СВЕРХТОНКИЕ МАГНИТНЫЕ ПОЛЯ НА ЯДРАХ ЗОНДОВЫХ АТОМОВ 119 Sn И ОБМЕННЫЕ ВЗАИМОДЕЙСТВИЯ В МАНГАНИТЕ $CaCu_3Mn_{3.96}Sn_{0.04}O_{12}$

В. С. Русаков^а^{*}, И. А. Пресняков^а, А. В. Соболев^а, Ж. Демазо^{b**}, Т. В. Губайдулина^а, М. Е. Мацнев^а, А. М. Гапочка^а, О. С. Волкова^а, А. Н. Васильев^а

> ^а Московский государственный университет им. М. В. Ломоносова 119992, Москва, Россия

^b University Bordeaux 1 "Sciences and Technologies", Centre de Ressources Hautes Pressions ICMCB-ENSCPB 33608, Pessac Cedex, France

Поступила в редакцию 18 июня 2010 г.

Методом мессбауэровской спектроскопии с привлечением магнитных измерений проведено исследование сверхтонких магнитных взаимодействий ядер зондовых атомов $^{119}{\rm Sn}$ в двойном манганите ${\rm CaCu_3Mn_{3.96}Sn_{0.04}O_{12}}$. Согласованное описание полученных результатов в рамках модели молекулярного поля Вейсса с учетом особенностей локального окружения атомов олова позволило оценить интегралы косвенных обменных взаимодействий ${\rm Cu}^{2+}{\rm -O-Mn}^{4+}$ ($J_{{\rm CuMn}}\approx-51\pm1$ K) и ${\rm Mn}^{4+}{\rm -O-Mn}^{4+}$ ($J_{{\rm MnMn}}\approx-0.6\pm0.6$ K). В рамках модели Канамори – Гуденафа – Андерсона показано, что величина и знак внутриподрешеточного обменного интеграла $J_{{\rm MnMn}}$ соответствуют как электронной конфигурации катионов ${\rm Mn}^{4+}$, так и геометрии их локального кристаллографического окружения в исследуемом соединении.

1. ВВЕДЕНИЕ

Манганит CaCu₃Mn₄O₁₂ является представителем семейства двойных перовскитоподобных оксидов CaCu_xMn_{7-x}O₁₂ ($0 \le x \le 3$), в структуре которых катионы переходных металлов занимают два типа кристаллографических позиций: 8*c*-позиции с октаэдрической кислородной координацией (Mn⁴⁺, Mn³⁺); 6*b*-позиции, в которых ян-теллеровские катионы переходных металлов (Cu²⁺, Mn³⁺) находятся в квадратной кислородной координации [1]. В температурной области магнитного порядка ($T < T_C$) атомы, расположенные в этих позициях, образуют две неэквивалентные магнитные подрешетки, специфика взаимодействий внутри которых и между которыми приводит к целому ряду необычных магнитных свойств данного семейства оксидов [2].

В структуре CaCu₃Mn₄O₁₂ катионы Cu²⁺($3d^9$) и Mn⁴⁺($3d^3$) занимают соответственно позиции 6b и 8с. Данный манганит обладает наибольшей из всего семейства $CaCu_xMn_{7-x}O_{12}$ ($0 \le x \le 3$) температурой магнитного упорядочения $T_C = 355$ K [1]. Поскольку в перовскитоподобных структурах нет связей катион-катион, магнитные обменные взаимодействия между переходными металлами в рассматриваемом соединении осуществляются только лишь посредством косвенных внутриподрешеточных (Mn⁴⁺-O-Mn⁴⁺) и межподрешеточных (Cu²⁺-O-Mn⁴⁺) связей. Из анализа электронных конфигураций катионов Mn⁴⁺ и Cu²⁺, а также геометрии перекрывания их 3d-орбиталей с 2р-орбиталями анионов кислорода следует [2,3], что внутриподрешеточные взаимодействия между катионами марганца должны ослабевать при отклонении угла ϑ_1 косвенных обменных связей Mn-O-Mn от значения 180°, характерного для неискаженной структуры перовскита. Напротив, межподрешеточные взаимодействия с участием катионов меди усиливаются по мере отклонения угла ϑ_2 связей Cu–O–Mn от 90° (случай неискаженного перовскита). Согласно кристаллографическим

^{*}E-mail: rusakov@phys.msu.ru

^{**}G. Demazeau

данным работы [1], в структуре CaCu₃Mn₄O₁₂ оба угла, $\vartheta_1 = 142^{\circ}$ и $\vartheta_2 = 109^{\circ}$, существенно отличаются от соответствующих значений для неискаженной структуры перовскита. Таким образом, на основании только лишь качественного анализа нельзя сделать однозначного вывода о том, в какой степени каждое из косвенных обменных взаимодействий оказывает влияние на установление дальнего магнитного порядка в структуре рассматриваемого манганита.

