САМОИНДУЦИРОВАННАЯ ПЛАЗМОН-ЭКСИТОННАЯ ПРОЗРАЧНОСТЬ

А. А. Заболотский *

Институт автоматики и электрометрии Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

Поступила в редакцию 24 июня 2010 г.

Изучается возможность формирования устойчивых связанных плазмон-экситонных состояний в протяженном металлическом цилиндре, окруженном двухуровневой средой. Для описания динамики плазмонов используется гидродинамическое приближение. Показано, что при выполнении ряда приближений уравнения движения сгустков зарядовой плотности и уравнения Блоха для двухуровневой среды приводятся к интегрируемым уравнениям как для поперечных, так и для продольных плазмонов. В первом случае после применения приближения медленных огибающих исходная система уравнений приводится к уравнениям, эквивалентным уравнениям Максвелла – Блоха. Во втором случае уравнения описывают волновую динамику вне рамок приближения медленных огибающих. Применение приближения однонаправленности распространения волн позволило свести исходную систему к уравнениям, родственным редуцированным уравнениям Максвелла – Блоха. Солитонные и бризероподобные решения полученных уравнений описывают явление плазмон-экситонной самоиндуцированной прозрачности.

1. ВВЕДЕНИЕ

Усиление локального электромагнитного поля вблизи металлических наночастиц приводит к многим новым и интересным явлениям в оптике [1] и плазмонике, которые связаны с изменением характеристик резонансного излучения, поглощения или дисперсии света из-за пространственной локализации резонансных плазмонов [1–3]. К ним относятся поверхностное гигантское комбинационное рассеяние [2] и усиление флуоресценции [3] вблизи наночастиц, эффективная генерация фототока [4] и пр.

Сильное взаимодействие локализованных плазмонов и экситонов в молекулярных слоях, адсорбированных тонким слоем красителя, которое выявлено и изучено, например, в работе [5], может приводить к нелинейностям, способствующим образованию солитонов и более сложных нелинейных импульсов за счет передачи энергии от возбужденных молекул к поверхностным плазменным колебаниям. Явления, включающие трансформацию энергии поверхностных плазмонов в вынужденное излучение света, проявляют, в соответствии с рядом теоретических предположений, свойства, аналогичные лазерным [6]. Физические механизмы, приводящие к изменению флуоресценции в окрестности металлических наночастиц и поддерживающие колебания поверхностных плазмонов, при определенных условиях могут, как считают ряд авторов, приводить к когерентной генерации света, см. работы [6–8] и ссылки в них. Такие среды с оптической усиливающей средой, находящейся в непосредственной близости от металлических наноструктур, получили названия «спазеров» (spaser) [6].

Поверхностные плазмоны-поляритоны — распространяющиеся на поверхности металла связанные колебания электронов и света — имеют большой потенциал в качестве носителей информации следующего поколения с высокой степенью интеграции нанофотонных устройств [9, 10]. Сверхбыстрые фемтосекундные переключения и небольшие значения энергии переключения [11] открывают новые возможности, которые, в конечном счете, могут быть реализованы в нелинейной плазмонике [12] в виде формирования импульсов и их самомодуляции в нелинейном режиме распространения. Сверхбыстрая нелинейность может стать отправной точкой для применения в качестве носителей информации плазмонов — поляритонных аналогов оптических солитонов.

^{*}E-mail: zabolotskii@iae.nsk.su

В протяженных однородных металлических средах, таких как тонкие стержни и пластинки, важны эффекты распространения локализованных сгустков плазменных осцилляций. Условие компенсации потерь в металле посредством накачки резонансного перехода диэлектрической среды, расположенной вблизи, дает возможность наблюдения когерентных эффектов, формирования солитоноподобных связанных состояний фотонов и плазмонных осцилляций и их распространения. В последнее время ведется интенсивное теоретическое исследование плазмон-поляритонных солитоноподобных структур и условий их формирования (см., например, работы [13,14]), в том числе импульсов длительностью, много меньшей световой [15].

Для нанотехнологических приложений требуются среды с меньшей размерностью и большей нелинейной связью между светом и средой. Нелинейная связь, как правило, сильнее для импульсов с меньшей групповой скоростью. Известно, что групповые скорости волн зарядовой плотности и акустических плазмонов на несколько порядков меньше скорости света в среде. Поэтому изучение нелинейных процессов, связанных с формированием импульсов медленными волнами зарядовой плотности [16], акустическими плазмонами [17], распространяющимися с групповой скоростью, близкой к скорости Ферми [18, 19], представляют практический интерес.

Цель настоящей работы состоит в построении самосогласованных моделей динамики локализованных пакетов плазмон-экситонных волн в системе, состоящей из длинных тонких металлических стержней, окруженных двухуровневой средой (ДУС). В качестве образца рассматриваем среду, состоящую из длинного цилиндрического металлического стержня с длиной L, радиусом r, окруженного концентрическим цилиндром с внутренним r и внешним l + r радиусами, так что $r \sim l \sim 10$ нм. Внешний цилиндр однородно заполнен усиливающей ДУС.

