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PHOTON EMISSION FROM BARE QUARK STARSB. G. Zakharov *Landau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es117334, Mos
ow, RussiaRe
eived May 11, 2010We investigate the photon emission from the ele
trosphere of a quark star. We show that at temperaturesT � 0:1�1 MeV, the dominating me
hanism is the bremsstrahlung due to bending of ele
tron traje
tories inthe mean Coulomb �eld of the ele
trosphere. The radiated energy for this me
hanism is mu
h larger than thatfor the Bethe�Heitler bremsstrahlung. The energy �ux from the mean �eld bremsstrahlung also ex
eeds theone from the tunnel e+e� pair 
reation. We demonstrate that the LPM suppression of the photon emission isnegligible.1. INTRODUCTIONThe hypothesis of quark stars made of stablestrange quark matter (SQM) [1�3℄ has been attra
tingmu
h attention for many years. It is possible that quarkstars (if they exist) may be (at least in the initial hotstage) without a 
rust of normal matter [4℄. In 
ontrastto neutron stars, the density of SQM for bare quarkstars should drop abruptly at the s
ale � 1 fm. TheSQM in the normal phase and in the two-�avor super-
ondu
ting (2SC) phase should also 
ontain ele
trons(for the normal phase, the ele
tron 
hemi
al potential� is about 20 MeV [2, 5℄). In 
ontrast to the quark den-sity, the ele
tron density de
reases smoothly above thestar surfa
e at the s
ale � 103 fm [2, 5℄. For the starsurfa
e temperature T � �, e. g. T . 1010 K � 1MeV,this �ele
tron atmosphere� (usually 
alled the ele
tro-sphere) may be regarded as a strongly degenerate rela-tivisti
 ele
tron gas [2, 5℄.From the standpoint of distinguishing bare quarkstars from neutron stars, it is very important to havetheoreti
al predi
tions for the photon emission frombare quark stars. Unlike for neutron stars (or quarkstars with a 
rust of normal matter), the photon emis-sion from quark stars made of stable self-bound SQMmay potentially ex
eed the Eddington limit. This fa
tmay be used for dete
ting a bare quark star. However,the SQM itself is a very poor emitter at T � !qp [6, 7℄(here, !qp � 20 MeV is the plasma frequen
y of SQM[6℄). At su
h temperatures, the photon emission from*E-mail: bgz�itp.a
.ru

the quark surfa
e is a tunnel pro
ess, and the radia-tion rate turns out to be negligibly small 
ompared tothe bla
k body radiation [6℄. However, for the ele
tro-sphere, the plasma frequen
y !ep is mu
h smaller thanthat for the SQM. Therefore, the photon emission fromthe ele
trosphere may potentially dominate the lumi-nosity of a quark star. For understanding the prospe
tsof dete
ting bare quark stars, it is highly desirable tohave quantitative predi
tions for the photon emissionfrom the ele
trosphere. This is also interesting in the
ontext of the s
enario of gamma-ray repeaters due toreheating of a quark star by the impa
t of a massive
omet-like obje
t [8℄, and the dark matter model in theform of matter/antimatter SQM nuggets [9℄.An obvious 
andidate for the photon emission fromthe ele
trosphere is the bremsstrahlung from ele
trons.It may be due to either the ele
tron�ele
tron intera
-tion (the Bethe�Heitler bremsstrahlung) or the inter-a
tion of ele
trons with the mean ele
tri
 �eld of theele
trosphere. One more me
hanism is related to thetunnel e+e� pair 
reation [4, 10℄. The point is that theele
tri
 �eld of the ele
trosphere must be very strong.It may be about several tens of the 
riti
al �eld for thetunnel S
hwinger pair produ
tion E
r = m2e=e [11℄ (weuse the units where 
 = ~ = kB = 1). In this s
enario,the photons appear through e+e� annihilation in theout�owing e� wind [12℄.The bremsstrahlung from the ele
trosphere due tothe ele
tron�ele
tron intera
tion has been addressedin [13, 14℄. The authors of [13℄ used the soft-photonapproximation and fa
tored the e�e� ! e�e� 
rossse
tion in the spirit of Low's theorem. In [14℄, it was75



B. G. Zakharov ÆÝÒÔ, òîì 139, âûï. 1, 2011pointed out that this approximation is inadequate be-
ause it negle
ts the e�e
t of the photon energy onthe ele
tron Pauli blo
king, whi
h should lead to astrong suppression of the radiation rate. But the au-thors of [14℄ did not treat this problem 
onsistentlyeither. To take the e�e
t of the minimal photon en-ergy into a

ount, they suggested some restri
tionson the initial ele
tron momenta imposed by hand.Thus they obtained the radiated energy �ux from thee�e� ! e�e�
 pro
ess that was mu
h smaller thanthat in [13℄ and than the energy �ux from the tunnele+e� pair 
reation [4, 10℄. In [15℄, the �rst attemptwas made to in
lude the e�e
t of the mean Coulomb�eld of the ele
trosphere on the photon emission. Theauthors obtained a 
onsiderable enhan
ement of the ra-diation rate. But similarly to [13℄, the analysis in [15℄treated the Pauli blo
king e�e
t in
orre
tly. We alsonote that the photon quasiparti
le mass was negle
tedin [14; 15℄. As we show in what follows, this approxi-mation is 
learly inadequate be
ause the �nite photonmass suppresses the radiation rate strongly.Therefore, the theoreti
al situation with the pho-ton bremsstrahlung from the ele
trosphere is still 
on-troversial and un
ertain. The main problem here,whi
h was not solved in the previous analyses [13�15℄,is an a

urate a

ount for the photon energy in theele
tron Pauli blo
king. In this paper, we addressthe bremsstrahlung from the ele
trosphere in a waysimilar to the Arnold�Moore�Ya�e (AMY) [16℄ ap-proa
h to the 
ollinear photon emission from a hotquark�gluon plasma based on the thermal �eld the-ory. We use a reformulation of the AMY formalismgiven in [17℄. It is based on the light-
one path integral(LCPI) approa
h [18�20℄ (see [21, 22℄ for reviews) toin-medium radiation pro
esses. For an in�nite homo-geneous plasma (with zero mean �eld), the formalismin [17℄ reprodu
es the AMY results [16℄. The LCPI for-mulation in [17℄ has the advantage that it also works forplasmas with a nonzero mean �eld. It allows evaluatingthe photon emission a

ounting for bending of the ele
-tron traje
tories in the mean Coulomb potential of theele
trosphere. Contrarily to very 
rude and qualitativemethods in [13�15℄, the treatment of the Pauli blo
kinge�e
ts in [16, 17℄ has robust quantum �eld theoreti
algrounds. Of 
ourse, our approa
h is only valid in theregime of 
ollinear photon emission when the domina-ting photon energies ex
eed several units of the photonquasiparti
le mass. Numeri
al 
al
ulations show thateven at T � 0:1 MeV, the e�e
t of non
ollinear 
on�-gurations is relatively small.We demonstrate that for the temperaturesT � 0:1�1 MeV, the radiated energy �ux from the