В нашей предыдущей работе [3] впервые для исследования манганита CaCu₃Mn₄O₁₂ была использована мессбауэровская спектроскопия на ядрах зондовых атомов ¹¹⁹Sn, введенных в микроколичествах (около 1 ат. % по отношению к атомам марганца) в структуру данного соединения. Было установлено, что катионы Sn⁴⁺ замещают изовалентные им катионы марганца в октаэдрической подрешетке манганита. При температурах $T \ll T_C$ мессбауэровские спектры атомов ¹¹⁹Sn имеют сложную магнитную сверхтонкую структуру, связанную со спиновой поляризацией *ns*-орбиталей (n = 1-5) катионов Sn⁴⁺ окружающими их магнитными катионами Mn⁴⁺ и Cu²⁺. В рамках кластерного варианта метода молекулярных орбиталей в приближении линейной комбинации атомных орбиталей (МО ЛКАО) нами были рассчитаны парциальные вклады h_{Mn} и h_{Cu} в сверхтонкое магнитное поле $H_{\rm Sn}$ на ядрах катионов ¹¹⁹Sn⁴⁺ от окружающих их катионов марганца и меди. Показано, что основной вклад в экспериментальную величину $H_{\rm Sn} = 105~{\rm k}$ Э (при $T = 77~{\rm K}$) вносят катионы Mn^{4+} ($6h_{Mn} \approx 206$ кЭ), в то время как катионы Cu²⁺ индуцируют заметно меньший по величине и противоположный по знаку парциальный вклад $6h_{\rm Cu} \approx -104$ кЭ [3]. Тем не менее, остается открытым вопрос, в какой степени величины парциальных вкладов $h_{\rm Mn}$ и $h_{\rm Cu}$, определенных из спектров зондовых атомов ¹¹⁹Sn, коррелируют с характером внутри- и межподрешеточных обменных взаимодействий в структуре CaCu₃Mn₄O₁₂. Кроме того, результаты мессбауэровских исследований ранее не сравнивались с данными магнитных измерений легированного оловом манганита.

Настоящая работа посвящена детальному исследованию температурной зависимости магнитных сверхтонких полей на ядрах зондовых атомов ¹¹⁹Sn в структуре манганита CaCu₃Mn_{3.96}Sn_{0.04}O₁₂. С учетом того, что парамагнитные катионы Mn⁴⁺ и Cu²⁺ вносят соизмеримые по величине и противоположные по знаку парциальные вклады в сверхтонкое поле $H_{\rm Sn}$, изменение этих вкладов с температурой должно быть непосредственно связано с характером температурной зависимости намагниченностей соответствующих магнитных подрешеток. Количественный анализ полученных в работе мессбауэровских данных проводится с использованием модели локального молекулярного поля Вейсса в сопоставлении с результатами магнитных измерений исследуемого манганита. В рамках единого «орбитального подхода», основанного на анализе симметрии перекрытия и степени заполнения 3*d*-орбиталей катионов переходных металлов, рассмотрены механизмы индуцирования сверхтонких полей $H_{\rm Sn}$ катионами ${\rm Mn}^{4+}$ и Cu²⁺, а также характер магнитных обменных внутри- и межподрешеточных взаимодействий.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методика синтеза образца CaCu₃Mn_{3.96}Sn_{0.04}O₁₂, содержащего примерно 1 ат. % (по отношению к атомам Mn) зондовых атомов ¹¹⁹Sn, была подробно описана в нашей предыдущей работе [3]. Дифрактограмма синтезированного образца показала образование основной фазы манганита и незначительных количеств примесной фазы CuO. Полученный при индицировании рентгенограммы параметр кубической ячейки (пространственная группа $Im\bar{3}$) манганита a = 7.2321(2) Å несколько отличался от соответствующего значения для недопированного оловом образца CaCu₃Mn₄O₁₂ (a = 7.22793(6) Å [1,2]).

Измерение намагниченности в интервале температур 5 К < T < 400 К осуществлялось на магнетометре MPMS-5T Quantum Design во внешнем магнитном поле до 10000 Э (охлаждение образца проводилось в нулевом поле).

