МАГНИТНОЕ УПОРЯДОЧЕНИЕ В ДИСКРЕТНЫХ СПЛАВАХ ПОЛУПРОВОДНИКОВ IV ГРУППЫ С ПЕРЕХОДНЫМИ 3*d*-МЕТАЛЛАМИ

М. М. Отроков^a^{*}, В. В. Тугушев^{b,c}, А. Эрнст^{d**}, С. А. Останин^d, В. М. Кузнецов^a, Е. В. Чулков^{c,e}

> ^а Томский государственный университет 634050, Томск, Россия

^bРоссийский научный центр «Курчатовский институт» 123182, Москва, Россия

^c Departamento de Física de Materiales, Facultad de Ciencias Químicas, UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) 20080, San Sebastián, Basque Country, Spain

> ^d Max-Planck-Institut für Mikrostrukturphysik D-06120, Halle, Germany

^e Donostia International Physics Center (DIPC) 20018, San Sebastián, Basque Country, Spain

Поступила в редакцию 10 августа 2010 г.

Проведено исследование *ab initio* магнитного упорядочения в дискретных сплавах, состоящих из монослоев переходных 3*d*-металлов Ti, V, Cr, Mn, Fe, Co и Ni, помещенных в полупроводниковые матрицы Si, Ge или Si_{0.5}Ge_{0.5}. C помощью расчетов параметров обменных взаимодействий и полных энергий показано, что ферромагнитный порядок реализуется лишь в монослоях марганца, в то время как в монослоях V, Cr и Fe более вероятно установление антиферромагнитного упорядочения, а монослои Ti, Co и Ni являются немагнитными. На основе расчетов магнонных спектров проведен анализ стабильности ферромагнитной фазы в дискретных сплавах, содержащих монослои марганца.

1. ВВЕДЕНИЕ

Разбавленные магнитные полупроводники (РМП) типа A^{IV} : M на основе элементов IV группы ($A^{IV} = Si, Ge$), легированных магнитными переходными 3d-металлами (M = Cr, Mn, Fe, Co), привлекают в последние годы большой интерес в качестве новых материалов магнитной электроники, используемых, например, для спиновой инжекции [1]. Такие РМП можно, с одной стороны, легко интегрировать в стандартную технологию немагнитных полупроводниковых структур на основе кремния, а с другой, в них, по-видимому, можно успешно реализовать эффективный перенос спин-поляризованных носителей тока (как правило, дырок). Наибольший прогресс как теоретический, так и экспериментальный, достигнут в изучении РМП типа Ge: Mn и Si: Mn, хотя до полного понимания их магнитных и транспортных свойств еще предстоит долгий и непростой путь.

Согласно традиционной терминологии, РМП типа Ge:Mn и Si:Mn представляют собой неупорядоченные сплавы (твердые растворы) Ge_{1-x}Mn_x и Si_{1-x}Mn_x с низким или умеренным ($x \approx 0.001-0.1$) содержанием марганца. Согласно теоретическим предсказаниям [2], основанным на *ab initio* расчетах электронной структуры, в таких сплавах должно иметь место ферромагнитное (Φ M) упорядочение при достаточно высоких температурах Кюри ($T_C \approx 300-500$ K). Это упорядочение обусловлено

^{*}E-mail: otrokov@phys.tsu.ru

^{**}A. Ernst

непрямым обменом локальных моментов на ионах марганца через свободные носители (дырки), источником которых также являются ионы марганца («carrier mediated ferromagnetism»). При этом эффективный момент на ионе марганца должен составлять $\mu \approx 3\mu_B$, слабо меняясь в зависимости от занимаемой этим ионом позиции (напомним, что для изолированного иона марганца наиболее энергетически выгодной является позиция замещения в решетке германия или позиция тетраэдрического внедрения в решетке кремния). В реальных сплавах $\operatorname{Ge}_{1-x}\operatorname{Mn}_x$ и $\operatorname{Si}_{1-x}\operatorname{Mn}_x$ ситуация оказалась намного сложнее, чем предполагалось в модели [2], и вопрос о высокотемпературном ферромагнетизме в этих сплавах остается открытым. Дело в том, что практически при любой методике их выращивания имеет место сильная фазовая сегрегация с образованием различных включений и кластеров, что приводит к противоречию между экспериментальными результатами и теоретическими предсказаниями, сделанными для макроскопически однородных систем.

Вопрос о природе ферромагнетизма в сплавах $\operatorname{Ge}_{1-x}\operatorname{Mn}_x$ нельзя считать окончательно решенным, хотя имеется четкое понимание сложившейся экспериментальной ситуации. Так, в работе [3] изучались эпитаксиальные пленки $Ge_{1-x}Mn_x$ ($x \approx 0.035$); в этих пленках ниже T = 116 К наблюдался ФМ-порядок, обусловленный, по-видимому, наличием магнитных включений (преципитатов) размером от 2 до 6 нм с повышенным по отношению к основному материалу содержанием марганца. Как показали исследования [4-7] сплавов с низким или умеренным ($x \approx 0.02-0.1$) содержанием марганца, в состав преципитатов входят различные германаты марганца, например Ge₃Mn₅ или Ge₈Mn₁₁, обладающие ближним ФМ-порядком при температурах вблизи и выше комнатной. Это обстоятельство приводит к наблюдаемому в экспериментах выше некоторой характерной температуры блокировки суперпарамагнитному поведению преципитатов, каждый из которых имеет гигантский магнитный момент (до $2000 \mu_B$). Чтобы непротиворечиво интерпретировать результаты магнитных измерений в сплавах с низким и умеренным (x < 0.09) содержанием марганца, авторам работы [8] пришлось ввести две различных температуры ФМ-упорядочения: T_C^* и T_C , где более высокая $T_C^* \approx 300~{
m K}$ отвечает появлению ближнего ФМ-порядка внутри преципитата, а более низкая, $T_C \approx 10$ K, является точкой перколяционного перехода в ФМ-состояние во всем образце. Отметим, однако, что авторы работ [9, 10] наблюдали ФМ-порядок при комнатной температуре соответственно в сплавах Ge_{0.94}Mn_{0.06} и Ge_{0.981}Fe_{0.019}. При этом подчеркивалось, что ионы марганца и железа инкорпорируются в решетку германия, а вторичные фазы и кластеры обнаружены не были. Транспортные измерения [11] выявили полупроводниковый характер проводимости сплава Ge_{0.81}Mn_{0.13}Fe_{0.06} во всем температурном интервале. Как следует из результатов данной работы, непрямое ФМ-взаимодействие осуществляется при этом локализованными дырками с концентрацией около 10²⁰ см⁻³ и подвижностью около 10 см²/В·с.

Таким образом, в сплавах $Ge_{1-x}Mn_x$ магнитное упорядочение происходит, скорее всего, в несколько этапов. При высоких температурах (выше или порядка комнатной) происходит формирование ближнего ФМ-порядка внутри отдельных нанопреципитатов, образующихся вследствие крупномасштабных флуктуаций состава сплава и содержащих германаты марганца или твердые растворы с повышенной концентрацией марганца. Затем, при более низких температурах происходит блокировка и, возможно, частичное упорядочение магнитных моментов этих нанопреципитатов в матрице $Ge_{1-x}Mn_x$ с пониженным содержанием марганца. Наконец, при самых низких температурах начинается процесс ФМ-упорядочения локальных моментов ионов марганца, диспергированных в матрице $\operatorname{Ge}_{1-x}\operatorname{Mn}_x$, возможно, по перколяционному сценарию (см., например, дискуссию в работе [5]).