e� ! e�
 transition in the mean ele
tri
 �eldis mu
h larger than that from the Bethe�Heitlerbremsstrahlung. It also ex
eeds the energy �ux fromthe tunnel e+e� pairs. We also demonstrate that
ontrary to 
on
lusions in [13℄, the Landau�Pomeran-
huk�Migdal (LPM) suppression [23, 24℄ of photonbremsstrahlung is negligible. Our results show thatthe photon emission from the ele
trosphere may be ofthe same order as the bla
k body radiation. Therefore,the situation with distinguishing a bare quark starmade of SQM in the normal (or 2SC) phase from aneutron star using the luminosity [4, 25℄ may be moreoptimisti
 than in the s
enario with the tunnel e+e�pair 
reation [4℄.The results of this work were brie�y des
ribed in[26℄. In this paper, we present our results in a moredetailed form. The plan of the paper is as follows. InSe
. 2, we review the basi
 formulas and approxima-tions. In Se
. 3, we dis
uss the evaluation of photonemission from a given ele
tron in the ele
tromagneti
�eld of the ele
trosphere, whi
h in
ludes both the meanCoulomb �eld and the ordinary �u
tuation �eld gener-ated by neighboring ele
trons. In Se
. 4, we present nu-meri
al results for the radiated energy �ux. Se
tion 5is devoted to the 
on
lusions.2. BASIC FORMULAS ANDAPPROXIMATIONSFor the ele
trosphere, as in Refs. [4, 13, 14℄, we usethe model of a relativisti
 strongly degenerate ele
trongas in the Thomas�Fermi approximation. In this ap-proximation, the lo
al ele
tron number density is givenby ne(h) = �3(h)3�2 ;where h is the distan
e from the quark surfa
e. Theh dependen
e of the 
hemi
al potential is governedby the Poisson equation for the ele
trostati
 potentialV = �=e. For h > 0, this gives [2, 5℄�(h) = �(0)(1 + h=H) ; (1)where H =p3�=2�=�(0); � = e2=4�:We assume that the ele
trosphere is opti
ally thin.This means that the photon absorption and stimulatedemission 
an be negle
ted. In this regime, the lumino-sity may be expressed in terms of the energy radiatedspontaneously per unit time and volume, usually 
alledthe emissitivity Q. In the formalism in [17℄, the emis-sitivity per unit photon energy ! at a given h 
an bewritten as76



ÆÝÒÔ, òîì 139, âûï. 1, 2011 Photon emission from bare quark starsdQ(h; !)d! = !(k)4�3 dkd! �� Z dpp nF (E)[1� nF (E0)℄�(p� k)dP (p; x)dx dL ; (2)where k denotes the photon momentum, E and E0 arethe ele
tron energies before and after the photon emis-sion, nF (E) = [exp((E � �)=T ) + 1℄�1is the lo
al ele
tron Fermi distribution (we omit theargument h in the fun
tions in the right-hand sideof (2)), and x = k=p is the photon longitudinal (alongthe initial ele
tron momentum p) fra
tional momen-tum. The fun
tion dP=dx dL in (2) is the proba-bility of the photon emission per unit x and lengthfrom an ele
tron in the potential generated by otherele
trons, whi
h in
ludes both the smooth 
olle
tiveCoulomb �eld and the usual �u
tuating plasma partrelated to the �eld generated by the neighboring ele
t-rons. We note that formula (2) a

ounts for photonsemitted to all dire
tions, be
ause in an opti
ally thinele
trosphere, pra
ti
ally all the photons radiated tothe hemisphere dire
ted to the quark surfa
e are re-�e
ted either in the ele
trosphere (at the level with!ep = !) or from the quark surfa
e. Only the photonswith ! & !qp � 20 MeV may be absorbed in the quarkmatter. But su
h photons are not important at tem-peratures T . 1 MeV 
onsidered in this paper. Forthe above reasons, it would be in
orre
t to ex
lude thephotons emitted toward the star surfa
e, as was donein [14℄.Our basi
 formula (2) assumes that the photonemission is a lo
al pro
ess, i. e., the photon formationlength (denoted by lf ) is small 
ompared to the thi
k-ness of the ele
trosphere1). Evidently, only in this 
asea lo
al emissitivity 
an be de�ned. We note that Eq. (2)de�nes the rate of photon produ
tion at a given pho-ton energy, whi
h remains 
onstant during the photonpropagation in the ele
trosphere. The photon momen-tum in this pro
ess 
hanges adiabati
ally a

ording tothe photon quasiparti
le dispersion relation in the ele
-tron plasma. Also, formula (2) assumes that on thes
ale � lf , the ele
tron traje
tories are smooth. Thismeans that besides the evident 
ondition lf � Rm(where Rm is the 
urvature radius of the ele
tron tra-je
tory in the mean �eld), the typi
al s
attering an-1) Physi
ally, the photon formation length (sometimes 
alledthe 
oheren
e length) is a longitudinal s
ale at whi
h the photonand ele
tron wave pa
kets be
ome separated. It appears natu-rally in the LCPI approa
h [18, 21℄ formulated in the 
oordinatespa
e as a dominating s
ale of the integrals in the longitudinal
oordinate.

gle related to the random walk of an ele
tron due toele
tron�ele
tron intera
tion should also be small. It
an be shown that these 
onditions are satis�ed forthe ele
trosphere. An important 
onsequen
e of thesmoothness of ele
tron traje
tories at the s
ale � lfis the longitudinal fa
torization of the Pauli blo
kingfa
tor 1 � nF (E0) for the �nal state of the radiatingele
tron in (2). Just the fa
t that the traje
tories aresmooth in the pro
ess of photon emission allows ne-gle
ting the statisti
s e�e
ts in treating the small-angles
attering. Indeed, the typi
al spa
e s
ale for soft �u
-tuating modes of the ele
tromagneti
 �eld is about theinverse Debye mass 1=mD � 1=e�. This s
ale is mu
hlarger than the typi
al separation � 1=� between ele
-trons. From the standpoint of ele
trons with energy� �, the soft ele
tromagneti
 �eld at the spa
e s
ale� 1=mD � 1=� 
an therefore be viewed as a uniform�eld at the s
ale � 1=�. In a uniform �eld, all ele
tronsin the same spin state s
atter the same, and small-angles
attering leads simply to some shift of the distributionfun
tion in the momentum spa
e. Any statisti
s e�e
tsare suppressed by some power of the ele
tron 
harge e.Cal
ulations within the real time thermal �eld theoryperformed in [16℄ 
orroborate this physi
al pi
ture of
ollinear photon emission.In our approximation of an opti
ally thin medium,the di�erential radiated energy �ux from the ele
tro-sphere, dF=d!, is expressed in terms of the emissitivityas dFd! = hmaxZ0 dhdQ(h; !)d! : (3)For 
hemi
al potential (1), the h-integration in (3) 
anbe approximated by the integration over � asdFd! �r3�2� �(0)Z�min d��2 dQ(h(�); !)d! (4)with �min = �(hmax). In numeri
al 
al
ulations, wetake �min = 2me. Of 
ourse, the relativisti
 approxi-mation we made is not good at � � me, but the 
on-tribution of this region is small, and the 
orrespondingerrors are not big.3. CALCULATION OF dP=dxdLThe essential ingredient of Eq. (2) is the probabilitydistribution dP=dx dL for the photon emission in theele
tromagneti
 �eld of the ele
trosphere. Due to thepresen
e of the produ
t nF (E)[1� nF (E0)℄ in (2), the77