Мессбауэровские спектры ядер ¹¹⁹Sn измерялись в интервале температур от 4.6 до 360 К на спектрометре MS-1104Em в режиме постоянных ускорений. Измерения спектров при низких температурах (4.6 К $\leq T \leq 300$ К) проводились в криостате SHI-850-5 производства Janis Research Co (США). Для измерений спектров при высоких температурах (T > 300 K) использовалась мессбауэровская печь MBF-1100-TR производства Wissenschaftliche Elektronic GMBH (Германия). Источник $^{119\mathrm{m}}\mathrm{Sn}$ в матрице CaSnO₃ находился при комнатной температуре. Калибровка спектрометра осуществлялась при комнатной температуре с помощью стандартного поглотителя $BaSnO_3$, а также α -Fe с использованием источника ⁵⁷Со в матрице Rh. Для обработки и анализа мессбауэровских спектров были использованы методы модельной расшифровки и восстановления распределений сверхтонких параметров парциальных спектров, реализованных в программном комплексе MSTools [4]. Сдвиги мессбауэровских спектров ядер ¹¹⁹Sn в исследуемом образце приведены относительно BaSnO₃. Величины сверхтонкого магнитного поля $H_{\rm Sn}$ получены с использованием следующих значений ядерных характеристик изотопа ¹¹⁹Sn [5]: энергии γ -перехода $E_{\gamma} = 23.8795$ кэВ и g-факторов основного $g_{gr} = -2.09456$ и возбужденного $g_{ex} = 0.422$ состояний.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Характерный мессбауэровский спектр ядер ¹¹⁹Sn в образце манганита CaCu₃Mn_{3.96}¹¹⁹Sn_{0.04}O₁₂, измеренный при температурах, существенно более низких, чем точка магнитного фазового перехода ($T \ll T_C$), представлен на рис. 1. Ранее нами было показано [3], что все спектры из этой области температур могут быть представлены в виде суперпозиции трех зеемановских секстетов, Sn(1), Sn(2), Sn(3), и одного немагнитного квадрупольного дублета Sn(4) (рис. 1).

Согласно проведенному нами анализу [3], наиболее интенсивный ($I_{\mathrm{Sn}(1)} \approx 56 \%$) зеемановский секстет $\mathrm{Sn}(1)$ соответствует катионам Sn^{4+} , замещающим изовалентные им катионы Mn^{4+} в октаэдрической подрешетке манганита. В ближайшем окруже-

Рис.1. Результат модельной расшифровки мессбауэровского спектра ядер 119 Sn в манганите $CaCu_3Mn_{3.96}$ $^{119}Sn_{0.04}O_{12}$, измеренного при T=77~K

нии каждого из этих катионов находятся шесть катионов Mn⁴⁺ из той же октаэдрической подрешетки и шесть катионов $\mathrm{Cu}^{2+},$ принадлежащих подрешетке с квадратной кислородной координацией. Второй секстет, Sn(2), также отвечает катионам Sn^{4+} в октаэдрической подрешетке, но в ближайшем окружении этих катионов один из шести катионов марганца замещен на катион олова. Предполагается, что относительно высокое значение парциального вклада $(I_{{
m Sn}(2)} \approx 26\,\%)$ секстета ${
m Sn}(2)$ в общий экспериментальный спектр свидетельствует о том, что атомы олова стремятся образовывать в структуре манганита ассоциаты Sn-Sn. Данное предположение согласуется с существованием собственной фазы $CaCu_3Sn_4O_4$ [6], в которой катионы Sn^{4+} полностью формируют октаэдрическую подрешетку. Наконец, третий зеемановский секстет, Sn(3), с наименьшей интенсивностью $(I_{\mathrm{Sn}(3)} \approx 6 \%)$ может быть отнесен к небольшой части зондовых атомов олова, локализованных либо на поверхности частиц манганита, либо в объеме какой-либо примесной фазы, малые количества которой не позволяют зафиксировать ее с помощью рентгенофазового анализа.

С учетом того, что в области температур $T \ll T_C$ исследуемый манганит находится в магнитоупорядоченном состоянии, присутствующая в его спектрах сравнительно небольшая ($I_{\mathrm{Sn}(4)} \approx 13\%$) парамагнитная составляющая в виде квадрупольного дублета $\mathrm{Sn}(4)$, может быть отнесена к катионам Sn^{4+} , принадлежащим одной из немагнитных примесных (в том числе собственных) оксидных фаз.

