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A SIMPLE THEORY OF CONDENSATIONS. Rabinovi
h *Re
eived O
tober 25, 2010A simple assumption of an emergen
e in gas of small atomi
 
lusters 
onsisting of 
 parti
les ea
h leads toa phase separation (�rst-order transition). It reveals itself by the emergen
e of a �forbidden� density rangestarting at a 
ertain temperature. De�ning this latter value as the 
riti
al temperature predi
ts the existen
eof an interval with the anomalous heat 
apa
ity behavior 
p / �T�1=
. The value 
 = 13 suggested in theliterature yields the heat 
apa
ity exponent � = 0:077.1. INTRODUCTIONThe theory of gas�liquid 
ondensation is probablythe most famous unsolved problem in 
lassi
al statis-ti
al me
hani
s [1℄. Numerous attempts to atta
k theproblem have been made during the last hundred years.They were based on a wide range of di�erent te
h-niques, from 
umulant expansion to �eld theory me-thods of phase transitions [2℄. A 
onsiderable step inthis dire
tion was made by the 
luster (droplet) theoryof Fisher [3℄. This theory predi
ts an essential singu-larity of the free energy at the 
ondensation point.A simple model of 
ondensation that opens theway to the appearan
e of a 
riti
al point and the 
or-responding phase separation is suggested here. Thismodel reveals the basi
 desirable features of the 
on-densation and allows a new and self-
onsistent de�ni-tion of the 
riti
al point. Moreover, it identi�es thefamous heat 
apa
ity singularity and explains it up tothe 
al
ulation of the divergen
y exponent in an ex
el-lent a

ordan
e with the measured data.Isolated 
lusters of atoms and mole
ules have beenobserved in mole
ular beams experimentally and stu-died theoreti
ally [4℄. Stability of su
h 
lusters has alsobeen studied in a liquid-like environment in [5℄. It wasshown there that the lo
ally preferred stru
ture of theLennard�Jones liquid is an i
osahedron (13 atoms), andthat the liquid-like environment only slightly redu
esits relative stability.S
attering experiments 
an also be regarded as anadditional indire
t argument in favor of 
lustering inliquids. For example, the argon radial distribution*E-mail: shaulr�orange.net.il, Israel

fun
tion [6℄ shows neither temperature nor density de-penden
e of the abs
issa of its �rst maximum, whi
hmeans that the internu
lear distan
es in solid, liquid,and gaseous argon are inherent 
hara
teristi
s of thematerial. In other words, this phase independen
e 
anbe attributed to the persisten
e of small dense 
lusters.A more detailed study of experimental eviden
e infavor of the existen
e of relatively stable small atomi

lusters will be published elsewhere [7℄.2. BASIC ASSUMPTIONBased on the foregoing, it is possible to formulatethe following basi
 assumption: elementary parti
les ofa gas (atoms or mole
ules) form small, relatively stable
lusters 
onsisting of 
 parti
les ea
h. Their 
on
entra-tion is a fun
tion of state. It then immediately followsthat the gas should be regarded as (at least) a two-
om-ponent system (see the Figure).The ground state of the system under 
onsiderationis expe
ted to be a full separation as the energeti
allypreferable 
on�guration (we do not address those spe-
ial 
ases where geometry allows pa
kings denser thanthe FCC or HCP ones). On the other hand, at hightemperature, the system remains a mixture of atomsand 
lusters. Hen
e, separation into two phases o

ursat a �nite temperature.This observation helps us answer a very naturalquestion: why do we suppose 
lusters of only one size toform or, at least, to be stable. Unfortunately, we do notknow an a priori reason for this. On the other hand,as we see, the existen
e of 
lusters of one size leadsto the separation. Therefore, the existen
e of 
lustersof any di�erent number of parti
les would reveal itself733
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Gas as a binary mixturethrough multiple separations. To the best of our know-ledge, it is not the 
ase with simple liquids in Nature.This a posteriori argument therefore justi�es our basi
assumption. In
identally, the 
ompli
ated phase dia-grams of 
omplex liquids may be attributable to theexisten
e of 
lusters of di�erent sizes and nature.Su
h a model reveals a universal behavior. Indeed, a
lose vi
inity of the 
riti
al point (if it exists) has to begoverned by the universal properties of the two-
om-ponent mixture separation, regardless of the spe
i�
details of the inter-parti
le intera
tion. That intera
-tion a�e
ts the 
riti
al parameters, i. e., physi
al 
oor-dinates, but not the system behavior.Our basi
 assumption plays a role analogous to thatof the Cooper pairing in an early version of the super-
ondu
tivity theories: it is a mi
ros
opi
 phenomenonunderlying the ma
ros
opi
 one. Knowledge of the ex-a
t (probably, quantum) me
hanism of this 
lusteringis not 
ru
ial to understand the liquid�gas transition.3. FREE ENERGYWe start with the expression for the Helmholtz freeenergy for a two-
omponent slightly nonideal gas mix-ture [8℄