2. ГИДРОДИНАМИЧЕСКОЕ ПРИБЛИЖЕНИЕ

Описываем коллективное движение электронов в металлическом цилиндре в рамках гидродинамической модели, см., например, [20]. В этой модели коллективное движение электронов в произвольной неоднородной системе выражается в терминах электронной плотности $n(\mathbf{r}, t)$ и гидродинамической скорости $\mathbf{v}(\mathbf{r}, t)$, которые в предположении безвихревого движения выражается в виде градиента потенциала скорости $\psi(\mathbf{r}, t)$, так что $\mathbf{v}(\mathbf{r}, t) = -\nabla \psi(\mathbf{r}, t)$. Основные гидродинамические уравнения (уравнение неразрывности и уравнение Бернулли) в присутствии внешней силы имеют вид

$$\frac{d}{dt}n_e(\mathbf{r},t) = \mathbf{\nabla} \cdot \left[\mathbf{\nabla}\psi(\mathbf{r},t) \ n_e(\mathbf{r},t)\right]$$
(1)

И

$$\frac{d}{dt}\psi(\mathbf{r},t) = \frac{1}{2} \nabla \psi(\mathbf{r},t) \cdot \nabla \psi(\mathbf{r},t) + \frac{\delta T_F(n_e)}{\delta n_e} + U(\mathbf{r},t), \quad (2)$$

где $T_F(n_e)$ — внутренняя кинетическая энергия, которая часто аппроксимируется функционалом Томаса – Ферми как

$$T_F(n_e) = \frac{3\hbar^2}{10m} (3\pi^2)^{2/3} \left[n_e(\mathbf{r}, t) \right]^{5/3}, \qquad (3)$$

$$U(\mathbf{r},t) = \frac{e}{m} \left[\boldsymbol{\nabla}^{-1} \cdot \mathbf{E} - \phi_i(\mathbf{r},t) \right].$$
 (4)

Уравнения Пуассона имеют вид

$$\Delta\phi_e(\mathbf{r}, t) = 4\pi e \, n_e(\mathbf{r}, t),\tag{5}$$

где **Е** — амплитуда электромагнитного поля, действующего на наноплазму, *m* и *e* — соответственно масса и заряд электрона, ϕ_e — электронный потенциал. Как правило, смещением ионов можно пренебречь [20]. Считаем, что начальная плотность электронного облака $n_e(\mathbf{r}, 0) = \text{const.}$

Гидродинамические уравнения (1)-(5) — нелинейные уравнения, которые существенно упрощаются при использовании теории возмущений по отношению к малым возмущениям $n_1(\mathbf{r}, t)$ и $\psi_1(\mathbf{r}, t)$:

$$n_e(\mathbf{r},t) = n_0(\mathbf{r}) + n_1(\mathbf{r},t) + \dots \tag{6}$$

И

$$\psi(\mathbf{r},t) = 0 + \psi_1(\mathbf{r},t) + \dots \tag{7}$$

3. ПОПЕРЕЧНЫЕ ПЛАЗМОННЫЕ КОЛЕБАНИЯ

Считаем, что металлические стержни расположены в плоскости z = 0, их оси направлены по оси x и они достаточно, для пренебрежения взаимодействием между ними, удалены друг от друга. Рассматриваем поперечные колебания электронной жидкости. Обозначим $\zeta(\mathbf{r}, t)$ смещение сгустка зарядов вдоль оси *z*, распространяющегося вдоль оси цилиндра, направленной вдоль оси *x*, так что $\partial_t \zeta(\mathbf{r}, t) = v(\mathbf{r}, t)$.

Из системы (1)-(7) находим, что

$$n_1(\mathbf{r},t) = -\boldsymbol{\nabla} \left[n_0(\mathbf{r})\zeta(\mathbf{r},t) \right]$$
(8)

И

$$\frac{d^2}{dt^2}\boldsymbol{\zeta}(\mathbf{r},t) = \frac{v_F^2(\mathbf{r},t)}{n_0(\mathbf{r})}\Delta \left[n_0(\mathbf{r})\boldsymbol{\zeta}(\mathbf{r},t)\right] + \mathbf{F}(\mathbf{r},t) + \frac{\boldsymbol{\nabla}^{-1}}{n_0}\widehat{W}_1(\mathbf{r}) \left[n_0(\mathbf{r})\boldsymbol{\zeta}(\mathbf{r},t)\right], \quad (9)$$