Гораздо более неопределенная ситуация сложилась в понимании природы ферромагнетизма в сплавах $\mathrm{Si}_{1-x}\mathrm{Mn}_x$, для которых полученные экспериментальные результаты крайне противоречивы. Имеются данные о высокотемпературном ФМ-порядке $(T_C^* \approx 250-400 \text{ K})$ в сплавах $\mathrm{Si}_{1-x}\mathrm{Mn}_x$ с низким или умеренным ($x \approx 0.001-0.1$) содержанием марганца, полученных методами вакуумного осаждения [12], ионной имплантации [13] и магнетронного напыления [14, 15] марганца, однако механизм этого порядка остается неясным. С другой стороны, в сплавах $a-\mathrm{Si}_{1-x}\mathrm{Mn}_x$ (0.01 < x < 0.175), полученных допированием аморфного кремния марганцем с последующей гомогенизацией сплава, ФМ-порядок не был обнаружен [16], хотя магнитная восприимчивость этих сплавов в широком диапазоне составов отвечает закону Кюри-Вейсса с очень малым эффективным моментом (менее $0.1 \mu_B/Mn$). Авторы работы [16] предположили, что в сплавах *a*-Si_{1-x}Mn_x лишь малая часть от общего числа ионов марганца участвует в формировании ФМ-порядка, находясь в решетке кремния в виде изолированных центров

с локальными магнитными моментами, в то время как подавляющая часть ионов марганца находится в немагнитных конфигурациях. Результаты рентгеновской [17, 18] и электронной [19] микроскопии свидетельствуют о том, что в сплавах $Si_{1-x}Mn_x$ большинство ионов марганца не занимает позиции замещения или внедрения в решетке кремния, а входит в состав различных силицидов (типа Mn₄Si₇ или Mn₁₁Si₁₉), образующих кластеры или включения (преципитаты) нанометровых размеров с номинальным составом MnSi_{1.7} [20]. При этом средний магнитный момент в пересчете на ион марганца, рассчитанный из данных по насыщению намагниченности в сильном магнитном поле, оказывается весьма малым (около $0.21 \mu_B$), что полностью противоречит теоретическим предсказаниям [2]. В работе [21] в пленках Si_{1-x}Mn_x с высоким содержанием марганца ($x \approx 0.35$), полученных методом лазерного напыления, наблюдался аномальный эффект Холла с ярко выраженным гистерезисным поведением, указывающим на наличие ФМ-порядка. Была зафиксирована температура Кюри $T_C \approx 250$ К и эффективный момент на ион марганца $\mu \approx 0.1 - 0.2 \mu_B$. Заметим, однако, что система [21] сильно отличается от обсуждавшихся выше систем с полупроводниковым типом проводимости [12–15], демонстрируя металлический тип проводимости. Кстати, аномальный эффект Холла наблюдался и в эпитаксиальных пленках $\mathrm{Si}_{1-x}\mathrm{Fe}_x$ с $x \approx 0.07$ при температурах ниже 26 К, что свидетельствует об отсутствии высокотемпературного ферромагнетизма в этом материале [22].

Полученные результаты ставят серьезные вопросы о природе ферромагнетизма в сплавах $Si_{1-x}Mn_x$. С одной стороны, очевидно, что модель непрямого обмена между локальными моментами на ионах марганца по механизму «carrier mediated ferromagnetism» не может объяснить возникновение ФМ-порядка в этих системах просто потому, что таких моментов крайне мало. С другой стороны, хотя указанные выше силициды марганца являются слабыми зонными ферромагнетиками (weak itinerant ferromagnets), очень сложно интерпретировать Φ М-порядок в сплавах $Si_{1-x}Mn_x$ в рамках традиционного механизма зонного ферромагнетизма. Дело в том, что для большинства известных силицидов марганца $T_C \approx 50$ K, а эффективный момент на ион марганца $\mu \approx 0.01 \mu_B$ [23, 24], т.е. являются величинами на порядок меньшими, чем в обсуждаемых системах. В недавней работе [25] было высказано предположение, что ферромагнетизм в сплавах $\mathrm{Si}_{1-x}\mathrm{Mn}_x$ не связан непосредственно с наличием магнитных ионов марганца в той или иной форме, а обусловлен появлением магнитных дефектов (типа оборванных связей в решетке кремния) в процессе приготовления сплава, например, при ионной имплантации или лазерном напылении на подложку. Следует признать, таким образом, что вопрос о природе и механизме ФМ-порядка в сплавах Si_{1-x}Mn_x в настоящее время остается нерешенным.

Дискретные магнитные сплавы (ДМС, а в англоязычной литературе digital magnetic alloys) типа A^{IV}/M, о которых пойдет речь в настоящей работе, представляют собой нетрадиционную разновидность РМП на основе элементов IV группы. В этих материалах ионы М (чаще всего, марганца) с номинальной концентрацией, соответствующей моноили субмонослойному покрытию, вводятся в матрицу полупроводника A^{IV} (Si или Ge) посредством селективного легирования в процессе молекулярно-лучевой эпитаксии и формируют так называемые магнитные δ-слои [1]. Эти δ-слои образуют либо отдельные магнитные элементы гибридной полупроводниковой гетероструктуры, либо периодическую решетку таких элементов (собственно говоря, и называемую термином ДМС). Таким способом можно достичь локально высокой концентрации ионов переходных металлов, которая значительно превышает предел их растворимости в объемных полупроводниках. Величина обменного взаимодействия между магнитными моментами внутри б-слоев существенно выше, чем в объемных РМП, а величина обменного взаимодействия между б-слоями может варьироваться подбором состава и геометрических параметров ДМС. Следовательно, в данных материалах можно в широких пределах изменять их магнитные и транспортные свойства.

Наиболее интенсивно за последние годы исследовались ДМС типа $(A^{III}B^V)/M$, где $A^{III}B^V =$ = GaAs, GaSb. Это связано, в первую очередь, с тем обстоятельством, что для данных систем разработаны надежные методы получения относительно качественных ферромагнитных δ -слоев. Так, например, ДМС в виде гетероструктуры GaAs/MnAs был выращен поочередным осаждением нанослоев GaAs и MnAs [26, 27]. В ДМС типа GaAs/Mn и GaSb/Mn субмонослои ионов марганца были периодически вставлены в матрицу GaAs или GaSb [28, 29]. Необходимо также отметить оригинальный способ создания одиночных ферромагнитных δ-слоев из ионов марганца в гетероструктурах на основе GaAs, успешно реализованный в работах [31, 32]. Несмотря на чрезвычайно интересные перспективы, ДМС типа A^{IV}/М в экспериментальном плане практически не исследованы. Проблемы фазовой сегрегации (образование силицидов и германатов переходных металлов в процессе выращивания ДМС), судя по всему, пока препятствуют выращиванию качественных δ -слоев в матрицах кремния и германия. Первый успех в этом направлении был достигнут в работе [33] для многослойных структур [Si(20 Å)/Mn(x)]₃₀ при номинальном составе δ -слоя x = 1, 1.5 и 2.0 Å.

В теоретическом плане основное внимание пока уделяется расчетам ab initio зонной структуры ДМС типа A^{IV}/M, которым посвящена наша работа. Электронный спектр этих ДМС содержит как сильно коррелированные узкие, так и слабо коррелированные широкие зоны. Магнитный порядок внутри каждого слоя возникает благодаря сильной корреляции электронных состояний в узких зонах и их гибридизации с состояниями в широких зонах, т. е. происходит по зонному механизму Андерсона-Хаббарда [34]. В то же время обменная связь между различными слоями переходных металлов носит ярко выраженный характер суперобмена и осуществляется путем туннелирования квазичастиц через квазидвумерные спин-поляризованные состояния [35–38], образуемые слоями в матрице A^{IV}.

