ZK9T®, 2011, rom 139, Boin. 4, ctp. 733-737

© 2011

A SIMPLE THEORY OF CONDENSATION
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A simple assumption of an emergence in gas of small atomic clusters consisting of ¢ particles each leads to
a phase separation (first-order transition). It reveals itself by the emergence of a “forbidden” density range
starting at a certain temperature. Defining this latter value as the critical temperature predicts the existence

of an interval with the anomalous heat capacity behavior ¢, oc AT~

literature yields the heat capacity exponent oo = 0.077.

1. INTRODUCTION

The theory of gas-liquid condensation is probably
the most famous unsolved problem in classical statis-
tical mechanics [1]. Numerous attempts to attack the
problem have been made during the last hundred years.
They were based on a wide range of different tech-
niques, from cumulant expansion to field theory me-
thods of phase transitions [2]. A considerable step in
this direction was made by the cluster (droplet) theory
of Fisher [3]. This theory predicts an essential singu-
larity of the free energy at the condensation point.

A simple model of condensation that opens the
way to the appearance of a critical point and the cor-
responding phase separation is suggested here. This
model reveals the basic desirable features of the con-
densation and allows a new and self-consistent defini-
tion of the critical point. Moreover, it identifies the
famous heat capacity singularity and explains it up to
the calculation of the divergency exponent in an excel-
lent accordance with the measured data.

Isolated clusters of atoms and molecules have been
observed in molecular beams experimentally and stu-
died theoretically [4]. Stability of such clusters has also
been studied in a liquid-like environment in [5]. It was
shown there that the locally preferred structure of the
Lennard—Jones liquid is an icosahedron (13 atoms), and
that the liquid-like environment only slightly reduces
its relative stability.

Scattering experiments can also be regarded as an
additional indirect argument in favor of clustering in
liquids. For example, the argon radial distribution
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/¢ The value ¢ = 13 suggested in the

function [6] shows neither temperature nor density de-
pendence of the abscissa of its first maximum, which
means that the internuclear distances in solid, liquid,
and gaseous argon are inherent characteristics of the
material. In other words, this phase independence can
be attributed to the persistence of small dense clusters.

A more detailed study of experimental evidence in
favor of the existence of relatively stable small atomic
clusters will be published elsewhere [7].

2. BASIC ASSUMPTION

Based on the foregoing, it is possible to formulate
the following basic assumption: elementary particles of
a gas (atoms or molecules) form small, relatively stable
clusters consisting of ¢ particles each. Their concentra-
tion is a function of state. It then immediately follows
that the gas should be regarded as (at least) a two-com-
ponent system (see the Figure).

The ground state of the system under consideration
is expected to be a full separation as the energetically
preferable configuration (we do not address those spe-
cial cases where geometry allows packings denser than
the FCC or HCP ones). On the other hand, at high
temperature, the system remains a mixture of atoms
and clusters. Hence, separation into two phases occurs
at a finite temperature.

This observation helps us answer a very natural
question: why do we suppose clusters of only one size to
form or, at least, to be stable. Unfortunately, we do not
know an a priori reason for this. On the other hand,
as we see, the existence of clusters of one size leads
to the separation. Therefore, the existence of clusters
of any different number of particles would reveal itself
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Gas as a binary mixture

through multiple separations. To the best of our know-
ledge, it is not the case with simple liquids in Nature.
This a posteriori argument therefore justifies our basic
assumption. Incidentally, the complicated phase dia-
grams of complex liquids may be attributable to the
existence of clusters of different sizes and nature.

Such a model reveals a universal behavior. Indeed, a
close vicinity of the critical point (if it exists) has to be
governed by the universal properties of the two-com-
ponent mixture separation, regardless of the specific
details of the inter-particle interaction. That interac-
tion affects the critical parameters, i.e., physical coor-
dinates, but not the system behavior.

Our basic assumption plays a role analogous to that
of the Cooper pairing in an early version of the super-
conductivity theories: it is a microscopic phenomenon
underlying the macroscopic one. Knowledge of the ex-
act (probably, quantum) mechanism of this clustering
is not crucial to understand the liquid-gas transition.