где $\mathbf{F} = -e\mathbf{E}_p/m$ и

$$v_F^2(\mathbf{r}) = \frac{\hbar^2}{2m} (3\pi^2)^{2/3} n_0(\mathbf{r})^{5/3}, \qquad (10)$$

$$\widehat{W}_{1}(\mathbf{r}) = \frac{v_{F}^{2}}{n_{0}} \nabla n_{0} \cdot \nabla + [\nabla n_{0}(\mathbf{r}) \cdot \nabla + n_{0}(\mathbf{r})\Delta] \times \left[\frac{v_{F}^{2}(\mathbf{r})}{n_{0}(\mathbf{r})}\right] + 2\nabla \left[\frac{v_{F}^{2}(\mathbf{r})}{n_{0}(\mathbf{r})}\right] \cdot \nabla. \quad (11)$$

Считая плотность $n_0(\mathbf{r})$ практически однородной, пренебрегаем вкладом оператора \widehat{W}_1 . В общем случае, однако, неоднородность $n_0(\mathbf{r})$ может изменить динамику плазмон-экситонных импульсов критическим образом.

Рассматриваем волновые пакеты с характерной длиной, много большей радиуса цилиндра. Это позволяет применить приближение недеформируемого в направлении z столба электронной жидкости, т.е. площадь его сечения (перпендикулярного оси x) неизменна. В данном приближении эволюция пакета плазмонных осцилляций описывается функцией $\zeta(x,t)$. Динамика электронов в среде определяется начальной внешней силой и электрическими полями, генерируемыми плазмон-экситонными импульсами, эволюционирующими на фоне основного состояния $n_1 = 0$.

Для усиливающей среды, заполняющей концентрическую оболочку стержня, применяем приближение ДУС, которая описывается матрицей плотности \hat{r} . Матричный элемент r_{12} описывает переход между основным $|2\rangle$ и возбужденным $|1\rangle$ состояниями, r_{22} и r_{11} — заселенности этих уровней и $\rho_0 = r_{11} - r_{22}$. В средах с постоянным дипольным моментом, таких как *J*-агрегаты красителей, направление дипольного момента определяется внутренним электрическим полем. Пусть для простоты это поле направлено по оси *z*. Для среды без постоянного дипольного момента считаем, что начальная поляризация затравочного электрического поля, вызывающего изменение

распределения зарядовой плотности вдоль стержня, направлена вдоль оси z. В этом случае поляризация каждой молекулы имеет вид

$$\langle 1 | \mathbf{p} | 2 \rangle = - \left[\mathbf{d}_{21} \rho_{12}(x, t) + \mathbf{d}_{21}^* \rho_{12}^*(x, t) \right], \qquad (12)$$

где вектор дипольного момента $\mathbf{d}_{21} = e \langle 2 | \mathbf{z} | 1 \rangle = (0, 0, d_{12}).$

Применяя приближения вращающейся волны и одномерной среды, представим функции в следующем виде:

$$r_{21}(x,t) = \rho_{21}(x,t) \exp(i\omega t - ikx) + \text{c.c.}, \qquad (13)$$

$$\boldsymbol{\zeta}(x,t) = \left[0, 0, \frac{v_F \mathcal{Z}(x,t)}{\omega} \exp(i\omega t - ikx)\right] + \text{c.c.}, \quad (14)$$

$$\mathbf{F}(x,t) = [0,0, v_F \omega f(x,t) \exp(i\omega t - ikx)] + \text{c.c.} \quad (15)$$

Здесь ω и k — соответственно несущие частота и волновой вектор, $\rho_{21}(x,t)$, $\mathcal{Z}(x,t)$ и f(x,t) — медленные огибающие. Считаем, что характерный размер пакета сгустка плазменных осцилляций l_p больше $v_F/\omega \sim 10^{-8} - 10^{-7}$ м и много меньше длины среды L, которая может быть порядка 1 мкм. Для групповой скорости пакета v_F время пробега стержня порядка 1 пс. Для таких масштабов пренебрегаем релаксационными эффектами в ДУС.

Вводим безразмерные переменные $\tau = \omega (t - x/v_F), \ \chi = x \omega v_F^{-1}$. Сила, действующая на плазму,

$$f(\chi,\tau) = -eE_p(\chi,\tau)(m\omega v_F)^{-1}$$

определяется суммой электрических полей:

$$E_p = E_{d \to p} + E_{p \to p} + N E_{p \to p}, \qquad (16)$$

где $E_{d\to p}$ и $E_{p\to p}$, $NE_{p\to p}$ — соответственно *z*-компоненты поля индуцированных диполей молекул ДУС, линейной и нелинейной (по \mathcal{Z}) частей электрического поля, являющихся следствием самодействия облака электронов, вызванного смещением по отношению к ионному остову.

Стандартные вычисления дают

$$E_{p \to p} = \frac{m\omega_p^2}{e\omega^2} \mathcal{Z}(\chi, \tau), \qquad (17)$$

где $\omega_p^2 = 4\pi e^2 n_0 / m$ — плазменная частота.