Мессбауэровские спектры ядер ¹¹⁹Sn в манганите CaCu₃Mn_{3.96}¹¹⁹Sn_{0.04}O₁₂, полученные в области температур 170 К < $T < T_C$, имеют плохо разрешенную магнитную структуру (рис. 2). Чтобы проследить за температурным изменением сверхтонких магнитных полей на ядрах ¹¹⁹Sn во всей магнитоупорядоченной области, включая температуры, близкие к ожидаемой для исследуемого образца точке магнитного фазового перехода, были восстановлены распределения $p(H_{\rm Sn})$ сверхтонких магнитных полей (рис. 3).

В результате анализа температурных зависимостей среднего поля $\overline{H}_{p(H_{\rm Sn})}$ и дисперсии $D_{p(H_{\rm Sn})}$ полученных распределений была определена температура (рис. 4), при которой полностью исчезает магнитная сверхтонкая структура спектров. Полученное значение 337 ± 3 К в пределах ошибки измерения совпадает с температурой Кюри $T_C = 336 \pm 1$ К, определенной методом Арротта из полевой зависимости намагниченности M образца CaCu₃Mn_{3.96}Sn_{0.04}O₁₂ при различных температу-

Рис.2. Характерные мессбауэровские спектры ядер 119 Sn в манганите $CaCu_3Mn_{3.96}$ $^{119}Sn_{0.04}O_{12}$ при различных температурах

рах (см. вставку на рис. 4). Данный результат свидетельствует об отсутствии для исследуемого манганита каких-либо ближних магнитных корреляций в области $T > T_C$, обнаруженных, например, для допированных зондовыми атомами ⁵⁷Fe манганитов семейства La_{1-x}Ca_xMnO₃, обладающих неоднородной магнитной микроструктурой [7]. Отметим также, что полученная температура Кюри оказывается существенно меньше соответствующего значения $T_C = 355$ К для недопированного оловом манганита CaCu₃Mn₄O₁₂ [2]. Подобное понижение температуры магнитного упорядочения может быть связано с эффектом «магнитного разбавления», т.е. с разрывом немагнитными атомами олова части магнитоактивных связей Cu–O–Mn и Mn–O–Mn. Для восстановленных распределений $p(H_{\rm Sn})$ сверхтонких магнитных полей (см. рис. 3) оказалось характерно наличие основного локального максимума, который можно соотнести со сверхтонким полем на ядрах атомов ¹¹⁹Sn, имеющих в своем окружении только магнитоактивные катионы Mn⁴⁺ и Cu²⁺. На рис. 5 представлена температурная зависимость сверхтонкого поля $H_{\rm Sn}^{max}$, соответствующего максимальному значению распределения $p(H_{\rm Sn})$ (см. рис. 3). Для количественного описания зависимости $H_{\rm Sn}^{max}(T)$ мы воспользовались тем, что сверхтонкое поле на ядрах катионов Sn⁴⁺, имеющих в своем ближайшем окружении по шесть магнитных катионов Mn⁴⁺ и Cu²⁺, может быть представлено в виде

Рис. 3. Распределения $p(H_{\rm Sn})$ сверхтонких магнитных полей на ядрах $^{119}{
m Sn}$ в манганите ${
m CaCu_3Mn_{3.96}}^{119}{
m Sn_{0.04}O_{12}}$ при различных температурах

Рис. 4. Температурные зависимости среднего поля $\overline{H}_{p(H_{\mathrm{Sn}})}$ (кривая 1) и дисперсии $D_{p(H_{\mathrm{Sn}})}$ (кривая 2) распределений $p(H_{\mathrm{Sn}})$. На вставке представлен результат анализа данных магнитных измерений образца $\mathrm{CaCu_3Mn_{3.96}Sn_{0.04}O_{12}}$ методом Арротта

Рис.5. Температурная зависимость сверхтонкого магнитного поля H_{Sn}^{max} , соответствующего максимальному значению распределения $p(H_{\mathrm{Sn}})$: точки — эксперимент; кривая — расчет. На вставке показаны расчетные температурные зависимости парциальных вкладов в сверхтонкое поле H_{Sn} от атомов марганца и меди

$$H_{\rm Sn}(T) = 6h_{\rm Mn}(T) + 6h_{\rm Cu}(T), \qquad (1)$$

где $h_{\rm Mn}(T)$ и $h_{\rm Cu}(T)$ — парциальные вклады в сверхтонкое поле от каждого из ближайших к зондовому атому олова катионов ${\rm Mn}^{4+}$ и ${\rm Cu}^{2+}$. Проведенные нами расчеты в рамках кластерного варианта метода МО ЛКАО показали, что при $T \rightarrow 0$ рассматриваемые парциальные вклады составляют $h_{\rm Mn}(0) = 34.3$ кЭ и $h_{\rm Cu}(0) = -17.4$ кЭ [3]. Знак «минус» для парциального вклада $h_{\rm Cu}(T)$ учитывает антиферромагнитных характер взаимодействий двух неэквивалентных магнитных подрешеток, образованных катионами ${\rm Mn}^{4+}$ в позициях 8c и катионами ${\rm Cu}^{2+}$ в позициях 6b, и, как следствие, различие знаков индуцируемых ими парциальных вкладов в $H_{\rm Sn}$.