2. ПОСТАНОВКА ЗАДАЧИ

Исследования ab initio электронной структуры и магнитного порядка ДМС А^{IV}/М, как правило, ограничиваются рассмотрением идеальных монослоев замещения, а в качестве магнитного компонента наиболее часто выбирается марганец. Так, для ДМС Ge/Mn с толщиной прослоек германия вплоть до 31 атомного слоя (в дальнейшем мы будем использовать обозначение Ge₃₁/Mn) были предсказаны ФМ-упорядочение в слое марганца и электронная структура, близкая к полуметаллической [39, 40]. Авторы работы [41], введя параметр Хаббарда U = 2 эВ для *p*-состояний Ge¹⁾, предсказали полуметаллический электронный спектр для Ge7/Mn и усиление тенденции к формированию ФМ-порядка в металлическом слое. Магнитный порядок и электронный спектр в ДМС Si/Mn качественно не отличаются от Ge/Mn [42]. Дополнительно известно, что в Si₁₅/Mn полуметаллическое состояние сохраняется при наличии в плоскости б-слоя вплоть до

25 % вакансий или атомов кремния (располагающихся в узлах решетки) той же концентрации [43]. ДМС Si_{23}/M (M = Cr, Mn, Fe, Co) были недавно исследованы в работе [44], где сообщалось о ФМ-порядке в монослое хрома и об антиферромагнитном $(A\Phi M)$ в слоях Fe и Co; результаты, полученные относительно ДМС с δ-слоем марганца находились в согласии с расчетами [42]. В работе [44] было предположено незначительное влияние структурных релаксаций на магнитный порядок в слоях переходных металлов и рассматривались нерелаксированные ДМС. Однако позднее авторами статьи [45] было обнаружено, что в полностью релаксированных ДМС Si_N/Fe (7 < N < 19) δ -слои железа являются ферромагнитными. Кроме того, при помощи расчетов полных энергий было предсказано ФМ-упорядочение в слое железа, помещенном в матрицу кремния по типу внедрения. Ферромагнитный порядок в 0.25, 0.5 и полном монослое марганца по типу внедрения в матрице кремния был предсказан в работе [46]. Однако полная процентная спиновая поляризация на уровне Ферми была обнаружена лишь в системе с 0.25 монослоя марганца. Согласно проведенным расчетам, наличие межузельных атомов кремния в δ-слое замещения приводит к потере полуметалличности вследствие энергетически выгодного обмена позициями, приводящего к оккупированию атомом кремния узла, а атомом марганца тетраэдрической пустоты.

Следует отметить, что, за исключением работы [41], во всех упомянутых выше исследованиях тип магнитного порядка определялся на основе расчетов полных энергий $A\Phi M$ - и ΦM -конфигураций локальных моментов в δ -слое переходного металла. При этом использовалась упрощенная модель, в которой рассматривались взаимодействия только между ближайшими соседями в δ -слое, однако правомерность применения такой модели не является очевидной. В настоящей работе для определения типа магнитного порядка в ДМС используются высокоточные расчеты *ab initio* интегралов обменного взаимодействия и полных энергий $A\Phi M$ - и ΦM -конфигураций, поскольку такой подход является достаточно надежным при определении типа магнитного порядка.

Что касается компонентов изучаемых сплавов, то кроме германия и кремния в данной работе в качестве матрицы впервые рассматривается неупорядоченный твердый раствор $Si_{0.5}Ge_{0.5}$ в котором атомы кремния и германия хаотически распределены по узлам решетки. Помимо марганца, в качестве δ -легирующего элемента мы так же исследуем переходные металлы Ti, V, Cr, Fe, Co и Ni. В отношении Ti, V, Co и Ni необходимо отметить, что наличие

¹⁾ В рамках полнопотенциального линеаризованного метода присоединенных плоских волн в обобщенном градиентном приближении к обменно-корреляционному функционалу U = 2 эВ приводит к экспериментальной величине фундаментальной щели в объемном германии.

(отсутствие) локального магнитного момента в объемном переходном металле не обязательно означает наличие (отсутствие) локального момента на ионе данного сорта в дискретном сплаве с A^{IV}.

Как было показано в работе [45], в ДМС Si/Fe разница энергий внутрислоевых АФМ- и ФМ-конфигураций локальных моментов чувствительна к изменению кратчайшей длины связи между атомами железа и кремния, возникающему при структурной релаксации. В соответствии с этим, в наших расчетах исследование внутрислоевого магнитного упорядочения в дискретных сплавах проводится как для релаксированных, так и для нерелаксированных систем.

3. ОПИСАНИЕ МОДЕЛИ И МЕТОДА РАСЧЕТА

Дискретные магнитные сплавы моделировались сверхячейками $(A^{\rm IV})_7/M$, состоящими из монослоя замещения M = Ti, V, Cr, Mn, Fe, Co, Ni и полупроводниковой прослойки $A^{IV} = Si, Si_{0.5}Ge_{0.5}, Ge$ толщиной семь атомных слоев. Согласно проведенным расчетам обменных параметров, прослойка данной толщины эффективно ослабляет межслоевые обменные взаимодействия. Поэтому качественные различия в магнитном упорядочении в δ-слоях ДМС $\mathrm{A_7^{IV}/M}$ и $\mathrm{A_{11}^{IV}/M}$ отсутствуют, что подтверждается тестовыми расчетами для $A^{IV} = Si$, Ge и M = Mn, Fe. Далее в обозначении A₇^{IV}/М мы не будем указывать нижний индекс «7» за исключением тех случаев, когда такое обозначение необходимо. Плоскостью роста ДМС была выбрана плоскость (001). Базисные векторы элементарных ячеек а, b и с направлены соответственно вдоль [100], [010] и [001], а их модули $a = b = a_0^{A^{IV}}$ и $c = 2a_0^{A^{IV}}$, где $a_0^{A^{IV}}$ — оптимизированная постоянная решетки объемного полупроводника А^{IV} в структуре алмаза. Равновесные параметры решеток полупроводников определялись при помощи нахождения экстремумов расчетных кривых зависимости полной энергии от объема, подогнанных под уравнение состояния Бёрча второго порядка [47]. Полученные таким образом значения постоянных решеток составили $a_0^{Si} = 5.46$ Å, $a_0^{Si_{0.5}Ge_{0.5}} = 5.61$ Å и $a_0^{\text{Ge}} = 5.77 \,\text{\AA}.$

Расчеты выполнялись в рамках теории функционала электронной плотности в обобщенном градиентном приближении (ОГП) к обменно-корреляционному потенциалу [48]. Для проведения структурных релаксаций в ДМС использовались плоско-волновой базис и PAW-псевдопотенциалы [49], реали-

зованные в коде VASP (Vienna ab initio simulation package) [50, 51]. Базисный набор плоских волн с энергиями менее 500 эВ и Г-центрированная сетка специальных k-точек [52] 6 \times 6 \times 2 обеспечивали сходимость полной энергии с точностью до 0.1 мэВ в расчете на атом. При использовании более плотной сетки в зоне Бриллюэна величины релаксаций изменялись не более чем на 0.25 %. Оптимизация атомных позиций продолжалась до достижения сил менее 0.01 эB/Å для каждого атома в сверхрешетке. После этого проводились расчеты электронной структуры методом Корринги-Кона-Ростокера (ККР) [53, 54] в приближении атомных сфер (ПАС), использование которого для исследования систем с высокой симметрией в рамках метода сверхячейки, как известно, приводит к разумным результатам [55]. Мы провели также тестовые расчеты, используя полнопотенциальную версию ККР, которые не выявили значительных расхождений с расчетами в ПАС для полных энергий, магнитных моментов и обменных параметров. Поскольку расчеты в рамках ККР-ПАС являются вычислительно менее затратными, мы ограничились использованием именно данного приближения. При этом использовалась сетка специальных **k**-точек 12 × 12 × 6. Изменение полной энергии при расчетах на более точных сетках составляло менее 1 мэВ на элементарную ячейку.