Для оценки поля $E_{d\to p}$ считаем, что диполи резонансных переходов ДУС коллинеарны, направлены по нормали к оси. В общем случае взаимодействие нелокально. Однако для простоты полагаем, что масштаб изменения $\langle 1 | \mathbf{p}(\chi, \tau) | 2 \rangle$, т. е. характерный размер плазмон-экситонных импульсов много больше *l* и *r*, а также много меньше *L*. Интегрирование дает следующее приближенное выражение для поля диполей ДУС на оси цилиндра:

$$E_{d \to p}(x,t) \approx f_d 4\pi n_d d_{21} \rho_{12}(\chi,\tau),$$
 (18)

где константа $f_d = L/(r+L) + \ln(1+r/L)$ и d_{21} — плотность молекул. Это выражение не учитывает неоднородное уширение, температурные эффекты и пр., уменьшающие связь между плазмоном и экситоном. Поэтому далее, для оценки, полагаем $f_d \sim 10^{-1}$.

Представим медленную огибающую *z*-компоненты электрического поля, действующую на ДУС, в виде

$$E_d(\chi, \tau) = \frac{\omega_p^2 m}{e} \times \left[\frac{f_p v_F \mathcal{Z}(\chi, \tau)}{\omega} + \frac{n_d}{n_0} \langle 2 | \mathbf{z} | 1 \rangle \rho_{12} \right], \quad (19)$$

где положительная константа $f_p \sim 1-10^{-1}$. Вкладом нелинейного самодействия плазмы в это поле можно пренебречь. Как правило, $n_d \ll n_0$, поэтому вторым членом в правой части (19) также пренебрегаем.

Рассматриваем временной интервал, на котором релаксацией ДУС можно пренебречь. Подставив эти выражения для полей в уравнение (9) и в уравнения Блоха для ДУС [21], в рамках приближения медленных огибающих получаем систему уравнений

$$\frac{\partial}{\partial \tau} \rho_{21} = i\mu \rho_{21} - iZ\rho_0, \qquad (20)$$

$$\frac{\partial}{\partial \tau} \rho_0 = i \left(Z \rho_{21}^* - Z^* \rho_{21} \right) - 4 p_0, \qquad (21)$$

$$\frac{d}{d\chi}Z(\chi,\tau) + i\left(\frac{k}{q} - 1 + \nu\right)Z(\chi,\tau) =$$
$$= -i\alpha_1\alpha_2\rho_{21}(\chi,\tau), \quad (22)$$

где p_0 — феноменологическая константа, описывающая накачку верхнего уровня ДУС, $Z = \alpha_1 \mathcal{Z}$,

$$\alpha_{1} = f_{p}\nu \frac{mv_{F} \langle 2|\mathbf{z}|1\rangle}{2\hbar}, \quad \alpha_{2} = f_{d}\nu \frac{\xi\omega \langle 2|\mathbf{z}|1\rangle}{\sqrt{1-\nu}v_{F}},$$

$$\nu = \frac{\omega_{p}^{2}}{\omega^{2}}, \quad \mu = \frac{\omega_{d}}{\omega} - 1.$$
(23)

В (23) ω_d — частота перехода, $\xi = n_d/n_0$ и учтено, что модуль волнового вектора k определяется (без учета потерь) дисперсионным соотношением $|k| = \omega \sqrt{1 - \nu} v_F^{-1}$. Полученная в итоге система уравнений (20)–(22) без учета накачки ($p_0 = 0$) и фазового сдвига в уравнении (22) эквивалентна уравнениям Максвелла–Блоха, описывающим явление самоиндуцированной прозрачности света в ДУС. Солитонные решения этой системы описывают связанное состояние электромагнитного поля и среды, распространяющееся в виде локализованного волнового пакета, устойчивого к малым возмущениям [21]. Для солитонов характерно большее время жизни в поглощающей среде, чем для плоской волны. Возможно, этим объясняется увеличение длины пробега плазмона в присутствии поглощающей ДУС, обнаруженное экспериментально в работе [8].

Для $p_0 = 0$ простейшее солитонное решение имеет вид [21]

$$|Z(\chi,\tau)| = \frac{2\eta_1}{\operatorname{ch}\left[\eta_1 \left(\tau - \chi v^{-1}\right)\right]},$$
(24)

где η_1 — действительное число, $v = (\eta_1^2 + \mu^2)^{-1}$ групповая скорость солитона. Характерный масштаб, на котором проявляются нелинейные эффекты, определяется коэффициентом $\alpha_0(\nu) = \sqrt{\alpha_1(\nu)\alpha_2(\nu)}$. Для $\omega_p = 10^{15}$ с⁻¹, $|\langle 2|\mathbf{z}|1\rangle| \sim \sim 10^{-10}$ м оценка дает временной масштаб перехода от линейного режима к нелинейному:

$$t_n = (\omega \alpha_0)^{-1} \sim \frac{(1-\nu)^{1/4}}{10^2 \omega \sqrt{\xi} \nu^{-1}}$$

При $\nu \to 1$ величина t_n уменьшается, т.е. в этой области солитоны формируются быстрее.