B. G. Zakharov ÆÝÒÔ, òîì 139, âûï. 1, 2011emissitivity is dominated by the photon emission fromele
trons near the Fermi surfa
e with p � � � me.This allows using semi
lassi
al relativisti
 formulas forthe photon spe
trum dP=dx dL. In this paper, we eval-uate this spe
trum within the LCPI formalism [18, 21℄.In this approa
h, it 
an be written asdPdx dL = 2Re 1Z0 d� ĝ(x)�� [K(�2; �j�1; 0)�Kv(�2; �j�1; 0)℄ ����1=�2=0; (5)where ĝ(x) = g1(x)M2(x) ���1 ���2 + g2(x) (6)is the spin vertex operator withg1(x) = �(1� x+ x2=2)x ;g2(x) = �m2ex32M2(x) ;M(x) = px(1� x);K is the Green's fun
tion for a two-dimensionalS
hrödinger equation with the HamiltonianĤ = � 12M(x) � ����2 + v(�) + 1L0 : (7)Here L0 = 2M(x)=�2; �2 = m2ex2 + (1� x)m2
 ;m
 is the photon quasiparti
le mass, and the form ofthe potential v is given below. In Eqs. (5)�(7), � isthe 
oordinate transverse to the ele
tron momentum p,and the longitudinal (along p) 
oordinate � plays therole of time. The fun
tion Kv in (5) is the free Green'sfun
tion at v = 0. We note that at a low density andvanishing mean �eld, the quantity L0 
oin
ides withthe real photon formation length lf [18℄ that 
hara
-terizes the dominating s
ale in the �-integration in theright-hand side of (5).The potential in Hamiltonian (7) 
an be written asv = vm + vf :The terms vm and vf 
orrespond to the mean and �u
-tuating 
omponents of the ve
tor potential of the ele
-tron gas. We note that when lf is small 
omparedto the s
ale of variation of � (along the ele
tron mo-mentum), the �-dependen
e of the potential v 
an be

negle
ted in evaluating dP=dx dL. The mean �eld 
om-ponent is purely real,vm = �xf � �;with f = e�V��(see [21, 27℄). It is related to the transverse for
e fromthe mean �eld. Similarly to the 
lassi
al radiation [28℄,the e�e
t of the longitudinal for
e along the ele
tronmomentum p is suppressed by a fa
tor � (me=E)2,and 
an be safely negle
ted. The term vf 
an be eval-uated similarly to the 
ase of the quark�gluon plasmadis
ussed in [17℄. This part is purely imaginaryvf (�) = �iP (x�);where P (�) = e2 1Z�1 d�[G(�; 0?; �)�G(�;�; �)℄ ; (8)G(x� y) = u�u�D�� ;D�� = hA�(x)A�(y)iis the 
orrelation fun
tion of the ele
tromagneti
 po-tential (the mean �eld is assumed to be subtra
ted) inthe ele
tron plasma, and u� = (1; 0; 0;�1) is the light-
one 4-ve
tor along the ele
tron momentum. We notethat the fun
tion P (�) is gauge invariant by 
onstru
-tion, and D�� 
an be used in any gauge. Formula (8)
an be rewritten as (below we repla
e the argument ofP (�) by � = j�j sin
e P (�) does not depend on thedire
tion of the ve
tor �)P (�) = e2(2�)2 Z dq?[1� exp(iq? � �)℄D(q?) ; (9)where the fun
tion D is expressed in terms of the 
or-relator G in momentum representation asD(q?) = 12� 1Z�1 dq0dqzÆ(q0 � qz)G(q0;q?; qz) : (10)The fun
tion D(q?) 
an be expressed in terms ofthe longitudinal and transverse photon self-energies�L;T . We use the formulas of the hard dense loop ap-proximation (HDL) for them [30, 31℄. The details ofthe 
al
ulations are given in Appendix A.The fun
tion P (�) was �rst introdu
ed in the prob-lem of propagation of relativisti
 positroniums throughamorphous media [29℄, where the atomi
 size plays the78
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Fig. 1. The fun
tion P (�) in (9) in units of the Debye mass versus �mD for di�erent values of the ratio � = T=mD. a �the total L + T 
ontribution, b and 
 respe
tively � the longitudinal (L) and transverse (T) 
ontributions. The 
urves
orrespond to � = 0 (solid line), � = 0:5 (dotted line), � = 1 (short dashes), and � = 2 (long dashes). The thi
k solid linein panel (a) shows the predi
tion of the stati
 model obtained with dipole 
ross se
tion (11)role of the inverse Debye mass. In our approa
h, thefun
tion P (�) 
ontains all the information about theele
tron�ele
tron intera
tion that is ne
essary for de-s
ribing multiple s
attering of a given ele
tron in the�u
tuating ele
tromagneti
 �eld generated by otherele
trons. In parti
ular, all the Pauli blo
king e�e
tsin the pro
ess of ele
tron multiple s
attering are auto-mati
ally a

umulated in P (�). It is worth noting thatin the approximation of stati
 Debye-s
reened s
atter-ing 
enters, the fun
tion P (�) redu
es to n�(�)=2 [17℄,where n is the number density of the medium, and�(�) = 8�2 Z dq [1� exp(iq � �)℄(q2 +m2D)2 == 8��2m2D [1� �mDK1(�mD)℄ (11)is the well-known dipole 
ross se
tion for s
attering ofan e+e� pair of size � on the Debye-s
reened s
atter-ing 
enter (and K1 is the Bessel fun
tion). In the stati
approximation at �� 1=mD, we 
an obtainP (�) � nC�2=2from (11), whereC � 4��2 ln(2=�mD)is a smooth fun
tion of �. In the limit �� 1=mD, thefun
tion P (�) in the HDL approximation also be
omesalmost quadrati
.The quadrati
 approximation P (�) / �2 in theLCPI approa
h is equivalent to the Fokker�Plan
k ap-proximation in Migdal's approa
h [21℄. It is not very