Полностью релаксированный неупорядоченный сплав Si_{0.5}Ge_{0.5} моделировался в приближении когерентного потенциала (ПКП), сформулированном в рамках метода ККР [56,57]. Корректность описания неупорядоченного сплава Si_{0.5}Ge_{0.5} в наших расчетах подтверждается удовлетворительным согласием рассчитанного (10^{-2} Å) и экспериментального ($7 \cdot 10^{-3}$ Å [58]) значений отклонения параметра решетки $a_0^{Si_{0.5}Ge_{0.5}}$ от значения, полученного в предположении линейного поведения $a_0^{Si_{1-x}Ge_x}(x)$ (закон Вегарда [59]). Для оптимизации атомных позиций в ДМС Si_{0.5}Ge_{0.5}/М мы интерполировали значения смещений, наблюдавшихся при релаксациях в Si/М и Ge/M, в соответствии с рассчитанной зависимостью $a_0^{Si_{1-x}Ge_x}(x)$.

Как известно, в рамках теории функционала электронной плотности невозможно корректно описать электронные структуры полупроводников и изоляторов, что выражается в недооценке величин запрещенных зон. В то же время зонные спектры, полученные в рамках GW-приближения находятся в хорошем согласии с экспериментом [60]. В наших расчетах электронные структуры собственных объемных Si, Si_{0.5}Ge_{0.5} и Ge приводятся в соответствие с полученными в рамках GW-приближения [61] при помощи комбинированного подхода [62, 63], в котором энергия валентных *р*-электронов полупроводника учитывается путем введения эффективного кулоновского потенциала U, а остовные и валентные *s*-электроны описываются потенциалом ОГП. Таким образом, согласие с GW-расчетами зонных спектров Si, Si_{0.5}Ge_{0.5} и Ge достигается при значениях эффективного кулоновского потенциала соответственно U = 1.38, 1.25 и 1.53 эВ. Величины запрещенных зон при этом соответствуют экспериментальным значениям $E_g^{Si} \approx 1.12$ эВ, $E_g^{Si_{0.5}Ge_{0.5}} \approx 1$ эВ (величина щели для полностью релаксированного сплава [61]) и $E_q^{Ge} \approx 0.65$ эВ.

Расчет интегралов обменного взаимодействия J_{ij} между локальными моментами ионов переходных металлов в сплавах проводился на сетках **k**-точек $32 \times 32 \times 16$ с использованием магнитной теоремы сил (magnetic force theorem) [64] и гамильтониана Гейзенберга,

$$H = -\sum J_{ij}\mathbf{e}_i \cdot \mathbf{e}_j$$

где единичные векторы $\mathbf{e}_{i(j)}$ указывают направления локальных магнитных моментов, а J_{ij} описывают взаимодействия между ними. Идея магнитной теоремы сил состоит в рассмотрении бесконечно малых вращений классических спинов, расположенных на двух различных узлах. Возникающие вследствие этого изменения энергии, $\delta E = J_0(1 - \cos \delta \theta)$, где $\delta \theta$ — угол поворота, отображаются на классический гамильтониан Гейзенберга при помощи теории многократного рассеяния. Коэффициент $J_0 = \sum_{i \neq 0} J_{0i}$, соответствующий энергии, которую необходимо затратить, чтобы изменить направление локального момента на противоположное, отражает «одноузельную спиновую жесткость» и ФМ-состояние стабильно, когда $J_0 > 0$.

4. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

4.1. Структурная релаксация

В рамках используемой модели введенный в матрицу элементарного полупроводника монослой переходного металла вызывает такие релаксации, при которых атомные плоскости полупроводника движутся как единое целое, в то время как внутриплоскостные смещения атомов вдоль [001] пренебрежимо малы. Очевидно, такое положение вещей не может сохраняться в случае, если каждая атомная плоскость полупроводниковой прослойки содержит атомы двух сортов, как это имеет место в случае Si_{0.5}Ge_{0.5}. Строго говоря, в неупорядоченном сплаве $\mathrm{Si}_{1-x}\mathrm{Ge}_x$ отсутствует ближний порядок, поскольку длины межатомных связей (т. е. кратчайшие расстояния) Si-Si, Si-Ge и Ge-Ge не являются одинаковыми. При этом реальные положения атомов кремния и германия уже не соответствуют позициям узлов идеальной структуры алмаза, что вкупе с наличием в системе двух сортов атомов приводит к более сложному характеру релаксаций при введении в полупроводник δ -слоя переходного металла. К сожалению, описанная ситуация не может быть смоделирована в рамках ПКП. Поэтому в случае ДМС $Si_{0.5}Ge_{0.5}/M$ мы ограничиваемся рассмотрением некой «усредненной решетки», в которой длины связей Si-Si, Si-Ge и Ge-Ge равны между собой. В рамках данной модели внутриплоскостные смещения атомов прослойки, возникающие вследствие введения монослоя переходного металла в полупроводник, отсутствуют.

В таблице показаны изменения межатомных длин связи А^{IV}-М при структурных релаксациях. Нетрудно видеть, что б-слой конкретного переходного металла, будучи помещенным в различные матрицы, вызывает релаксации различных знаков (за исключением б-слоя Ni). Известно, что длины связи в ионных соединениях с хорошей точностью равны сумме радиусов ионов [65]. Для дискретных сплавов A^{IV}/M , которые вследствие неравенства электроотрицательностей компонентов в области δ-легирования, по-видимому, являются ионными соединениями, данное равенство также должно выполняться: $d_{A^{IV}-M} = d_{A^{IV}}^{ion} + d_{M}^{ion}$. Следовательно, длины связи атомов одного и того же переходного металла с атомами А^{IV} различных сортов действительно должны быть различными, поскольку радиусы ионов зависят от их зарядовых состояний, которые определяются соотношением электроотрицательностей элементов.

4.2. Локальные моменты ионов переходных металлов

Локальные магнитные моменты ионов переходных металлов, входящих в состав различных дискретных сплавов, показаны на рис. 1. Рассматривая сплавы с ненулевыми намагниченностями, отметим, что рассчитанные значения локальных моментов ионов переходных металлов в A^{IV}/V , A^{IV}/Cr , A^{IV}/Mn и Ge/Fe оказались больше, а в Si/Fe и Si_{0.5}Ge_{0.5}/Fe меньше, чем в объемных переходных металлах. Однако было обнаружено, что значения локальных моментов в нерелаксированных ДМС A^{IV}/Fe на 16–22 % выше, чем в релаксированных, и не ниже, чем в объемном железе. Последнее об-