Из оценки групповой скорости солитона v_g с длительностью $\eta_1^{-1} = t_s \omega$

$$\frac{\omega_F}{w_g} \approx 1 + \frac{10^4 \nu^2 \xi t_s^2 \omega^2}{\sqrt{1 - \nu} \left(1 + \mu^2 t_s^2 \omega^2\right)}$$
 (25)

следует, в частности, что при $\nu \to 1$ скорость солитона уменьшается.

Учет накачки ($p_0 \neq 0$) для точного резонанса ($\mu = 0$) приводит к зависимости солитонного параметра η_1 от χ в виде [22]

$$\eta_1(\chi) = \sqrt{2p_0\chi + \eta_1(0)^2}.$$
 (26)

Из этого следует рост амплитуды солитона и соответствующее уменьшение его длительности.

Возбуждение солитоноподобных пакетов вблизи концов стержня может быть выполнено с помощью ближнепольного микроскопа. Экспериментально нелинейные эффекты в такой усиливающей среде могут наблюдаться и при возбуждении плазмонных осцилляций вдоль всего стержня внешним слабым электрическим полем.

В усиливающей среде возможно развитие модуляционной неустойчивости, которая приводит к образованию квазистационарной периодической решетки плазмон-поляритонных импульсов. Известно, что эта неустойчивость приводит к удвоению периода. Поэтому следует ожидать возникновения периодических решеток в распределении плазмонов при их возбуждении вдоль всего стержня внешним затравочным слабым полем. Этот процесс на начальной стадии и для слабых возмущений может быть моделирован периодическим однофазным решением со слабо изменяющимися параметрами [23], которое описывает периодическое пространственно-модулированное смещение электронного облака — деформирующуюся со временем стоячую волну. При этом локализованные плазмоны образуют одномерную решетку и генерируют когерентное излучение как пакеты осциллирующих диполей. Поэтому существование плазмонных решеток можно экспериментально подтвердить селективной угловой направленностью излучения плазмонов. Начальное положение максимумов $\zeta(x,0)$ может быть задано положением максимумов амплитуды затравочного слабого электромагнитного поля, падающего под углом к оси x. Пусть на длине L стержня возникло N_p периодически расположенных максимумов. Условие когерентности определяет угол между направлением с максимальной интенсивностью излучения диполей и осью стержня:

$$\theta = \arccos \frac{\pi N_p}{Lk_p},\tag{27}$$

где k_p — длина волнового вектора излучаемой диполями световой волны. Для длины стержня, меньшей π/k_p , излучение плазмонных диполей будет практически однородно по углу θ . Экспериментально существование плазмонных решеток в наностержнях обнаружено в работе [24].

4. ПРОДОЛЬНЫЕ АКУСТИЧЕСКИЕ ПЛАЗМОНЫ

Рассмотрим продольное смещение сгустка зарядовой плотности n_1 , однородное по сечению цилиндра. Из уравнений (1)–(7) получаем для однородной невозмущенной плотности электронов $n_0(\mathbf{r}) = \text{const}$ линеаризованное уравнение

$$\frac{d^2}{dt^2}n_1 = v_F^2 \Delta n_1 - \frac{e^2}{m} n_0 \nabla^2 \phi_e + \boldsymbol{\nabla} \cdot (n_0 \mathbf{F}) , \qquad (28)$$

где $\mathbf{F} = e \mathbf{E}_e / m$, \mathbf{E}_e — внешнее электрическое поле [20].

Для оценки величины слагаемых в правой части уравнения (28) рассмотрим дисперсионное соотношение для одномерных продольных плазмонов, распространяющихся в наностержне. Без учета внешней силы дисперсионное соотношение имеет вид [25]

$$\omega^{2} = \frac{2\pi n_{0}e^{2}}{m\varepsilon_{s}}\ln\left(\frac{2}{kr_{0}}\right)(kr_{0})^{2} + v_{F}^{2}k^{2},$$
 (29)

где ω — частота, k — x-компонента волнового вектора. Здесь и далее игнорируем зависимости от z и y. Отметим, что дисперсионное соотношение (29) было подтверждено экспериментально [26]. Таким образом, для наносистем размером $r \sim 10$ нм первым членом в правой части уравнения (29) можно пренебречь почти для всех k ($k \neq 0$) по сравнению с членом, содержащим множитель v_F^2 . Этот факт позволяет доказать, что вклад второго члена в правой части уравнения (28) также пренебрежимо мал.