a

urate but reasonable for bremsstrahlung in ordi-nary materials. In this 
ase, the dominating �-s
aleis � 1=mex, and the spe
trum is 
ontrolled by behav-ior of P (�) at the s
ale � 1=me, whi
h is mu
h smallerthan the s
reening radius � 1=�meZ1=3 (where Z is theatomi
 number). For the relativisti
 ele
tron gas, thesituation is quite di�erent. In the dominating �-region,the argument of P (�) is � � (0:1�2)=mD. In this re-gion, P (�) is essentially nonquadrati
. This is seen wellin Fig. 1a, where we plot the results of numeri
al 
al-
ulations of P (�) for several values of the ratio T=mD.The results are presented in a dimensionless form. For
omparison, we also show the predi
tions of the stati
approximation at T = 0 (when mD = �p4�=�) ob-tained with dipole 
ross se
tion (11). It 
an be seenthat at � � (0:1�2)=mD, the fun
tion P (�) is almostlinear in �.In Figs. 1b,
, to demonstrate the relative e�e
t ofthe longitudinal and transverse modes, we show the
ontributions related to �L and �T separately. We seethat at � . 1=mD, the longitudinal and transverse 
on-tributions are 
lose to ea
h other. But at � & 2=mD,the longitudinal part �attens, while the transverse mag-neti
 one 
ontinues to in
rease (for T=mD not very 
loseto zero). This in
rease in the transverse part is a 
on-sequen
e of the well-known absen
e of stati
 magneti
s
reening in the ele
tron plasma. We note, however,that from the standpoint of the photon emission, thein
rease in the magneti
 
ontribution with � is not im-portant be
ause the photon spe
trum is dominated by� . 1=� � 1=mD.The growth of P (�) with temperature is due to the79
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e of the Bose�Einstein fa
tor in the fun
tion D,Eq. (A.1). It follows from Fig. 1a that the predi
tionof the HDL approximation at T � mD, similarly tothe stati
 model, �attens at � & 2=mD. But the stati
model predi
tion ex
eeds the HDL approximately bya fa
tor 2:5. The fa
t that the stati
 approximationoverestimates P (�) at T = 0 is quite natural, be
ausethe Pauli blo
king e�e
ts redu
e the e�e
tive number ofs
atterers. However, it would be in
orre
t to interpretthe in
rease in P (�) with temperature as an artefa
tasso
iated only with the de
rease in the Pauli blo
kingat high temperatures. The fun
tion P (�) in the HDLapproximation a

umulates all the 
olle
tive e�e
ts insoft modes of the ele
tromagneti
 �eld in the ele
tronplasma at the momentum s
ale � mD � �. In par-ti
ular, it a

ounts for the temperature dependen
e ofthe density of the plasmon ex
itations. We note thatphysi
ally, the appearan
e of P (�) is due to Landaudamping of the longitudinal and transverse modes.It is worth noting that the 
olle
tive e�e
ts 
an-not be 
onsistently taken into a

ount in the naivemodi�
ation of the photon propagator in the elasti
e�e� ! e�e� s
attering amplitude, as was assumedin [13℄. One of the 
onsequen
e of the inadequa
y ofthis pres
ription is a strong overestimate of the mag-neti
 
ontribution in [13℄. It is 
onne
ted with the 1=�4(where � is the s
attering angle) behavior of the mag-neti
 
ontribution to the elasti
 e�e� ! e�e� 
rossse
tion. To perform the �-integration, the authorsof [13℄ introdu
ed some minimal momentum transfer.In 
ontrast to [13℄, the magneti
 
ontribution to thefun
tion D(q?) behaves2) as 1=q2? at q? ! 0 andthe q?-integration in formula (9) for P (�) 
onvergesat small q?. This 
hange in the small-angle behaviorof the magneti
 
ontribution in our approa
h 
omparedwith the pres
ription of [13℄ is 
onne
ted with the dy-nami
al magneti
 s
reening, whi
h was not 
onsistentlya

ounted for in [13℄. In prin
iple, physi
ally, it is evi-dent that the 
on
ept of the elasti
 e�e� ! e�e� am-plitude itself is ill-de�ned for the momentum transfer. mD, where the 
olle
tive e�e
ts be
ome signi�
ant.We note that in terms of P (�), the transverse mo-mentum broadening distribution of an ele
tron propa-gating over a distan
e L through the ele
tron gas 
anbe written as [29℄2) The same o

urs in the hard thermal loop approximationfor a hot relativisti
 plasma with zero 
hemi
al potential [32℄.We note, however, that a very elegant formula for the analogueof our fun
tion D(q?) obtained in [32℄ is not valid for a stronglydegenerate ele
tron plasma.

I(q?) = 1(2�)2 Z d� exp [iq? � �� LP (�)℄ : (12)This formula looks like the predi
tion of the eikonal ap-proximation, whi
h negle
ts the variation of the ele
-tron tranverse 
oordinate. But path-integral 
al
ula-tions in [29℄ show that it is valid beyond the eikonalapproximation as well.We turn to the 
al
ulation of the spe
trum us-ing (5). Treating vf as a perturbation, we 
an writeK(�2;�2j�1;�1) = Km(�2;�2j�1;�1)� i Z d� d���Km(�2;�2j�;�)vf (�)Km(�;�j�1;�1) + : : : ; (13)where Km is the Green's fun
tion at vf = 0. Then (5)
an be written asdPdx dL = dPmdx dL + dPfdx dL; (14)where the �rst term in the right-hand side 
omes fromKm � Kv in (5) after representing K in form (13). It
orresponds to the photon emission in a smooth mean�eld. The se
ond term 
omes from the series in vfin (13) and 
an be viewed as the radiation rate due tothe ele
tron multiple s
attering in the �u
tuating �eldin the presen
e of a smooth external �eld.The analyti
 expression for the Green's fun
tion forthe Hamiltonian with a 
onstant for
e is known (see,e. g., [33℄). In our 
ase, Km 
an be written asKm(�2;�2j�1;�1) = M2�i� �� exp�i �M(�2 � �1)22� � x�f � (�2 + �1)2 �� x2f2�324M � �L0�� (15)with � = �2 � �1:With this expression, simple 
al
ulations show thatEq. (5) yields a spe
trum similar to the well-knownsemi
lassi
al syn
hrotron spe
trum [34℄, whi
h 
an bewritten in terms of the Airy fun
tionAi(z) = 1�rz3K1=3(2z3=2=3)(where K1=3 is the Bessel fun
tion). In the 
ase of in-terest, for a nonzero photon quasiparti
le mass, it isgiven by [27℄dPmdx dL = a�Ai0(�) + b 1Z� dyAi(y) ; (16)80