	Нерелаксированные			Релаксированные		
	ДМС			ДМС		
	Si	$\mathrm{Si}_{0.5}\mathrm{Ge}_{0.5}$	Ge	Si	$\mathrm{Si}_{0.5}\mathrm{Ge}_{0.5}$	Ge
$d_{\mathrm{M-M}}, \mathrm{\AA}$	3.865	3.966	4.084	3.865	3.966	4.084
$d_{\mathbf{A}^{\mathrm{IV}}-\mathrm{T}i}, \mathrm{\AA}$	2.366	2.429	2.50	2.483	2.509	2.534
$d_{\mathrm{A^{IV}}-\mathrm{V}}, \mathrm{\AA}$	2.366	2.429	2.50	2.441	2.465	2.498
$d_{\mathbf{A}^{\mathbf{IV}}-\mathbf{C}r}, \mathbf{\mathring{A}}$	2.366	2.429	2.50	2.410	2.444	2.496
$d_{\mathbf{A}^{\mathrm{IV}}-\mathbf{M}n}, \mathbf{\mathring{A}}$	2.366	2.429	2.50	2.390	2.423	2.460
$d_{\mathbf{A}^{\mathrm{IV}}-\mathbf{F}e}, \mathbf{\mathring{A}}$	2.366	2.429	2.50	2.303	2.341	2.388
$d_{\mathbf{A}^{\mathrm{IV}}-\mathbf{C}o}, \mathbf{\mathring{A}}$	2.366	2.429	2.50	2.272	2.299	2.334
$d_{\mathbf{A}^{\mathrm{IV}}-\mathbf{N}i}, \mathbf{\mathring{A}}$	2.366	2.429	2.50	2.272	2.296	2.329

Таблица. Изменение кратчайшей длины связи между ионами полупроводника А^{IV} и переходного металла, *d*_{АIV-M}, при структурной релаксации в ДМС

Рис. 1. Рассчитанные значения локальных магнитных моментов M_{loc} ионов переходных металлов в ДМС Si/M (□, ■), Si_{0.5}Ge_{0.5}/M (◦, •), Ge/M (△, ▲) с учетом (светлые символы) и без учета (темные символы) релаксаций; звездочками изображены локальные магнитные моменты в объемных переходных металлах. Для A^{IV}/V и Ge/Cr приведены значения M_{loc} в AФМ-решениях

стоятельство указывает на хорошо известную взаимосвязь величин локальных моментов и расстояний до ближайших соседей (как правило, атомов первых двух координационных сфер). А именно, магнитные моменты на ионах железа в релаксированных сплавах уменьшаются вследствие уширения *d*-зон железа, вызванного более сильными взаимодействием электронов железа с электронами атомов прослойки и гибридизацией электронных состояний, возникающими из-за значительного уменьшения длины связи $d_{\rm A^{\rm IV}-Fe}$ при релаксации (см. таблицу). По той же причине в большинстве ДМС $\rm A^{\rm IV}/M$ локальные моменты ионов переходных металлов больше, чем в объемных: кратчайшие расстояния $d_{\rm M-M}$ в $\rm A^{\rm IV}/M$ существенно превышают аналогичные расстояния в объемных переходных металлах, сопоставимые с кратчайшими длинами связи $d_{\rm A^{\rm IV}-M}$ в рассматриваемых ДМС.

Интересный случай представляют собой сплавы A^{IV}/Co , намагниченность которых, за исключением нерелаксированного Ge/Co, неожиданно оказалась равной нулю. Согласно первому правилу Хунда, кобальт, как и ванадий, в форме свободного атома имеет магнитный момент $3\mu_B$. Кроме того, в отличие от кобальта, объемный ванадий является немагнитным. Тем не менее в ДМС с элементами IV группы ванадий имеет локальный момент, в то время как кобальт нет. Титан и никель, имеющие в форме свободных атомов магнитные моменты $2\mu_B$, в дискретных сплавах A^{IV}/M так же, как и кобальт, не имеют локального момента.

4.3. Магнитное упорядочение

При расчетах обменных параметров мы учитывали взаимодействия между локальными моментами, находящимися на расстоянии не более $3a_0^{A^{IV}}$ друг от друга. Данный радиус обрезания охватывает 11 координационных сфер. Расстояние между соседними монослоями переходных металлов в рассматриваемых ДМС составляет $2a_0^{A^{IV}}$, и, следовательно, в наших расчетах были также оценены величины обменных взаимодействий между спинами соседних ферромагнитных δ-слоев. Интенсивность такого суперобмена ожидаемо оказалась на порядок слабее, чем у внутрислоевого обмена.

Как видно на рис. 26, в, исследуемое ФМ-решение в $Si_{0.5}Ge_{0.5}/V$ и Ge/V неустойчиво, так как доминирующие константы обменного взаимодействия J₀₁ отрицательны. Это, в свою очередь, приводит к тому, что коэффициент одноузельной спиновой жесткости $J_0 < 0$ и для переворота спина не требуется энергии (рис. 3а,б), поскольку система стремится принять энергетически более выгодную АФМ-конфигурацию, в которой спины ближайших соседей антипараллельны (назовем данную конфигурацию AФM1). В отличие от Si_{0.5}Ge_{0.5}/V и Ge/V, для ΦМ-конфигурации δ-слоя ванадия в кремнии ни одно из J_{0i} явно не доминирует, а сами J_{0i} чрезвычайно малы. Коэффициент одноузельной спиновой жесткости также весьма незначителен: $J_0 = 0.62$ мэВ (рис. 3a). Расчеты полных энергий свидетельствуют о невыгодности ФМ-решения по сравнению с AФM1. Несоответствие знаков J₀ и ΔE в данном случае, по-видимому, обусловлено значительно различающимися локальными моментами на ионах ванадия в ФМ- и АФМ1-решениях. Малый магнитный момент, 1.12µ_B, в ФМ-решении с положительной одноузельной спиновой жесткостью, по-видимому, соответствует метастабильному состоянию, в то время как более значительный момент в решении $A\Phi M1$, $1.82\mu_B$, приводит к доминированию антиферромагнитного обмена, что обеспечивает значительный выигрыш в энергии.

В ДМС A^{IV}/Cr обмен между ближайшими соседями носит AФМ-характер. Однако ФМ-взаимодействия со вторыми и третьими соседями дают существенный вклад в полную энергию, препятствующий реализации конфигурации AФМ1. Данное обстоятельство находит отражение в разнице полных энергий AФМ1- и ФМ-конфигураций локальных моментов ΔE , см. рис. 36. На рисунке видно, что энергетическая выгодность AФМ1 достигается лишь в Ge/Cr. Тем не менее значения коэффициентов J_0 для Si/Cr и Si_{0.5}Ge_{0.5}/Cr отрицательны (рис. 3*a*), и поэтому в δ -слое хрома более вероятно установление не ФМ-, а AФМ-конфигурации, имеющей более сложную структуру, чем AФМ1.

Как видно на рис. 2, во всех системах с монослоями марганца обменное взаимодействие между ближайшими соседями J₀₁ является существенно ферромагнитным и превалирует над взаимодействиями с последующими координационными сферами. Поскольку системы A^{IV}/Mn имеют полуме-

Рис.2. Рассчитанные для ФМ-решений в ДМС Si/M (*a*), $Si_{0.5}Ge_{0.5}/M$ (*b*) и Ge/M (*b*) обменные интегралы J_{0i} в зависимости от расстояния $d_{M-M(i)}$ между ионом переходного металла и его *i*-м соседом в монослое. Показаны только внутриплоскостные взаимодействия. На вставленной панели изображен δ -слой замещения, стрелками показаны об-

менные взаимодействия

Рис. 3. a, 6) Коэффициенты одноузельной спиновой жесткости J_0 , рассчитанные для ФМ-решений; δ, c) разница полных энергий АФМ1- и ФМ-конфигураций $\Delta E = E_{AFM1} - E_{FM}$ как функция δ -легирующего элемента для разных полупроводниковых матриц. Данные расчетов с проведением структурных релаксаций показаны на рис. a, δ , без релаксаций — на рис. $e, c; \Box$ — Si, \circ — Si $_0.5$ Ge $_0.5$, Δ — Ge

таллический или близкий к полуметаллическому характер [40–44], интенсивность обменных взаимодействий быстро убывает с увеличением расстояния между локальными моментами, что обусловлено наличием щели в канале со спином вниз. Положительные коэффициенты одноузельной спиновой жесткости J_0 , см. рис. 3a, свидетельствуют об устойчивой тенденции к формированию ФМ-упорядочения в δ -слоях марганца. Данная тенденция подтверждается также расчетами полных энергий ФМ- и АФМ1-структур (рис. 36).