�F = N1 ln��31e N1V �+N2 ln��32e N2V �+�EBN1++ 1V �B11N21 + 2B12N1N2 +B22N22 � : (1)Let N1 = n be the number of 
lusters 
ontaining 
 par-ti
les ea
h; N2 = N�
n, and N be the total number ofparti
les; � = (kBT )�1, as usual. As already noted, weassume that all the 
lusters have the same and 
onstantnumber of 
onstituent parti
les, 
. The value�i =r2��mi ~is a thermal wave length and mi is a parti
le mass.EB stands for a 
luster binding energy and Bij denotese
ond virial 
oe�
ients. Thus,�F = n ln��31e nV �+ (N � 
n) ln��32e N � 
nV �++ �EBn+ 1V B(�;n); (2)and the internal energy isU = ��(�F )�� �V = 32 1� [N � (
� 1)n℄ ++EBn+ 1V B0�(�;n); (3)whereB(�;n) � B11(�)n2 + 2B12(�)n(N � 
n) ++B22(�)(N � 
n)2: (4)Within the same approximation (a slightly nonidealmixture), the equation of state is [8℄P� = 1V [N � (
� 1)n℄ + 1V 2B(�;n): (5)A dynami
 equilibrium 
on�guration of thetwo-
omponent system is de�ned by the value of n
orresponding to the minimum of the total free energy.Simple di�erentiation of Eq. (2) leads to the mainequation for n:ln��31 nV �� 
 ln��32N � 
nV �++ �EB + 1V B0n(�;n) = 0; (6)or ln ��3x��� 
 ln ��3�(1� 
x)� �� 32 ln 
+ �EB + �B0x(�;x) = 0; (7)734
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ondensationwhere� � NV ; x � nN ; � = �2; �1 = 
�1=2�;B(�;x) = B11x2 + 2B12x(1� 
x) +B22(1� 
x)2:One has to solve Eq. (7) analyti
ally, i. e., to �ndx = x(�). Instead, we found an inverse fun
tion, � == �(x), where x 2 [0; 1=
℄. This is easily done withthe aid of the Lambert W -fun
tion [9℄ (!-fun
tion inanother notation):�3� = � ax(1� 
x)
 �1=(
�1) �� exp(�W  �� ax(1�
x)
 �1=(
�1) B0x(�;x)(
�1)�3 !) ; (8)where a = 
�3=2 exp(�EB):In fa
t, equation of state (5) in the formP� = �[1� (
� 1)x℄ + �2B(�;x) (9)and Eq. (8) de�ne P (�) using the parameter x.The most interesting feature of Eq. (8) is the exis-ten
e of �forbidden� values for �. This behavior is go-verned by the sign of the derivative B0x(�;x). Namely,if for a given � it remains negative for all permissib-le values of x, then � ranges over the entire positivesemi-axis. This is 
lear from the behavior of the Lam-bert fun
tion in the negative range [9℄. If the expres-sion 
hanges its sign to positive, an equilibrium solutionjumps from the W0 bran
h, 
ontinued from the posi-tive argument, to the W�1 one. Moreover, the positiverange of the expression has another �forbidden� regionbe
ause the absolute value of the Lambert fun
tion ne-gative argument 
annot ex
eed 1=e.4. THE CRITICAL POINTThe standard de�nition of a 
riti
al point is��P�� �� = ��2P��2 �� = 0: (10)However, this de�nition is not appli
able if a singulari-ty is expe
ted to be revealed at this point. Moreover,as we just saw, there exists some spe
ial behavior 
ha-ra
terized by the sign of B0x(�;x). Thus, the very last(
riti
al) point before the � axis be
omes �teared up� isde�ned by B0x(�
;x
) = 0. In fa
t, this equation de�nes
riti
al parameters: the (inverse) 
riti
al temperature�
 and the 
riti
al 
on
entration x
, satisfying

[B12(�
)� 
B22(�
)℄ ++ x
[B11(�
)� 2
B12(�
) + 
2B22(�
)℄ = 0: (11)The left-hand side 
onsists of smooth monotoni
 fun
-tions of � (se
ond virial 
oe�
ients) and is linear in x,and hen
e attains its extremum at a limiting point. It
annot be x
 = 0 be
ause our physi
al system is sup-posed to be stable at small 
on
entrations. Therefore,the only possibility is x
 = 1=
, and Eq. (11) be
omesB11(�
)� 
B12(�
) = 0: (12)The root �
 of this equation is the inverse 
riti
al tem-perature. Naturally, these equations for x
 and �
 arestrongly depend on the approximation. A higher viralexpansion would 
ompli
ate Eq. (11), leading to diffe-rent values for the roots x
 and �
.An important observation to make here is that theatom�
luster (B12) and 
luster�
luster (B22) intera
-tions should be substantialy weak in 
omparison withthe interatomi
 one (B11), be
ause part of the gasenergy is a