ÆÝÒÔ, òîì 139, âûï. 1, 2011 Photon emission from bare quark starswherea = �2�2g1M ; b =Mg2 � �2g1M ; � = �2(M2x2f2)1=3 :Inspe
ting the longitudinal integrals for the photon ra-diation in an external �eld shows that the e�e
tive pho-ton formation length for the mean �eld me
hanism isgiven by �Lm � min(L0; Lm);where Lm = (24M=x2f2)1=3(see [27℄). A similar estimate 
an be obtained from the
riterion of separation of the photon and ele
tron wavepa
kets. We note that the analyti
 expression for theGreen's fun
tion for the os
illator with a 
onstant for
eis also known (see [33℄).For P (�) / �2, using this Green's fun
tion allowsobtaining the radiation rate in the form given in [35℄,where Migdal's approa
h within the Fokker�Plan
k ap-proximation was generalized to the 
ase with an ex-ternal �eld. The formulas in [35℄ were used in [15℄.However, as was already noted, the approximationP (�) / �2 is 
learly not adequate for the ele
trosphere.We now dis
uss the �u
tuation 
omponentdPf=dx dL. We represent it in the formdPfdx dL = dPBHfdx + dPLPMfdx ; (17)where the �rst term in the right-hand side 
orrespondsto the leading order in the expansion in vf in (13),and the se
ond term to the sum of higher-order terms.The expression dPBHf =dx dL is an analogue of theBethe�Heitler spe
trum in ordinary materials, whiledPLPMf =dx dL des
ribes the LPM 
orre
tion. For theBethe�Heitler term, it follows from (5) and (13) thatdPBHfdx = 2 Z d�W (x;�; f)P (�x) ; (18)W (x;�; f) == �Re ĝ(x)�(x;�;�1; f)�(x;�;�2; f)����1=�2=0 ; (19)�(x;�;�0; f) = 0Z�1 d�Km(�; 0j�0; �) : (20)We note that for a nonzero f , the fun
tionW 
annot beviewed as a probability density for the j
ei Fo
k 
om-ponent of the physi
al photon (it is even not positive

de�nite). This is 
onne
ted with the fa
t that in an ex-ternal �eld, the j
ei Fo
k 
omponent is not stable andde
ays through the tunnel transition into a free photonand an ele
tron. The analogue of the representation forthe LPM 
orre
tion derived in [19℄ for a nonzero mean�eld is given bydPLPMfdx = 2Re ĝ(x) 1Z0 d� Z d��(x;�;�2; f)�� P (�x)~�(x;�;�1; f ; �)����1=�2=0; (21)where the fun
tion ~�(x;�;�1; f ; �) is the solution ofthe two-dimensional S
hrödinger equation with Hamil-tonian (7) and with the boundary 
ondition~�(x;�;�1; f ; 0) = �(x;�;�1; f)P (�x) :In the 
ase of zero f , the fun
tion W 
an be writtenas a density for the j
ei Fo
k state,W (x;�) = 12 Xf�ig j	(x;�; f�ig)j2 ; (22)where 	(x;�; f�ig) is the light-
one wave fun
tion forthe e ! 
e0 transition and f�ig = (�e; �e0 ; �
) is aset of heli
ities. We note that 
ontrary to the 
asef 6= 0, the light-
one wave fun
tions now have de�niteazimuthal quantum numbers due to the azimuthal sym-metry of the Hamiltonian. The LPM 
orre
tion in this
ase 
an also be written in terms of the light-
one wavefun
tions. The results is similar to that for ordinarymaterials [19, 21℄:dPLPMfdx = �ReXf�ig 1Z0 d� �� Z d�	�(x;�; f�ig)P (�x)~�(x;�; f�ig; �): (23)The boundary 
ondition for ~�(x;�; f�ig; �) is now~�(x;�; f�ig; 0) = 	(x;�; f�ig)P (�x) :The light-
one wave fun
tions appear in formulas (22)and (23) from the �-integrals in (5) and (13) of theGreen's fun
tion Km and from the a
tion of the vertexoperator written in terms of the heli
ity proje
tors aswas done in [17℄.The formulas for the light-
one wave fun
tions aregiven in Appendix B. Using the formulas given there,we 
an obtain the probability distribution W for thee! 
e0 transition at f = 0 as6 ÆÝÒÔ, âûï. 1 81
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Fig. 2. The 
ontributions to the spe
trum dP=dxdL from the mean �eld me
hanism (solid line) and the �u
tuation me
h-anism (dashes) for � = 10 MeV at T = 0:2 (a) and 1 (b) MeV. The thi
k 
urves are for a nonzero photon mass, and thethin lines are for a massless photon. The 
ontribution of the �u
tuation me
hanism is 
al
ulated using the Bethe�Heitlerterm with distribution (24)W (x;�) = �2�2 ��� [1 + (1� x)2℄x �2K21 (��) + x3m2eK20 (��)� ; (24)where K0;1 are the Bessel fun
tions. Be
ause K0;1 de-
rease exponentially in (24), the dominating � s
ale informula (18) for the �u
tuation term is � 1=�.For a nonzero f , the azimuthal symmetry is ab-sent. This makes the problem 
onsiderably more 
om-pli
ated. In this paper, we �rst 
al
ulated the spe
-trum dPf=dx dL for f = 0. We observed that theLPM 
orre
tion in (17) is negligible 
ompared to theBethe�Heitler term. Also, the Bethe�Heitler term it-self turns out to be mu
h smaller than the mean �eldterm dPm=dx dL. It is 
lear that a nonzero f makesdPf=dx dL even smaller. Therefore, an a

urate 
al-
ulation of the �u
tuation term for nonzero f does notmake mu
h sense. We have taken the e�e
t of the trans-verse for
e into a

ount using qualitative argumentsbased on the estimates of the 
oheren
e lengths withand without a tranverse for
e. The mean �eld shouldsuppress the 
oheren
e length. The suppression of theradiation rate should be approximately the same [36℄.Hen
e, the mean �eld suppression fa
tor 
an be writtenas the ratio of the formation lengths with and withoutthe mean �eld. The 
oheren
e length in the presen
e ofthe mean �eld is � �Lm. Without the mean �eld in theregime of weak LPM suppression, the 
oheren
e length

is given by L0. Therefore, the mean �eld suppressionfa
tor is Sm � �Lm=L0:We note that due to redu
tion in the e�e
tive forma-tion length, the LPM e�e
t should be
ome even smallerfor a nonzero mean �eld.To illustrate the relative 
ontributions of the mean�eld and �u
tuation me
hanisms to dP=dx dL, we plotthem in Fig. 2 for � = 10MeV and T = 0:2 and 1 MeV.The mean �eld part shown in Fig. 2 
orresponds to thespe
trum averaged over all dire
tions of the ele
tronmomentum. The �u
tuation 
ontribution was 
al
u-lated without the mean �eld suppression fa
tor. The
al
ulations are performed with the k-dependent pho-ton quasiparti
le mass extra
ted from the relation3)m2
 = �T (qk2 +m2
 ; k):This gives m
 in
reasing from mD=p3 at k � mD tomD=p2 at k � mD with the Debye massm2D = 4�� ��2 + �23 T 2� :3) We ignore the in�uen
e of the medium e�e
ts on me [37℄be
ause the photon bremsstrahlung in the region x � 1, whi
hdominates the emissitivity, is not very sensitive to the ele
tronquasiparti
le mass.82