В системах с δ -слоями железа наблюдаются слабые обменные взаимодействия и основное состояние, отличное от ФМ. Качественно, картины обменных взаимодействий в монослоях железа различны для различных полупроводниковых матриц A^{IV}. Так, в системе Si/Fe превалирует обменное взаимодействие со вторыми соседями $J_{01} = -1.80$ мэВ (рис. 2*a*), в то время как в ДМС Si_{0.5}Ge_{0.5}/Fe J_{0i} (i = 1...3) имеют довольно близкие значения (рис. 2*б*). В обоих случаях высока вероятность реализации сложной магнитной структуры, поскольку полученные J_0 отрицательны, а ΔE положительны. В системе Ge/Fe явно выделяется $J_{01} = -4.62$ мэВ и, поскольку $J_0 = -17.9$ мэВ, естественно было бы

Рис.4. Рассчитанные для ФМ-решений магнонные спектры сплавов Si/Mn (сплошная кривая), Si_{0.5}Ge_{0.5}/Mn (штриховая кривая) и Ge/Mn (пунктир). Симметричные точки зон Бриллюэна имеют следующие координаты: $\bar{\Gamma} - (0,0), \ M - (\pi/a_0^{Ge}, \pi/a_0^{Ge}), \ M' - (\pi/a_0^{Si_{0.5}Ge_{0.5}}, \pi/a_0^{Si_{0.5}Ge_{0.5}}), \ M'' - (\pi/a_0^{Ge}, 0), \ X' - (\pi/a_0^{Ge}, 0), \ X' - (\pi/a_0^{Ge}, 0)$

предположить, что конфигурация AΦM1 будет энергетически более выгодна, чем ΦМ, однако расчеты полных энергий показывают, что это не так. Таким образом, в ДМС Ge/Fe так же реализуется сложная AΦM-структура.

Для ДМС A^{IV} /Мп были также проведены расчеты полных энергий парамагнитных (ПМ) фаз, которые моделировались в приближении разупорядоченных локальных моментов (disordered local moment). Для всех остальных сплавов сравнение энергий ФМ-и ПМ-фаз не проводилось, поскольку ФМ-порядок в них либо энергетически не выгоден, либо нестабилен. Оказалось, что ФМ-решение выгоднее, чем ПМ, на 124, 118 и 111 мэВ соответственно для ДМС Si/Mn, Si_{0.5}Ge_{0.5}/Мп и Ge/Mn.

Для исследования стабильности ФМ-порядка в δ -слоях марганца были рассчитаны магнонные спектры для соответствующих ДМС, см. рис. 4. Следует отметить, что магнонный спектр конкретной системы имеет смысл лишь в том случае, если он соответствует основному состоянию, которое известно, например, из эксперимента. Согласно расчетам полных энергий и, в особенности, обменных интегралов, в ДМС A^{IV}/Mn ФМ-решение устойчиво и поэтому есть основания полагать, что данное состояние является основным. Как видно на рис. 4, во всех трех системах ФМ-решение динамически стабильно, поскольку спектры расположены в области положительных энергий. Более того, достижение спектрами своих максимумов в симметричных точках зон Бриллюэна свидетельствует в пользу коллинеарности магнитной структуры в монослоях марганца. Наиболее устойчивым является Φ M-решение в сплаве Si/Mn, поскольку для него значения энергии магнонного спектра в симметричных точках M'' и X'' являются максимальными, а в направлениях $\Gamma-M''$ и $\Gamma-X''$ кривые дисперсии возрастают наиболее быстро. Эти факты находятся в соответствии с данными, изображенными на рис. 2 и 3, свидетельствующими о максимальных J_0 и ΔE для Si/Mn.

Как было отмечено во Введении, в работе [44] сообщалось, что ФМ-конфигурация локальных моментов в δ -слое нерелаксированного ДМС Si₂₃/Fe энергетически менее выгодна, чем конфигурация АФМ1. Согласно нашим расчетам полных энергий для случая нерелаксированных ДМС, в Si₇/Fe ФМ-конфигурация имеет меньшую энергию, чем АФМ1 $(\Delta E = E_{AFM1} - E_{FM} > 0)$ (см. рис. 3г). Уместно заметить что, поскольку межслоевые обменные взаимодействия в расчетах полных энергий не учитываются (рассматриваемые сверхячейки содержат один δ -слой переходного металла), сравнение величин ΔE для (A^{IV})₇/М и (A^{IV})₂₃/М вполне допустимо. Вообще говоря, по той же причине для нерелаксированных ДМС не ожидается существенных различий в значениях ΔE для случаев $(A^{IV})_7/M$ и $(A^{IV})_{23}/M$ (А^{IV} и М подразумеваются одинаковыми для обоих случаев). Однако, в настоящей работе, для улучшения описания электронной структуры A^{IV}, для их р-состояний, наряду с потенциалом ОГП, был также введен эффективный кулоновский потенциал U, в то время как в работе [44] *р*-состояния описывались потенциалом ОГП. Поэтому правильнее было бы сравнивать расчеты, выполненные в рамках «чистого» ОГП. Однако рассчитанная при U = 0 мэВ величина ΔE также оказалась положительной и составила 33 мэВ/ат. Fe. Таким образом, расхождение с результатом работы [44] обусловлено, скорее, не использованием U-параметра, а иными факторами. В этой связи нельзя не отметить, что вполне корректно сравнивать эти противоречащие друг другу результаты, равно как и обсуждать вероятные причины различий, невозможно, поскольку в работе [44] не сообщались данные об использованном в расчетах параметре решетки кремния, величине его запрещенной зоны, а также не была указана выбранная для интегрирования по зоне Бриллюэна сетка **k-**точек.

На рис. 3*6,г* показаны параметры J_0 и разницы энергий $A\Phi M1$ - и ΦM -решений ΔE для нере-

лаксированных ДМС A^{IV}/M . Сравнив величины J_0 с их значениями после релаксации, например для Si/Mn, можно видеть, что J_0 уменьшается на величину порядка 5 мэВ при увеличении расстояния Si-Mn на 0.03 Å (см. рис. 3*а*, в и таблицу). Рассматривая б-слой марганца в матрице германия, можно видеть, что после релаксации расстояние Ge-Mn меньше, а стабильность ФМ-состояния больше, чем до нее. Релаксации в системе Si_{0.5}Ge_{0.5}/Mn практически отсутствуют и сила ФМ-взаимодействия в монослое марганца остается неизменной. Таким образом, интенсивность обменных взаимодействий между локальными моментами ионов марганца в $\delta\text{-}{\rm слое}$ зависит от расстояния $d_{\rm Mn-A^{\rm IV}}.$ Анализ различий в значениях J_0 до и после релаксаций для всех остальных ДМС свидетельствует о том, что уменьшение расстояния между атомами прослойки и δ-слоем способствует усилению (ослаблению) ΦМ (АФМ)-взаимодействия.