Среднее электрическое поле \mathbf{E}_m , действующее на ДУС — сумма поля молекулярных диполей \mathbf{E}_d и поля зарядов \mathbf{E}_p с локальной плотностью $n_1(t, x)$. Для оценки последнего считаем, что эффективная длина возмущения плотности $n_1(t, x)$ электронов гораздо больше, чем r_0 и l_0 ($r_0 \approx l_0$). В этом случае вклад второго поля можно оценить по формуле Гаусса, пренебрегая в нулевом приближении динамическими эффектами, имеющими порядок v_a/c_m , где v_q — групповая скорость волн зарядовой плотности, c_m — скорость света в среде. Мы не учитываем также излучение движущихся зарядов, считая, что $v_q/c_m \ll 1$, см. ниже. Направленное по оси z поле возмущения зарядовой плотности, имеющей вид длинного цилиндра с радиусом r на расстоянии l/2от границы этого цилиндра, имеет вид

$$E_p = \frac{4\pi n_1(t,x)e_z r^2}{l+2r} \sim 4\pi n_1(t,x)r_1,$$

где r_1 — некоторое эффективное расстояние, $\mathbf{E}_p = (0, 0, E_p).$

Как и выше, пренебрегаем релаксационными процессами и самодействием диполей. Среднее поле диполей ДУС имеет вид $E_d = 4\pi P(x,t)$, где P(x,t) = $= n_d p(x,t)$ — поляризуемость среды, n_d — объемная плотность молекул ДУС. Поляризуемость двухуровневой молекулы p дается выражением $p = \text{tr } \hat{\rho} \hat{d}$, где \hat{d} — матрица дипольного момента. Введем безразмерные переменные

$$\widetilde{\tau} = \omega_d t, \quad \mathcal{E} = \frac{DE_p}{\hbar\omega_d}$$

И

$$\mu = \frac{d_{11} - d_{22}}{D}, \quad d = \frac{2d_{12}}{D}, \tag{30}$$

где

$$E_p = 4\pi n_1(x,t)r_1, \quad D = \sqrt{(d_{11} - d_{22})^2 + 4d_{12}^2}.$$

В этом разделе изучаем эволюцию нелинейных волновых пакетов вне приближения медленных амплитуд. Для упрощения уравнения движения плотности (28) используем приближение однонаправленного распространения, применение которого возможно для волн с групповой скоростью, близкой к скорости Ферми. Это предположение хорошо согласуется с результатами ряда экспериментальных и теоретических работ, см., например, [17–19] и ссылки в них.

Применяя к уравнению (28) условие однонаправленности (см., например, в работах [27, 28]), используя выражение $\mathbf{F} = (0, 0, eE_d/m)$, интегрируя по x и вводя безразмерную переменную $\tilde{\chi}$,

$$\partial_{\tilde{\chi}} = -\frac{2v_F}{\alpha_0} \left(\partial_t + v_F \partial_x \right), \qquad (31)$$

получаем уравнение

$$\partial_{\tilde{\chi}}\mathcal{E} = dR_1 - \mu R_3 + c_0, \qquad (32)$$

$$\begin{split} \frac{\partial}{\partial \tilde{\chi}} \Psi &= \frac{-ic_0}{4\lambda_-} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \Psi + \frac{1}{2\left(d^2 - 4\lambda_-^2\right)} \times \\ & \times \begin{bmatrix} id(\mu R_1 + dR_3) & dR_2 + 2i\lambda_-(dR_1 - \mu R_3)\\ -dR_2 + 2i\lambda_-(dR_1 - \mu R_3) & -id(\mu R_1 + dR_3) \end{bmatrix} \Psi, \end{split}$$

где $\lambda_{\pm} = \zeta \pm q/\zeta, q = \mu^2/16, \zeta$ — спектральный параметр.

Система ПБУ (32)–(35) математически близка интегрируемым редуцированным уравнениям Максвелла – Блоха (РУМБ) с постоянным дипольным моментом [27] (см. также в обзоре [28]), но не совпадает с известными нам. Точнее говоря, решения, отвечающие изолированным невырожденным собственным значениям ζ_k спектральной задачи (37), для этих уравнений имеют одинаковую структуру и различаются зависимостью от переменной $\tilde{\chi}$. В то же время автомодельные решения этих уравнений, отвечающие действительному непрерывному спектру, различны. где

$$\alpha_0 = \frac{(4\pi)^2 e n_0 n_d r_1 D^2}{m\hbar\omega_d},$$

 $c_0 = \mu R_{\infty}$ — константа интегрирования, выбранная из условия $R_{\infty} = R_3(\tau \to \pm \infty), R_{1,2}(\tau \to \pm \infty) \to 0.$

Динамика двухуровневой системы описывается уравнениями Блоха

$$\partial_{\tilde{\tau}} R_1 = -(1+\mu\mathcal{E})R_2, \qquad (33)$$

$$\partial_{\tilde{\tau}} R_2 = (1 + \mu \mathcal{E}) R_1 + d\mathcal{E} R_3, \qquad (34)$$

$$\partial_{\tilde{\tau}} R_3 = -d\mathcal{E} R_2, \tag{35}$$

где

$$R_1 = \rho_{12} + \rho_{21}, \quad R_2 = -i(\rho_{12} - \rho_{21}),$$

$$R_3 = \rho_{22} - \rho_{11}.$$
(36)