ÆÝÒÔ, òîì 139, âûï. 1, 2011 Photon emission from bare quark starsIt follows from Fig. 2 that the �u
tuation 
ontribu-tion is suppressed by a fa
tor � 10�2. To illustratethe role of a �nite photon quasiparti
le mass, we alsopresent the results for zero m
 in Fig. 2 (thin 
urves).It is seen that the photon mass suppression (usually
alled the Ter-Mikaelian e�e
t) is very strong at smallx. The e�e
t is espe
ially dramati
 for the �u
tuationpart, where the well-known 1=x form of the spe
trum
hanges to / x. This e�e
t was ignored in the analy-ses in [14, 15℄, where the massless formulas were used.The results shown in Fig. 2 indi
ate 
learly that themassless approximation is inadequate.As mentioned previously, our 
al
ulations show thatfor the �u
tuation me
hanism the LPM suppression isnegligible. This 
ontradi
ts the analysis in [13℄, wherethe authors found a very strong LPM suppression(about � 1=300 at the photon momentum k = 0:5MeVfor the ele
tron energy 10 MeV). To 
al
ulate the LPMsuppression, the authors of [13℄ used Migdal's formulaswith zero photon mass, setting Z = 1 there. But it 
aneasily be shown that Migdal's formulas be
ome inap-pli
able for the ele
trosphere. We explain this in thelanguage of the LCPI approa
h. Migdal's approa
h [24℄
orresponds in the LCPI formalism to the quadrati
 pa-rameterization P (�) � nC�2=2:As des
ribed above, this approximation is not a

uratefor the ele
trosphere, but is nevertheless suitable forour qualitative analysis. In the quadrati
 approxima-tion, Hamiltonian (7) takes the os
illator form with
 =p�inCx2=M(x):The LPM suppression fa
tor SLPM 
an be written interms of the dimensionless parameter � = j
jL0 [18,21℄. The LPM suppression be
omes strong at � � 1.In this limit, SLPM � 3�p2(see [18℄). The LPM e�e
t is negligible for � � 1, whenSLPM (�) � 1� 16�4=21(see [18℄). We note that even at � � 1, the LPM sup-pression is relatively small be
ause SLPM (1) � 0:86.A very strong suppression obtained in [13℄ is mostlydue to the negle
t of the photon mass. The �nite pho-ton mass strongly redu
es L0 and 
orrespondingly theparameter � (by about a fa
tor � 400 for k = 0:5and p � 10 MeV). Also, for the ele
trosphere, thereis no well-known large Coulomb logarithm ln(1=�) � 5(whi
h 
omes from the logarithm in the dipole 
ross

se
tion [20℄) in j
j, whi
h is present in Migdal's formu-las derived for ordinary materials. Both these e�e
tsdrasti
ally redu
e the value of � for the ele
trosphere
ompared to that in Migdal's approa
h. As a result,the LPM suppression in the ele
trosphere turns out tobe negligible.4. NUMERICAL RESULTS AND DISCUSSIONIn this se
tion, we present numeri
al results forthe emissitivity and radiated energy �ux. The resultswere obtained with some modi�
ation of the spe
trumdP=dx dL in the non
ollinear region. As we mentionedabove, the 
ollinear approximation we use be
omes in-valid for very soft photons with k . m
 . In this region,the formalisms [16�18℄ do not apply. In parti
ular, theLCPI approa
h [18℄, whi
h assumes that the transversemomentum integration extends to in�nity, should over-estimate the photon spe
trum at k . m
 . To take thise�e
t into a

ount (at least, qualitatively) in 
al
ulat-ing the radiated energy �ux, we multiplied dP=dx dLby the kinemati
al suppression fa
torSkin(k) = 1� exp(�k2=m2
):This fa
tor does not give a large e�e
t. It suppressesthe radiated energy by � 10�15% at T � 0:1�0.2 MeVand � 1�2% at T � 1 MeV. This shows that the errorsfrom the non
ollinear 
on�gurations are small.In Fig. 3, we show the emissitivity for � = 5 and10 MeV evaluated at T = 0:2 and 1 MeV as a fun
tionof !. We see that the 
ontribution of the mean �eldemission (the thi
k solid line) ex
eeds the �u
tuationemission without mean �eld suppression (dashes) bya fa
tor � 102. The mean �eld suppression addition-ally redu
es the �u
tuation 
ontribution (the thin solidline) by a fa
tor� 3�4. We note that there is no photonemission at ! < !ep in our semi
lass
al approximationat a given �. For this reason, the di�erential emissitiv-ity shown in Fig. 3 vanishes abruptly at ! = !ep = m
(k = 0). We see from Fig. 3 that despite the Pauliblo
king suppression, even at T = 0:2 MeV, the 
on-tribution of energeti
 photons with the energy aboutseveral units of !ep is important. This demonstratesthat the restri
tion! <q!e 2p +m2efor the photon energy imposed by the authors of [13℄ is
learly inadequate.In Fig. 4, we plot the di�erential radiated energy�ux dF=d! for �(0) = 10 and 20 MeV obtained at83 6*