3. FREE ENERGY

We start with the expression for the Helmholtz free
energy for a two-component slightly nonideal gas mix-
ture [8]

+ % (B11N? +2B15N1 Ny + Bos N3 ) . (1)
Let N1 = n be the number of clusters containing ¢ par-
ticles each; No = N —cn, and N be the total number of
particles; 3 = (kgT) !, as usual. As already noted, we
assume that all the clusters have the same and constant
number of constituent particles, c. The value
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is a thermal wave length and m; is a particle mass.
Ep stands for a cluster binding energy and B;; denote
second virial coefficients. Thus,

A A3 N —cn
BF =nln (?V) + (N —cn)ln <? v )-l—

1
+BEpn+ 5 B(Bin),  (2)
and the internal energy is

- (20

31
o5 >V_—B[N—(c—1)n]+

2

+ Epn+ By (Bim), (3

where
B(#;n) = Bi(B)n® + 2Bi2(B)n(N — en) +
+ B (B)(N —en)?. (4)

Within the same approximation (a slightly nonideal
mixture), the equation of state is [8]

P8 =N = (=l + BB ()

A dynamic equilibrium configuration of the
two-component system is defined by the value of n
corresponding to the minimum of the total free energy.
Simple differentiation of Eq. (2) leads to the main
equation for n:

N —
In (/\?%) —cln <>\§ Vcn) +

+8Ep + BB =0, (0

In (AN*zp) — cln (Mp(1 — cx)) —

3
- ilnc—i—,BEB +pBL(B;x) =0, (7)
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where

n
N’
B(B;z) = Bi12® + 2B1sx(1 — cx) 4 Bos (1 — cx)>.

M o=c V2,

xr = A:A%

N
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One has to solve Eq. (7) analytically, i.e., to find
x = z(p). Instead, we found an inverse function, p =
= p(x), where = € [0,1/c]. This is easily done with
the aid of the Lambert W-function [9] (w-function in
another notation):

ar 1/(e=1)
o=ty
where

a=c"%?exp(BEp).

In fact, equation of state (5) in the form

PB = p[l = (c—1)a] + p* B(B; 2) (9)

and Eq. (8) define P(p) using the parameter x.

The most interesting feature of Eq. (8) is the exis-
tence of “forbidden” values for p. This behavior is go-
verned by the sign of the derivative B, (3;x). Namely,
if for a given £ it remains negative for all permissib-
le values of x, then p ranges over the entire positive
semi-axis. This is clear from the behavior of the Lam-
bert function in the negative range [9]. If the expres-
sion changes its sign to positive, an equilibrium solution
jumps from the Wy branch, continued from the posi-
tive argument, to the W_; one. Moreover, the positive
range of the expression has another “forbidden” region
because the absolute value of the Lambert function ne-
gative argument cannot exceed 1/e.

4. THE CRITICAL POINT

The standard definition of a critical point is

(5),= (52), =

p?

However, this definition is not applicable if a singulari-
ty is expected to be revealed at this point. Moreover,
as we just saw, there exists some special behavior cha-
racterized by the sign of B.(/;z). Thus, the very last
(critical) point before the p axis becomes “teared up” is
defined by B.,(B¢;x.) = 0. In fact, this equation defines
critical parameters: the (inverse) critical temperature
B and the critical concentration z., satisfying

oP
dp

(10)
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[B12(B:) — cBa2(B:)] +
+ 2[B11(Be) — 2¢Bia(fe) + ¢* Bz (8:)] = 0.

The left-hand side consists of smooth monotonic func-
tions of 8 (second virial coefficients) and is linear in x,
and hence attains its extremum at a limiting point. It
cannot be z. = 0 because our physical system is sup-
posed to be stable at small concentrations. Therefore,
the only possibility is . = 1/¢, and Eq. (11) becomes

Bi1(Be) — eBi2(B:) = 0.

The root 3. of this equation is the inverse critical tem-
perature. Naturally, these equations for z. and . are
strongly depend on the approximation. A higher viral
expansion would complicate Eq. (11), leading to diffe-
rent values for the roots z. and S..

An important observation to make here is that the
atom—cluster (Bia) and cluster—cluster (Bay) interac-
tions should be substantialy weak in comparison with
the interatomic one (Bj1), because part of the gas
energy is accumulated in the cluster bindings. This
results, in turn, in a “shallow” potential well with a
much shorter repulsive part and a relatively small inter-
cluster distance, and then in a much higher density of
the heavy component of the gas.