5. ЗАКЛЮЧЕНИЕ

Проведение расчетов ab initio является на сегодняшний день одним из наиболее эффективных методов теоретического исследования магнитного порядка в ДМС типа А^{IV}/М. Ясно, что одновременный учет внутри- и межслоевого обменных взаимодействий даже при не слишком большой толщине прослойки А^{IV} между *б*-слоями переходных металлов делает такой расчет крайне сложным. Однако межслоевое обменное взаимодействие в подавляющем числе ДМС на порядок слабее внутрислоевого уже при толщине полупроводниковой прослойки более 3-4 атомных слоев. Как было аналитически показано в работах [35, 36], при некоторой характерной толщине прослойки эффективный интеграл межслоевого обмена в ДМС меняет знак: при малых расстояниях между б-слоями имеет место их параллельная (т.е. ферромагнитная), а при больших расстояниях — антипараллельная (антиферромагнитная) ориентации. При исследовании магнитных и транспортных свойств ДМС интерес представляют обе ситуации и реализация нужной магнитной конфигурации может быть осуществлена подбором соответствующей толщины прослойки А^{IV}. Мы фокусировали внимание исключительно на формировании магнитного порядка внутри δ-слоя и для простоты пренебрегали влиянием межслоевого обмена на внутрислоевой. При такой постановке задачи мы, естественно, смогли корректно рассмотреть лишь такие ДМС, в которых расстояние между соседними δ-слоями переходных металлов значительно превышает расстояние между ионами переходных металлов внутри одного δ -слоя. В противоположном пределе, когда эти расстояния близки по величине, наш подход, разумеется, неприменим.

С целью улучшения описания зонной структуры полупроводников A^{IV} в расчетах был использован эффективный кулоновский потенциал U, введенный как параметр. Для выяснения вопроса о влиянии данного параметра на расчет свойств ДМС, мы провели оптимизацию объема чистого кремния и релаксацию ДМС Si/Fe в рамках ОГП для U = 0 и ряда значений $U \leq 1.38$ эВ. Система Si/Fe была выбрана тестовой из-за значительных структурных релаксаций. Кроме того, именно для Si/Fe уже имеются литературные данные [44].

Результаты расчетов свидетельствуют о незначительных различиях в значениях структурных параметров, полученных при использовании U = 0 и $U \neq 0$ эВ. В частности, длина связи Si–Si в объемном кремнии при «включении» U < 1.38 эВ уменьшается менее чем на 1 %. Рассчитанный с использованием U=1.38э
В параметр решетки объемного кремния равен 5.46 Å, что всего на 0.5% больше экспериментального. При структурной релаксации в Si/Fe кратчайшая длина связи Si-Fe при U = 1.38 эВ увеличивается менее чем на 0.7 %. Таким образом, использованный эффективный кулоновский потенциал U весьма слабо меняет структурные свойства изучаемых ДМС. Это неудивительно, так как величина U = 1.38 эВ намного меньше ширины валентной зоны A^{IV} (~ 12 эВ).

Однако введение U существенно улучшает энергетический спектр полупроводника вблизи уровня Ферми, что ведет к более корректному описанию магнонных спектров ДМС и критических температур. Мы провели систематические расчеты обменных параметров J_{0i} для Si/Fe и Si/Mn и обнаружили, что их значения весьма чувствительны к U, т.е. к величине щели полупроводника, что важно при определении наиболее стабильной магнитной конфигурации в δ -слоях ДМС.

Магнитная теорема сил [64] неоднократно обсуждалась в литературе [66]. Поскольку данная теорема требует знания только одночастичных энергий, правомерность ее использования совместно с кулоновской параметризацией не подлежит сомнению. В нашем подходе используется формула Ллойда [64], которая позволяет рассчитывать изменение энергии электронов при малых отклонениях магнитных моментов от направлений в исходном состоянии. Такой подход позволяет анализировать все возможные конфигурации и поэтому является мощным инструментом исследования магнитного порядка.

Таким образом, в рамках расчетов *ab initio* в нашей работе было исследовано внутрислоевое магнитное упорядочение в дискретных сплавах Si, Ge и Si_{0.5}Ge_{0.5} с переходными 3*d*-металлами Ti, V, Cr, Mn, Fe, Co и Ni. Согласно расчетам интегралов обменного взаимодействия, полных энергий и магнонных спектров, стабильный внутрислоевой ферромагнетизм имеет место лишь в системах с δ-слоями Mn, в то время как в ДМС на основе V, Cr и Fe данный ферромагнетизм нестабилен. В монослоях систем Si/V, Ge/V, $Si_{0.5}Ge_{0.5}/V$ и Ge/Cr, по-видимому, реализуется АФМ-конфигурация с антипараллельными спинами на ближайших соседях в легирующем δ -слое, в то время как в монослоях всех остальных сплавов обнаружена тенденция к формированию более сложных АФМ-конфигураций. Исключение составляют лишь системы с δ-слоями Ti, Co и Ni, в которых магнитные взаимодействия отсутствуют для всех рассмотренных вариантов полупроводниковых матриц.

В свете полученных результатов хотелось бы обратить внимание на следующий факт. В последние годы достигнут значительный прогресс в получении модулированно-легированных гетероструктур $\mathrm{Si}_x\mathrm{Ge}_{1-x}$ с напряженным Ge в роли проводящего канала, обладающих крайне высокими дрейфовыми подвижностями дырок (около 3000 см²/В·с) [67]. Наши расчеты дают основания полагать, что гипотетические гетероструктуры типа $(\mathrm{Si}_x \mathrm{Ge}_{1-x}/\delta \mathrm{-Mn})/\mathrm{Si}_x \mathrm{Ge}_{1-x}/\mathrm{Ge}$, содержащие Φ М-слой (ДМС $\mathrm{Si}_x\mathrm{Ge}_{1-x}/\mathrm{Mn}$) и проводящий канал (напряженный слой Ge), пространственно разделенные слоем $Si_x Ge_{1-x}$, могут стать перспективными с точки зрения реализации эффективного транспорта спин-поляризованных носителей (дырок). В такой гетероструктуре могут одновременно иметь место устойчивый ФМ-порядок в ДМС Si_xGe_{1-x}/Mn, высокая подвижность дырок и их значительная спиновая поляризация в проводящем канале Ge за счет магнитной близости канала к ферромагнитному δ -слою. Ранее наличие подобных эффектов было обнаружено в гетероструктурах типа $(GaAs/\delta-Mn)/GaAs/InGaAs$ [68, 69].

Расчеты проводились на вычислительном кластере СКИФ Суberia (г. Томск). Авторы благодарят В. Н. Меньшова за полезные дискуссии и Э. Т. Кулатова за критические замечания. Работа выполнена при частичной финансовой поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» и РФФИ (грант № 10-02-00118).