Плазмон-блоховские уравнения (ПБУ) (32)–(35) оказываются полностью интегрируемыми и обладают следующим представлением нулевой кривизны:

$$\frac{\partial}{\partial \tau} \Psi = \frac{1}{2} \begin{pmatrix} -2i\lambda_{-} & \mu + \mathcal{E} \\ -\mu - \mathcal{E} & 2i\lambda_{-} \end{pmatrix} \Psi, \quad (37)$$

(38)

 $q \neq 0$ [29]. Однако это решение вырождено. Возмущения снимают вырождение, что приводит к формированию более сложного четырехполюсного решения, как и в случае РУМБ [27, 30]. Такое решение ПБУ (32)–(35), изображенное на рисунке, имеет вид

$$\mathcal{E} = -4 \frac{\partial}{\partial \tau} \times \\ \times \operatorname{arctg} \left\{ \frac{\eta Q_+}{\nu Q_-} \frac{|\zeta|^2 Q_- \cos \theta_2 + 2\sqrt{q} \, \operatorname{sh} \theta_1}{|\zeta|^2 Q_+ \operatorname{ch} \theta_1 - 2\sqrt{q} \sin \theta_2} \right\}, \quad (39)$$

где $\zeta = \nu + i\eta$,

Влияние постоянного дипольного момента на форму плазмон-экситонного импульса. Сплошная, штриховая и пунктирная линии отвечают соответственно q=0, q=0.5 и q=0.99. $\eta=\nu=0.4,$ $p_0=0$

$$\theta_1 = 2 \operatorname{Im} \left[\lambda_+ \left(\tilde{\tau} + \Omega \tilde{\chi} \right) \right], \theta_2 = 2 \operatorname{Re} \left[\lambda_+ \left(\tilde{\tau} + \Omega \tilde{\chi} \right) \right],$$
(40)

$$Q_{\pm} = 1 \pm \frac{q}{|\zeta|^2}, \quad \Omega = \frac{R_{\infty}d^2}{2\lambda_- (d^2 - 4\lambda_-^2)}.$$
 (41)

При $q \to 0$ площадь импульса

$$\int_{-\infty}^{\infty} \mathcal{E}(\tau) \, d\tau \to 0$$

и решение (39) становится бризером. В этом случае волны зарядовой плотности образуют нелинейный диполь, причем площадь (число электронов) горбов равна площади провалов, возникающих на фоне $n_0 = \text{const.}$

На рисунке изображено решение (39) для сред без постоянного дипольного момента, т.е. $\mu = 0$, $\mu \sim d$ и для $d \ll \mu$. Численный анализ, проведенный для физически интересного случая $|\zeta|^2 \leq q$, показал, что ДУС с $\mu \sim d$ является более эффективной для генерации плазмонных импульсов с большой амплитудой, чем ДУС без постоянного дипольного момента. Это особенно важно для генерации электромагнитных импульсов с длительностью, меньшей длины волны света в системах типа спазеров.

Оценим эффективную длину l_{nl} нелинейного взаимодействия, определяющего характерный размер бризероподобных плазмон-экситонных импульсов. Здесь рассматривалась идеализированная модель. В более реалистичном случае необходимо принимать во внимание неоднородное уширение, нелокальность взаимодействия, температурные и другие эффекты, приводящие к уменьшению взаимодействия между плазмонами и ДУС. Для грубой оценки мы полагаем, что вклад этих эффектов приводит к уменьшению коэффициента α_0/v_F^2 на два порядка. Тогда для $n_0 \sim 10^{21}$ см⁻³, $n_d \sim 10^{14}$ см⁻³, $v_F \sim 10^8$ см/с, $D \sim 10^{18}$ СГС находим $l_{nl} \sim 10$ нм. Отсюда можно сделать вывод, что рассмотренная наносистема выглядит перспективной для создания нелинейных пакетов плазмон-экситонов с длиной, много меньшей длины волны света.