This new definition of the point,
B! (Be; ) 0, allows writing an expansion in
the vicinity of this point,

B;(B,x) ~ gﬁ(ﬁc;xC)Aﬁ + B;Ix(ﬁc;xc)Axa

where A = . —  and Az = x, — x. Substituting
this, z — 1/¢, B — B¢, and 1 — cx — cAz in Eq. (7),
we obtain the main eguation (7) in a close vicinity of
the critical point

(11)

(12)

critical

(13)

cln (Az) — cA = pBl], Az, (14)

where

cA = pBsAB+[.Ep—(c—1)In (A2p) + (c—%) Inc.

This equation is solved as before with the aid of the
Lambert function and its solution is given by

with
A _ (\3 \1=1/c 1-5/2¢ 1 N
e —()\Cp) c exp C(BCEB +pB;j B) .

This looks like an ultimate solution of the problem, in
the vicinity of the critical point at least, but it does
not account for the basic feature — the discontinuity
of the p-scale — and it should be used very carefully.
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5. SPECIFIC HEAT

The internal energy is given by

U 31—(ec-1 !
N — §¥+EB$+{)BQ(B§$) (16)

and the specific heat, by

o (U o (U
ov=o7(5), =5 (5), -

= kg {g [1—(c—1)z] —pBQBgB} +

+hu {§le=1) = 8En - p3BLs o (11

Therefore, if we look for special behavior of this quan-
tity in the vicinity of the critical point, then z and 27
have to be examined. We also use the fact that on the
critical isohore, cy behaves like ¢, in a second-order
phase transition [10].

We start with substituting Eq. (13) in Eq. (8) and
then note that

Bgm(ﬁc;xc) = Bll(ﬂc) - 20312(/80) + 02322(50) =
= B12(Bc) - CB22(/BC)‘

This represents the cluster—atom and cluster—cluster
interactions, which are supposed to be very small.
Hence, we can expect the existence of an interval where
B (8;x) = Bys(Be; xe)AB and

afe TVED
In (/\gp) =In |:(CA/1‘)C:| -
3 [ ac/e 1/(e=1) By s(Beswe)
v ( e =

Further consideration depends on the sign of
B;’B(,Bc;xc)AB. In the homogeneous phase, it is nega-
tive, and we are on the Wy branch with a small positive
argument. Here, it suffices to take Wy(y) ~ y [9] and,
subsequently,

- [ ]”“—” )

Aep =

(cAx)e
i aofc 1/(e=1) Bgﬁ(ﬁc;xc)Aﬂ
(cAxz)e (c—1)\3 '
The relevant root behaves as
c11/(c—1 .
(CAQL‘) /( ) ~ Blzlﬁ(ﬂmxc) AB
ac/c (c—1)A3

or Az (AB)TVe.

This means that the derivative Az/Af and therefore
the specific heat show the famous dependence

cp o (AB)HC,

In view of the previous suggestion, ¢ = 13, this expo-
nent becomes a ~ 0.077.

An analogous calculation cannot be done for a non-
homogeneous phase because an equilibrium solution
does not exist in this region.

6. CONCLUSIONS

A model that explains basic features of condensa-
tion is presented. The simple assumption of a relative
stability of only one type of clusters statistically emer-
ging in the gas immediately leads to a first-order phase
transition (phase separation) at some finite tempera-
ture. It is experimentally observed as a condensation
process.

We stress again that this model is by no means a
simplified version of Fisher’s model.

Mathematically, the condensation reveals itself as a
forbidden density (volume) region. The density jumps
from its gaseous value to the liquid one. No intermedia-
te values are allowed. A corresponding region for the
Van der Waals equation is the well-known S-shaped in-
stability. It needs a special auxiliary construction to be
treated as a metastable state.

This paper presents a new concept of the critical
point: it is a point of the density continuity failure.
This definition coincides graphically with the old one
but it allows constructing a convenient expansion in
the close vicinity of the point under consideration. It
demonstrates the famous singularity with the exponent
a &~ 0.077 that is in excellent agreement with known
data.

The author is grateful to A. Voronel and
M. Schwartz for the valuable discussions. Financi-
al support of A. Voronel during a part of this study
is kindly acknowledged. Extensive editorial efforts of
E. Klepfish made this manuscript readable.
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