B. G. Zakharov ÆÝÒÔ, òîì 139, âûï. 1, 2011

10�710�610�510�4
10�710�610�510�4

0 1 2 3 0 2 4 6 8!; MeV!; MeV10�910�8
10�910�8

10�710�610�510�410�310�210�710�610�510�410�310�2� = 5 MeV, T = 0:2 MeV � = 5 MeV, T = 1 MeV
� = 10 MeV, T = 0:2 MeV � = 10 MeV, T = 1 MeV

dQ=d!; MeV4dQ=d!; MeV4

Fig. 3. The emissitivity versus the photon energy ! for � = 5 and 10 MeV at T = 0:2 and 1 MeV. The thi
k solid lineshows the mean �eld bremsstrahlung. The 
ontribution of the �u
tuation me
hanism is shown without (dashes) and with(thin solid line) the mean �eld suppressionT = 0:2 and 1 MeV. For the �u
tuation 
ontribution,we show the results with and without the mean �eldsuppression fa
tor Sm. For 
omparison, the bla
k bodyspe
trum is also shown. The mean Coulomb �eld of theele
trosphere redu
es the �u
tuation term by a fa
tor� 3�4. It follows from Figs. 3 and 4 that the relative
ontribution of the �u
tuation me
hanism is very small
ompared to the mean �eld emission. In some sense,we have a situation similar to that for photon radiationfrom an atom with a large Z. We note that the formof the spe
trum for the mean �eld me
hanism is quali-tatively similar to that for the bla
k body radiation.In Fig. 5, we show the total energy �uxF = 1Z0 d! dF=d!s
aled to the bla
k body radiation as a fun
tion of tem-perature. For 
omparison, we also plot the predi
tionsfor bremsstrahlung obtained in [13�15℄. We also show

the energy �ux from the e+e� pair produ
tion [4, 10℄,de�ned asF� = hmaxZ0 dhQ�(h) �r3�2� �(0)Z�min d��2Q�(h(�)) : (25)Here, Q� is the energy �ux from e+e� pairs per unittime and volume. We write it as in [4, 10℄,Q� = Ee+e�dNe+e�=dt dV;where Ee+e� � 2(me + T )is the typi
al energy of e+e� pairs and dNe+e�=dt dVthe rate of e+e� pair produ
tion per unit time andvolume given bydNe+e�dt dV � 3T 3�2�3 r�� exp��2meT �J(�) (26)with � = 2�T r�� ;84
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Fig. 4. The di�erential radiated energy �ux from the ele
trosphere for the mean �eld bremsstrahlung (thi
k solid line) andfor the Bethe�Heitler bremsstrahlung with (thin solid line) and without (dashes) the mean �eld suppression. The dottedlines show the bla
k body spe
trumand the fun
tion J is de�ned as in [10℄:J(x) = x3 ln (1 + 2=x)3(1 + 0:074x)3 + �5x46(13:9+ x)4 :We see from Fig. 5 that in the region T � 0:1�1 MeV,the mean �eld photon emission 
onsiderably ex
eedsboth the �u
tuation bremsstrahlung and the energy�ux from e+e� pair produ
tion.Figures 4 and 5 demonstrate that the energy �uxfrom the mean �eld photon emission may be of thesame order of magnitude as the bla
k body radiation.In other words, the approximation of an opti
ally thinele
trosphere is not very good, and the photon absorp-tion and stimulated emission may be important. Butbe
ause the radiation rate we obtained does not ex
eedthe bla
k body limit, they 
annot modify our resultsstrongly. We note that the authors of [15℄ obtainedthe energy �ux for T . 1 MeV 
onsiderably ex
eedingthe bla
k body limit. This 
an be seen from Fig. 5,where the results in [15℄ at �(0) = 20 MeV are shown.

The authors of [15℄ 
laim that the ele
trosphere mayradiate stronger than a bla
k body. This statement isobviously in
orre
t. The violation of the bla
k bodylimit in [15℄ is just a signal that the thin-medium ap-proximation be
omes inappli
able at high emissitivity.As regards the very large emissitivity obtained in [15℄,we have already mentioned that it may be due to anin
orre
t des
ription of the Pauli blo
king and negle
tof the photon mass.As mentioned above, our assumption that the pho-ton emission is a lo
al pro
ess is valid if lf � �Lm � Lel,where Lel is the typi
al s
ale of variation of the po-tential vm along the ele
tron traje
tory. For 
hemi
alpotential (1), it 
an be de�ned asLel � H�(0)=�(h) 
os �;where � is the angle between the ele
tron momentumand the star surfa
e normal. Evidently, the 
ontribu-tion of the 
on�gurations with �Lm & Lel to the photon85
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Fig. 5. The total radiated energy �ux (s
aled to the bla
k body radiation) from the ele
trosphere for the mean �eldbremsstrahlung (thi
k solid line) and for the Bethe�Heitler bremsstrahlung with (thin solid line) and without (short dashes)the mean �eld suppression. The 
ontribution from the tunnel e+e� 
reation [4, 10℄ evaluated using (25) is also shown(dotted line). The long dashes show the results for the e� + e� ! e� + e� + 
 pro
ess obtained in [13℄. The dot-dashedlines show the results for the same pro
ess in [14℄. The dot-dot-dashed line shows the bremsstrahlung 
ontribution within
lusion of the mean Coulomb �eld in [15℄. �(0) = 10 (a), 20 (b) MeVspe
trum are to be suppressed by the �nite-size sup-pression fa
torSfs � min(Lel; �Lm)=�Lm:We veri�ed numeri
ally that this suppression fa
torgives a negligible e�e
t. This justi�es the lo
al approx-imation.A

ording to the simulation of the thermal evolu-tion of young quark stars performed in [25℄, the tem-perature at the star surfa
e be
omes � 0:2 MeV att � 1 s. But the mean �eld bremsstrahlung was nottaken into a

ount in the analysis in [25℄. In the lightof our results, we 
an expe
t that the 
ooling of the

bare quark star surfa
e should pro
eed somewhat fasterthan predi
ted in [25℄. It is worth noting that in theinitial stage of the quark star evolution, the mean �eldphoton emission 
an only modify the temperature nearthe star surfa
e. The evolution of the star 
ore tem-perature is driven by neutrino emission [25℄ be
ausethe neutrino luminosity is mu
h larger than the pho-ton (and e+e�) luminosity for an extended period oftime [25℄. The higher luminosity due to the mean �eldbremsstrahlung in
reases the possibility for dete
tingbare quark stars. From the standpoint of light 
urvesat t & 1 s, it would also be interesting to investigatethe mean �eld bremsstrahlung for T . 0:1 MeV. Ho-86



