quark star surface should proceed somewhat faster
than predicted in [25]. It is worth noting that in the
initial stage of the quark star evolution, the mean field
photon emission can only modify the temperature near
the star surface. The evolution of the star core tem-
perature is driven by neutrino emission [25] because
the neutrino luminosity is much larger than the pho-
ton (and ete™) luminosity for an extended period of
time [25]. The higher luminosity due to the mean field
bremsstrahlung increases the possibility for detecting
bare quark stars. From the standpoint of light curves
at t > 1 s, it would also be interesting to investigate
the mean field bremsstrahlung for 7 < 0.1 MeV. Ho-
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wever, the photon emission from the nonrelativistic re-
gion of the electrosphere may be important at such
temperatures, where our formulas become inapplica-
ble. As regards the contribution of the relativistic re-
gion p > me, extrapolation of the curves shown in
Fig. 5 to T' < 0.1 MeV allows expecting that the mean
field emission will dominate the energy flux at lower
temperatures as well.

A remark is in order on the photon distribution seen
by a distant observer. For the obtained values of the
energy flux, the radiation cannot stream outward freely.
The point is that near the star surface, the thermaliza-
tion time in the comoving frame for the ete~y wind
is negligibly small compared to the star radius. This
follows from estimates of the mean free path \ related
tothe y + et = v+ e* and v+ v & et + e~ pro-
cesses. Qualitative calculations give A ~ 10 3cm at
T ~ 0.1 MeV and A ~ 10 %m at T~ 1 MeV. There-
fore, the ete~v wind can be described as a hydrody-
namical flow. The hydrodynamical description is valid
up to the freeze-out surface, beyond which the radia-
tion streams outward almost freely. For an observer
at a large distance from the star, the photon spectrum
is close to the black body one with the temperature
Tewt = T¢rI'fp, where T}, is the wind temperature and
[y, is the bulk Lorentz factor of the wind at the freeze-
out level [38, 39]. It can be shown that for a relativistic
wind [38, 39]

TfTI‘fr ~ TiI‘i,

where T; is the wind temperature after its thermaliza-
tion and T'; is the bulk Lorentz factor of the wind near
the star surface. For T' ~ 0.1 MeV, the electron frac-
tion in the ete~™v wind is small after thermalization.
Simple qualitative calculations then give

T,T; ~ T(3x12/16)'/4,
where
KR = (F +F:|:)/be.

As a plausible estimate, we can take ['? ~ 3 and k ~ 1.
Then T,,; ~ 0.85T. For T~ 1 MeV, the electron frac-
tion in the wind after thermalization becomes close to
that for a relativistic plasma. In this case,

T\T; ~ T(3xT2/44)"/4.

Taking k ~ 0.4, we obtain T,,; ~ 0.57. We note that
in both cases, the fraction of e® pairs in the wind is
negligibly small beyond the freeze-out surface [39].
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We note that our calculations probably do not apply
to quark stars in the color flavor-locked (CFL) super-
conducting phase. It was suggested previously [40] that
despite the absence of electrons in the bulk SQM in the
CFL phase, the electrosphere may exist due to the sur-
face quark charge [41]. However, the recent analysis
in [42] gives evidence in favor of the absence of such a
surface charge. But for the CFL phase, a significant
photon emission from the SQM itself may exist due to
the photon-gluon mixing [43]. The results in [43] show
that this radiation is comparable to the black body
limit. Because we also obtain the radiation rate com-
parable to the black body radiation, it may be difficult
to distinguish a bare quark star in the CFL phase from
that in the normal (or 2SC) phase.

5. CONCLUSION

We have evaluated the photon emission from the
electrosphere of a bare quark star (in the normal or
2SC phase). The analysis is based on the LCPI refor-
mulation [17] of the AMY approach [16] to the pho-
ton emission from relativistic plasmas. The devel-
oped approach, in contrast to the previous qualitative
studies [13-15], for the first time allows giving a ro-
bust treatment of the Pauli blocking effects in photon
bremsstrahlung. We demonstrate that for the temper-
atures 7' ~ 0.1-1 MeV, the dominating contribution
to the photon emission is due to bending of electron
trajectories in the mean electric field of the electro-
sphere. The energy flux from the mean field photon
emission is of the order of the black body limit. Our
results show that the contribution of the Bethe—Heitler
bremsstrahlung due to the electron—electron interaction
is negligible compared to the mean field photon emis-
sion. Contrarily to [13], we demonstrate that the LPM
suppression is negligible.

The energy flux related to the mean field
bremsstrahlung also turns out to be larger than
that from the tunnel ete™ pair creation [4, 10]. In the
light of these results, the situation with distinguishing
bare quark stars made of SQM in the normal (or 2SC)
phase from neutron stars may be more optimistic
than in the scenario with the tunnel eTe™ creation
discussed in [25].
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diated energy flux obtained in [14]. I am also grateful
to T. Harko and D. Page for communication. This work
was supported in part by the grant NeSS-6501.2010.2.



B. G. Zakharov

MKITD, Tom 139, Bhm. 1, 2011

APPENDIX A

Calculation of the function D(q, )

In this appendix, we discuss the calculation of the
function D(qy). To evaluate this function, we need to
know the correlator D*”. In momentum representa-
tion, we can obtain

D" (q) = ~2([1 + ns(go)] Tm D (q)

where
np = lexp(qo/T) — 1]

is the Bose—Einstein factor and D (q) is the retarded
Green’s function. As was already noted, the func-
tion P(p) is gauge invariant, and we can use DH” in
any gauge. Expressing the retarded propagator in the
Coulomb gauge in terms of longitudinal and transverse
photon self-energies, we obtain

1 oo
D(QL) = —; / dqo

exp(qo/T)
exp(qo/T) — 1

2

X{ Im IT7, (g0, q) a
[@> —RellL(go,q)]* + (ImMr(g0,q))*  @?
y Im 117 (o, q) }
[a% +Re Il (g0, @)]* +(Im Iz (g0, a))* J |, _,,
(A.1)

In numerical calculations, we use the HDL expres-

sions [30, 31] for IIz, 7:

+q
T .q) = m3 {q—oln <q0 )—1] , A2
r(q0,a) = mp 20 "\ —¢ (A2)
I7(q,q) =
2 2 2 2
mp [ | (€ — %) <qo+q) ]
—D 130 In -1 A3
2 {qz 2¢3 q0o —q (4-3)

with the Debye mass
s  da [, N m2T?
mp = —
b T a 3

).

APPENDIX B

Formulas for the light-cone wave functions

For zero f, the light-cone wave functions have a def-
inite orbital quantum number m. As was mentioned,
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the light-cone wave functions appear from the longitu-
dinal integrals of the Green’s function. For f = 0, it is
the free Green’s function given by

KU(€27p2|€17p1) -

M [ M(p>—p1)? &€
= _— - = B.1
2mie P {Z [ 2 o) BY
with £ = & — &. The &integration can be performed

using the relation

. M
[ dekulpetlpn &) = =" Kallpz ~ il (B2)

where K is the Bessel function. Then the light-cone
wave functions can be written in terms of the Bessel
functions Ky and Kj. After representing vertex op-
erator (6) in terms of the helicity state projectors as
in [17], we obtain

T, 0, ey Aers Ay) = X
2
,/ [/\ )+ 2Xex] exp(—id,p)eKy (pe) (B.3)
for \et = A, where ¢ is the azimuthal angle. For
Aer = —Ae, wWe obtain
U(z, p, Ae, —Ae, 2)e) \/2ax3me o(pe). (B.4)
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