umulated in the 
luster bindings. Thisresults, in turn, in a �shallow� potential well with amu
h shorter repulsive part and a relatively small inter-
luster distan
e, and then in a mu
h higher density ofthe heavy 
omponent of the gas.This new de�nition of the 
riti
al point,B0x(�
;x
) = 0, allows writing an expansion inthe vi
inity of this point,B0x(�;x) � B00x�(�
;x
)�� +B00xx(�
;x
)�x; (13)where �� � �
 � � and �x � x
 � x. Substitutingthis, x ! 1=
, � ! �
, and 1 � 
x ! 
�x in Eq. (7),we obtain the main eguation (7) in a 
lose vi
inity ofthe 
riti
al point
 ln (�x)� 
A = �B00xx�x; (14)where
A � �B00x���+�
EB�(
�1) ln ��3
��+�
�52� ln 
:This equation is solved as before with the aid of theLambert fun
tion and its solution is given by�x = eA exp��W ��1
 �B00xxeA�� (15)witheA = ��3
��1�1=
 
1�5=2
 exp�1
 ��
EB + �B00x����� :This looks like an ultimate solution of the problem, inthe vi
inity of the 
riti
al point at least, but it doesnot a

ount for the basi
 feature � the dis
ontinuityof the �-s
ale � and it should be used very 
arefully.735
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h ÆÝÒÔ, òîì 139, âûï. 4, 20115. SPECIFIC HEATThe internal energy is given byUN = 32 1� (
� 1)x� +EBx+ �B0�(�;x) (16)and the spe
i�
 heat, by
V = ��T �UN �V = �kB�2 ��� �UN�� == kB �32 [1� (
� 1)x℄� ��2B00���++ kB��32(
� 1)� �EB � ��B00x��x0� : (17)Therefore, if we look for spe
ial behavior of this quan-tity in the vi
inity of the 
riti
al point, then x and x0�have to be examined. We also use the fa
t that on the
riti
al isohore, 
V behaves like 
p in a se
ond-orderphase transition [10℄.We start with substituting Eq. (13) in Eq. (8) andthen note thatB00xx(�
;x
) = B11(�
)� 2
B12(�
) + 
2B22(�
) == B12(�
)� 
B22(�
):This represents the 
luster�atom and 
luster�
lusterintera
tions, whi
h are supposed to be very small.Hen
e, we 
an expe
t the existen
e of an interval whereB0x(�;x) � B00x�(�
;x
)�� andln ��3
�� = ln � a
=
(
�x)
 �1=(
�1) ��W  � � a
=
(
�x)
 �1=(
�1) B00x�(�
;x
)(
� 1)�3
 ��! : (18)Further 
onsideration depends on the sign ofB00x�(�
;x
)��. In the homogeneous phase, it is nega-tive, and we are on theW0 bran
h with a small positiveargument. Here, it su�
es to take W0(y) � y [9℄ and,subsequently,�3
� = � a
=
(
�x)
 �1=(
�1) ��(1� � a
=
(
�x)
 �1=(
�1) B00x�(�
;x
)(
� 1)�3
 ��) :The relevant root behaves as� (
�x)
a
=
 �1=(
�1) � B00x�(�
;x
)(
� 1)�3
 ��or �x / (��)1�1=
 :

This means that the derivative �x=�� and thereforethe spe
i�
 heat show the famous dependen
e
p / (��)�1=
 :In view of the previous suggestion, 
 = 13, this expo-nent be
omes � � 0:077.An analogous 
al
ulation 
annot be done for a non-homogeneous phase be
ause an equilibrium solutiondoes not exist in this region.6. CONCLUSIONSA model that explains basi
 features of 
ondensa-tion is presented. The simple assumption of a relativestability of only one type of 
lusters statisti
ally emer-ging in the gas immediately leads to a �rst-order phasetransition (phase separation) at some �nite tempera-ture. It is experimentally observed as a 
ondensationpro
ess.We stress again that this model is by no means asimpli�ed version of Fisher's model.Mathemati
ally, the 
ondensation reveals itself as aforbidden density (volume) region. The density jumpsfrom its gaseous value to the liquid one. No intermedia-te values are allowed. A 
orresponding region for theVan der Waals equation is the well-known S-shaped in-stability. It needs a spe
ial auxiliary 
onstru
tion to betreated as a metastable state.This paper presents a new 
on
ept of the 
riti
alpoint: it is a point of the density 
ontinuity failure.This de�nition 
oin
ides graphi
ally with the old onebut it allows 
onstru
ting a 
onvenient expansion inthe 
lose vi
inity of the point under 
onsideration. Itdemonstrates the famous singularity with the exponent� � 0:077 that is in ex
ellent agreement with knowndata.The author is grateful to A. Voronel andM. S
hwartz for the valuable dis
ussions. Finan
i-al support of A. Voronel during a part of this studyis kindly a
knowledged. Extensive editorial e�orts ofE. Klep�sh made this manus
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