ЛИТЕРАТУРА

- I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
- A. Stroppa, S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 68, 155203 (2003); S. Picozzi, F. Antoniella, A. Continenza et al., Phys. Rev. B 70, 165205 (2004).
- Y. D. Park, A. T. Hanbicki, S. C. Erwin et al., Science 295, 651 (2002).
- S. Ahlers, D. Bougeard, N. Sircar et al., Phys. Rev. B 74, 214411 (2006).
- 5. А. И. Дмитриев, Р. Б. Моргунов, О. Л. Казакова, Й. Танимото, ЖЭТФ 135, 1134 (2009).
- C. Jaeger, C. Bihler, T. Vallaitis et al., Phys. Rev. B 74, 045330 (2006).
- E. Biegger, L. Stäheli, M. Fonin, U. Rüdiger, and Yu. S. Dedkov, J. Appl. Phys. 101, 103912 (2007).
- A. P. Li, J. F. Wendelken, J. Shen et al., Phys. Rev. B 72, 195205 (2005).
- 9. S. Cho, S. Choi, S. C. Hong et al., Phys. Rev. B 66, 033303 (2002).
- W. Gao, D. Hou, Y. Hu, and S. Wei, Sol. St. Comm. 149, 1924 (2009).
- R. R. Gareev, Yu. V. Bugoslavsky, R. Schreiber et al., Appl. Phys. Lett. 88, 222508 (2006).
- F. M. Zhang, X. C. Liu, J. Gao et al., Appl. Phys. Lett. 85, 786 (2004).
- M. Bolduc, C. Awo-Affouda, A. Stollenwerk et al., Phys. Rev. B 71, 033302 (2005).
- 14. X. C. Liu, Z. H. Lu, Z. L. Lu et al., J. Appl. Phys. 100, 073903 (2006).
- X. C. Liu, Y. B. Lin, J. F. Wang et al., J. Appl. Phys. 102, 033902 (2007).
- L. Zeng, E. Helgren, M. Rahimi et al., Phys. Rev. B 77, 073306 (2008).
- A. Wolska, K. Lawniczak-Jablonska, M. Klepka, and M. S. Walczak, Phys. Rev. B 75, 113201 (2007).
- 18. S. Zhou, K. Potzger, G. Zhang et al., Phys. Rev. B 75, 085203 (2007).
- 19. C. Awo-Affouda, M. Bolduc, M. B. Huang et al., J. Vac. Sci. Thechnol. A 24(4), 1644 (2006).
- 20. S. Zhou, A. Shalimov, K. Potzger et al., Phys. Rev. B 80, 174423 (2009).

- С. Н. Николаев, Б. А. Аронзон, В. В. Рыльков и др., Письма в ЖЭТФ 89, 707 (2009).
- 22. W. F. Su, L. Gong, J. L. Wang et al., J. Cryst. Growth 311, 7, 2139 (2009).
- U. Gottlieb, A. Sulpice, B. Lambert-Andron, and O. Laborde, Alloys Comp. 361, 13 (2003); A. Sulpice, U. Gottlieb, M. Affronte, and O. Laborde, J. Magn. Magn. Mater. 272, 519 (2004).
- 24. M. Lee, Y. Onose, Y. Tokura, and N. P. Ong, Phys. Rev. B 75, 172403 (2007).
- 25. А. Ф. Орлов, А. Б. Грановский, Л. А. Балагуров и др., ЖЭТФ 136, 703 (2009).
- 26. R. K. Kawakami, E. Johnston-Halperin, L. F. Chen et al., Appl. Phys. Lett. 77, 2379 (2000).
- 27. T. C. Kreutz, G. Zanelatto, E. G. Gwinn, and A. C. Gossard, Appl. Phys. Lett. 81, 4766 (2002).
- 28. H. Luo, B. D. McCombe, M. H. Na et al., Physica E (Amsterdam) 12, 366 (2002).
- 29. X. Chen, M. Na, M. Cheon et al., Appl. Phys. Lett. 81, 511 (2002).
- 30. B. D. McCombe, M. Na, X. Chen et al., Physica E (Amsterdam) 16, 90 (2003).
- 31. A. M. Nazmul, S. Sugahara, and M. Tanaka, Phys. Rev. B 67, 241308(R) (2003).
- 32. A. M. Nazmul, S. Kobayashi, S. Sugahara, and M. Tanaka, Physica E 21, 937 (2004).
- 33. S. H. Chiu, H. S. Hsu, and J. C. A. Huang, J. Appl. Phys. 103, 07D110 (2008).
- 34. Т. Мория, Спиновые флуктуации в магнетиках с коллективизированными электронами, Мир, Москва (1988).
- 35. В. Н. Меньшов, В. В. Тугушев, ЖЭТФ 133, 1070 (2008).
- 36. V. N. Men'shov, V. V. Tugushev, P. M. Echenique et al., Phys. Rev. B 78, 024438 (2008).
- 37. S. Caprara, V. V. Tugushev, P. M. Echenique, and E. V. Chulkov, Europhys. Lett. 85, 27006 (2009).
- 38. V. N. Men'shov, V. V. Tugushev, S. Caprara et al., Phys. Rev. B 80, 035315 (2009).
- 39. A. Continenza, F. Antoniella, and S. Picozzi, Phys. Rev. B 70, 035310 (2004).
- 40. H. Y. Wang and M. C. Qian, J. Appl. Phys. 99, 08D705 (2006).

- 41. S. Picozzi, M. Ležaić, and S. Blügel, Phys. Stat. Sol. A 203, 11, 2738 (2006).
- 42. M. C. Qian, C. Y. Fong, K. Liu et al., Phys. Rev. Lett. 96, 027211 (2006).
- 43. C. Y. Fong, M. Shauhgnessy, R. Snow, and L. H. Yang, Phys. Stat. Sol. C 7, 3-4, 747 (2010).
- 44. Yu. A. Uspenskii and E. T. Kulatov, J. Magn. Magn. Mat. 321, 931 (2009).
- 45. М. М. Отроков, С. А. Останин, А. Эрнст, В. М. Кузнецов, Е. В. Чулков, ФТТ 52, 8, 1563 (2010).
- 46. H. Wu, P. Kratzer, and M. Scheffler, Phys. Rev. Lett. 98, 117202 (2007).
- 47. F. Birch, J. Geophys. Res. 57, 227 (1952).
- 48. J. P. Perdew and W. Wang, Phys. Rev. B 45, 13244 (1992).
- 49. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
- 50. G. Kresse and J. Fürthmuller. Phys. Rev. B 54, 11169 (1996).
- 51. G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).
- 52. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- 53. J. Korringa, Physica (Amsterdam) 13, 392 (1947).
- 54. W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
- 55. N. Papanikolaou, R. Zeller, and P. H. Dederichs, J. Phys.: Condens. Matter. 14, 2799 (2002).
- 56. P. Soven, Phys. Rev. 156, 809 (1967).

- 57. B. L. Gyorffy, Phys. Rev. B 5, 2382 (1972).
- 58. J. P. Dismukes, L. Ekstrom, and R. J. Paff, J. Phys. Chem. 68, 3021 (1964).
- 59. L. Vegard, Z. Phys. 5, 17 (1921).
- W. G. Aulbur, L. Jonsson, and J. W. Wilkins, Sol. St. Phys. 54, 1 (2000).
- 61. D. Rideau, M. Feraille, L. Ciampolini et al., Phys. Rev. B 74, 195208 (2006).
- 62. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. 44, 943 (1991).
- 63. S. L. Dudarev, G. A. Botton, S. Y. Savrasov et al., Phys. Rev. B 57, 1505 (1998).
- 64. A. Liechtenstein, M. Katsnelson, V. Antropov, and V. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987).
- 65. Б. К. Вайнштейн, В. М. Фридкин, В. Л. Индебом, Современная кристаллография, т. 2, Наука, Москва (1979).
- 66. P. Bruno, Phys. Rev. Lett. 90, 087205 (2003).
- 67. M. Myronov, K. Sawano, Y. Shiraki et al., Appl. Phys. Lett. 91, 082108 (2007).
- 68. Б. А. Аронзон, В. А. Кульбачинский, П. В. Гурин и др., Письма в ЖЭТФ 85, 1, 32 (2007); Б. А. Аронзон, А. С. Лагутин, В. В. Рыльков и др., Письма в ЖЭТФ 87, 3, 192 (2008); М. А. Панков, Б. А. Аронзон, В. В. Рыльков и др., ЖЭТФ 136, 3, 346 (2009); В. А. Aronzon, М. А. Pankov, V. V. Rylkov et al., J. Appl. Phys. 107, 023905 (2010).
- 69. S. V. Zaitsev, V. D. Kulakovskii, M. V. Dorokhin et al., Physica E 41, 652 (2009).