5. ПРИМЕНЕНИЕ РЕЗУЛЬТАТОВ

Самосогласованные системы ПБУ позволяют исследовать влияние изменения пространственного распределения плотности электронов на ДУС. В частности, рассмотренная в предыдущем разделе система протяженных наностержней может быть использована для накачки окружающей ДУС с помощью внешнего электрического нерезонансного поля. Пусть произвольное поле E_0 в начальный момент направлено вдоль оси стержня. Это поле вызывает первоначальное неоднородное распределение электронов вдоль стержня, эволюция которого описывается уравнениями (32)-(35). Плазмон-поляритонные импульсы могут возникать при распаде начального возмущения электронного облака, вызванного кратковременным действием постоянного электрического поля. Форма импульса плазмон-экситона определяется решением «начальной» спектральной задачи (37). Нелинейная связь между плазмонами, возникшими в результате распада начального возмущения, и ДУС приводит к обмену энергией между ними и к переменной накачке верхнего уровня ДУС. Поэтому полученные в работе результаты могут быть использованы в качестве нулевого приближения для расчета излучения частично инвертированной ДУС и распространяющегося нелинейного квазидиполя. Отметим, что полученные интегрируемые уравнения не описывают взаимодействие встречных волн зарядовой плотности. В частности, в редуцированных уравнениях (32)-(35) для описания встречных импульсов вместо уравнения (32) следует применять уравнение (28), которое позволит исследовать распространение встречных плазмон-экситонных импульсов и их последующую аннигиляцию, сопровождающуюся излучением электромагнитной волны.

Поскольку в рамках приведенных выше моделей взаимодействие между плазмонами и ДУС когерентно, они могут применяться для анализа условий когерентного переноса возбуждения в молекулярной среде с наностержнями. Направленность генерируемого излучения определяется геометрией среды. Такая система может быть перспективной для изучения условий создания спазера, генерирующего когерентное направленное излучение.

Работа выполнена при поддержке междисциплинарного интеграционного проекта СО РАН № 17 и научной школы НШ-4339.2010.2.

ЛИТЕРАТУРА

- F. Calvayrac, P.-G. Reinhard, E. Suraud, and C. A. Ullrich, Phys. Rep. 337, 493 (2000).
- N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, Phys. Rev. B 65, 075419 (2002).
- O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, Adv. Mater. (Weinheim, Ger.) 18, 91 (2006).
- B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96, 7519 (2004).
- N. I. Cade, T. Ritman-Meer, and D. Richards, Phys. Rev. B 79, 241404(R) (2009).
- D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402 (2003).
- M. A. Noginov, G. Zhu, M. May, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, Phys. Rev. Lett. 101, 226806 (2008).
- G. Zhu, M. Mayy, M. Bahoura, B. A. Ritzo, H. V. Gavrilenko, V. I. Gavrilenko, and M. A. Noginov, Opt. Express 16, 15576 (2008).
- 9. E. Ozbay, Science 311, 189 (2006).
- 10. H. A. Atwater, Sci. Amer. 296, 56 (2007).
- K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Nature Photonics 9, 55 (2009).
- 12. S. Palomba and L. Novotny, Phys. Rev. Lett. 101, 056802 (2008).
- E. Feigenbaum and M. Orenstein, Opt. Lett. 32, 674 (2007).

- 14. E. V. Kazantseva and A. I. Maimistov, Phys. Rev. A 79, 033812 (2009).
- Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, Phys. Rev. Lett. 99, 153901 (2007).
- H. Morikawa, I. Matsuda, and S. Hasegawa, Phys. Rev. B 70, 085412 (2004).
- B. Diaconescu, K. Pohl, L. Vattuone, L. Savio, P. Hofmann, V. M. Silkin, J. M. Pitarke, E. V. Chulkov, P. M. Echenique, D. Farias, and M. Rocca, Nature 448, 57 (2007).
- 18. I. E. Aronov, G. P. Berman, D. K. Campbell, G. D. Doolen, and S. V. Dudiy, Physica B 253, 169 (1998).
- J. M. Pitarke, V. U. Nazarov, V. M. Silkin, E. V. Chulkov, E. Zaremba, and P. M. Echenique, Phys. Rev. B 70, 205403 (2004).
- 20. S. Lundqvist, Theory of the Inhomogeneous Electron Gas, ed. by S. Lundqvist and N. H. March, Plenum, New York (1983), p. 149.
- Дж. Л. Лэм, Введение в теорию солитонов, Мир, Москва (1990).
- 22. С. П. Бурцев, А. В. Михайлов, В. Е. Захаров, ТМФ
 70, 323 (1987).
- 23. A. A. Zabolotskii, Phys. Rev. E 56 4813 (1997).
- 24. Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, Nano Lett. 9, 4383 (2009).
- 25. S. Das Sarma and E. H. Hwang, Phys. Rev. B 54, 1936 (1996).
- 26. A. R. Goñi, A. Pinczuk, J. S. Weiner, J. M. Calleja, B. S. Dennis, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 67, 3298 (1991).
- 27. M. Agrotis, N. M. Ercolani, S. A. Glasgow, and J. V. Moloney, Physica D 138, 134 (2000).
- A. A. Zabolotskii, Eur. Phys. J. Special Topics 173, 193 (2009).
- 29. А. И. Маймистов, Дж.-Ги Капуто, Опт. и спектр.
 94, 275 (2003).
- 30. J. G. Caputo and A. I. Maimistov, Phys. Lett. A 296, 34 (2002).