ÆÝÒÔ, òîì 139, âûï. 1, 2011 Photon emission from bare quark starswever, the photon emission from the nonrelativisti
 re-gion of the ele
trosphere may be important at su
htemperatures, where our formulas be
ome inappli
a-ble. As regards the 
ontribution of the relativisti
 re-gion � � me, extrapolation of the 
urves shown inFig. 5 to T . 0:1 MeV allows expe
ting that the mean�eld emission will dominate the energy �ux at lowertemperatures as well.A remark is in order on the photon distribution seenby a distant observer. For the obtained values of theenergy �ux, the radiation 
annot stream outward freely.The point is that near the star surfa
e, the thermaliza-tion time in the 
omoving frame for the e+e�
 windis negligibly small 
ompared to the star radius. Thisfollows from estimates of the mean free path � relatedto the 
 + e� ! 
 + e� and 
 + 
 $ e+ + e� pro-
esses. Qualitative 
al
ulations give � � 10�3
m atT � 0:1 MeV and � � 10�6
m at T � 1 MeV. There-fore, the e+e�
 wind 
an be des
ribed as a hydrody-nami
al �ow. The hydrodynami
al des
ription is validup to the freeze-out surfa
e, beyond whi
h the radia-tion streams outward almost freely. For an observerat a large distan
e from the star, the photon spe
trumis 
lose to the bla
k body one with the temperatureText = Tfr�fr, where Tfr is the wind temperature and�fr is the bulk Lorentz fa
tor of the wind at the freeze-out level [38, 39℄. It 
an be shown that for a relativisti
wind [38; 39℄ Tfr�fr � Ti�i;where Ti is the wind temperature after its thermaliza-tion and �i is the bulk Lorentz fa
tor of the wind nearthe star surfa
e. For T � 0:1 MeV, the ele
tron fra
-tion in the e+e�
 wind is small after thermalization.Simple qualitative 
al
ulations then giveTi�i � T (3��2i =16)1=4;where � = (F + F�)=Fbb:As a plausible estimate, we 
an take �2i � 3 and � � 1.Then Text � 0:85T . For T � 1 MeV, the ele
tron fra
-tion in the wind after thermalization be
omes 
lose tothat for a relativisti
 plasma. In this 
ase,Ti�i � T (3��2i =44)1=4:Taking � � 0:4, we obtain Text � 0:5T . We note thatin both 
ases, the fra
tion of e� pairs in the wind isnegligibly small beyond the freeze-out surfa
e [39℄.

We note that our 
al
ulations probably do not applyto quark stars in the 
olor �avor-lo
ked (CFL) super-
ondu
ting phase. It was suggested previously [40℄ thatdespite the absen
e of ele
trons in the bulk SQM in theCFL phase, the ele
trosphere may exist due to the sur-fa
e quark 
harge [41℄. However, the re
ent analysisin [42℄ gives eviden
e in favor of the absen
e of su
h asurfa
e 
harge. But for the CFL phase, a signi�
antphoton emission from the SQM itself may exist due tothe photon�gluon mixing [43℄. The results in [43℄ showthat this radiation is 
omparable to the bla
k bodylimit. Be
ause we also obtain the radiation rate 
om-parable to the bla
k body radiation, it may be di�
ultto distinguish a bare quark star in the CFL phase fromthat in the normal (or 2SC) phase.5. CONCLUSIONWe have evaluated the photon emission from theele
trosphere of a bare quark star (in the normal or2SC phase). The analysis is based on the LCPI refor-mulation [17℄ of the AMY approa
h [16℄ to the pho-ton emission from relativisti
 plasmas. The devel-oped approa
h, in 
ontrast to the previous qualitativestudies [13�15℄, for the �rst time allows giving a ro-bust treatment of the Pauli blo
king e�e
ts in photonbremsstrahlung. We demonstrate that for the temper-atures T � 0:1�1 MeV, the dominating 
ontributionto the photon emission is due to bending of ele
trontraje
tories in the mean ele
tri
 �eld of the ele
tro-sphere. The energy �ux from the mean �eld photonemission is of the order of the bla
k body limit. Ourresults show that the 
ontribution of the Bethe�Heitlerbremsstrahlung due to the ele
tron�ele
tron intera
tionis negligible 
ompared to the mean �eld photon emis-sion. Contrarily to [13℄, we demonstrate that the LPMsuppression is negligible.The energy �ux related to the mean �eldbremsstrahlung also turns out to be larger thanthat from the tunnel e+e� pair 
reation [4, 10℄. In thelight of these results, the situation with distinguishingbare quark stars made of SQM in the normal (or 2SC)phase from neutron stars may be more optimisti
than in the s
enario with the tunnel e+e� 
reationdis
ussed in [25℄.I thank J. F. Caron for providing the �le for the ra-diated energy �ux obtained in [14℄. I am also gratefulto T. Harko and D. Page for 
ommuni
ation. This workwas supported in part by the grant � SS-6501.2010.2.87
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ulation of the fun
tion D(q?)In this appendix, we dis
uss the 
al
ulation of thefun
tion D(q?). To evaluate this fun
tion, we need toknow the 
orrelator D�� . In momentum representa-tion, we 
an obtainD��(q) = �2[1 + nB(q0)℄ ImD��r (q) ;where nB = [exp(q0=T )� 1℄�1is the Bose�Einstein fa
tor and D��r (q) is the retardedGreen's fun
tion. As was already noted, the fun
-tion P (�) is gauge invariant, and we 
an use D��r inany gauge. Expressing the retarded propagator in theCoulomb gauge in terms of longitudinal and transversephoton self-energies, we obtainD(q?) = � 1� 1Z�1 dq0 exp(q0=T )exp(q0=T )� 1 ��� Im�L(q0;q)[q2 �Re�L(q0;q)℄2 + (Im�L(q0;q))2 + q2?q2 �� Im�T (q0;q)[q2?+Re�T (q0;q)℄2+(Im�T (q0;q))2�����qz=q0 :(A.1)In numeri
al 
al
ulations, we use the HDL expres-sions [30, 31℄ for �L;T :�L(q0;q) = m2D � q02q ln�q0 + qq0 � q�� 1� ; (A.2)�T (q0;q) == m2D2 �q20q2 + (q2 � q20)q02q3 ln�q0 + qq0 � q�� 1� (A.3)with the Debye massm2D = 4�� ��2 + �2T 23 � :APPENDIX BFormulas for the light-
one wave fun
tionsFor zero f , the light-
one wave fun
tions have a def-inite orbital quantum number m. As was mentioned,

the light-
one wave fun
tions appear from the longitu-dinal integrals of the Green's fun
tion. For f = 0, it isthe free Green's fun
tion given byKv(�2;�2j�1;�1) == M2�i� exp�i �M(�2 � �1)22� � ��22M �� (B.1)with � = �2 � �1. The �-integration 
an be performedusing the relation0Z�1 d�Kv(�2; 0j�1; �) = � iM� K0(j�2 � �1j�) ; (B.2)where K0 is the Bessel fun
tion. Then the light-
onewave fun
tions 
an be written in terms of the Besselfun
tions K0 and K1. After representing vertex op-erator (6) in terms of the heli
ity state proje
tors asin [17℄, we obtain	(x;�; �e; �e0 ; �
) = 12� ��r �2x [�
(2� x) + 2�ex℄ exp(�i�
')�K1(��) (B.3)for �e0 = �e, where ' is the azimuthal angle. For�e0 = ��e, we obtain	(x;�; �e;��e; 2�e) = �i2�p2�x3meK0(��) : (B.4)REFERENCES1. E. Witten, Phys. Rev. D 30, 272 (1984).2. C. Al
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