Поскольку парциальные вклады $h_{Mn}(T)$ и $h_{Cu}(T)$ являются результатом спиновой поляризации *ns*-орбиталей катионов олова соседними с ними катионами Mn⁴⁺ и Cu²⁺, температурное изменение каждого из них должно быть связано с температурными зависимостями приведенных намагниченностей σ_{Mn} и σ_{Cu} соответствующих магнитных подрешеток. Температурные зависимости этих намагниченностей могут быть описаны в рамках теории локального молекулярного поля Вейсса [8]:

$$\sigma_{\rm Mn}(T) = B_{3/2} \left(2S_{\rm Mn} \frac{z_{\rm Mn(Mn)} J_{\rm MnMn} S_{\rm Mn} \sigma_{\rm Mn}(T) + z_{\rm Mn(Cu)} J_{\rm MnCu} S_{\rm Cu} \sigma_{\rm Cu}(T)}{k_B T} \right),\tag{2a}$$

$$\sigma_{\rm Cu}(T) = B_{1/2} \left(2S_{\rm Cu} \frac{z_{\rm Cu(Mn)} J_{\rm CuMn} S_{\rm Mn} \sigma_{\rm Mn}(T)}{k_B T} \right), \tag{2b}$$

где $B_S(x)$ — функции Бриллюэна для спинов $S_{\rm Mn} = 3/2$ и $S_{\rm Cu} = 1/2$, $J_{\rm MnMn}$ и $J_{\rm CuMn} = J_{\rm MnCu}$ — интегралы косвенных обменных взаимодействий соответственно ${\rm Mn}^{4+}$ –O–Mn⁴⁺ и ${\rm Cu}^{2+}$ –O–Mn⁴⁺; k_B — константа Больцмана; $z_{\rm Mn(Mn)}$ и $z_{\rm Mn(Cu)}$ — числа катионов ${\rm Mn}^{4+}$ и ${\rm Cu}^{2+}$ в окружении катиона марганца; $z_{\rm Cu(Mn)}$ — число катионов ${\rm Mn}^{4+}$ в окружении катиона меди. В соответствии с химическим составом манганита CaCu₃Mn_{3.96}Sn_{0.04}O₁₂ необходимо принять $z_{\rm Mn(Cu)} = 6$ и $z_{\rm Mn(Mn)} = z_{\rm Cu(Mn)} = 5.94$.

Предполагая коллинеарность магнитных моментов катионов ${\rm Mn}^{4+}$ и ${\rm Cu}^{2+}$ [2] для манганита данного состава, можно выразить его приведенную общую намагниченность $\sigma(T)$ через приведенные намагни-

ченности $\sigma_{Mn}(T)$ и $\sigma_{Cu}(T)$ соответствующих подрешеток:

$$\sigma(T) = \frac{n_{\rm Mn} S_{\rm Mn} \sigma_{\rm Mn}(T) + n_{\rm Cu} S_{\rm Cu} \sigma_{\rm Cu}(T)}{n_{\rm Mn} S_{\rm Mn} - n_{\rm Cu} S_{\rm Cu}}, \quad (3)$$

где $n_{\rm Mn} = 3.96$ и $n_{\rm Cu} = 3$ — числа атомов марганца и меди, приходящихся на одну формульную единицу.

С учетом того, что парциальные вклады $h_{Mn}(T)$ и $h_{Cu}(T)$ пропорциональны магнитным моментам ближайших к зондовым атомам олова катионов марганца и меди, для которых одна из шести магнитоактивных косвенных связей заменена на связь с диамагнитным атомом, эти вклады могут быть рассчитаны с помощью следующих выражений:

$$\frac{h_{\rm Mn}(T)}{|h_{\rm Mn}(0)|} = B_{3/2} \left(2S_{\rm Mn} \frac{(z_{\rm Mn(Mn)} - 1)J_{\rm MnMn}S_{\rm Mn}\sigma_{\rm Mn}(T) + z_{\rm Mn(Cu)}J_{\rm MnCu}S_{\rm Cu}\sigma_{\rm Cu}(T)}{k_B T} \right),\tag{4a}$$

$$\frac{h_{\rm Cu}(T)}{|h_{\rm Cu}(0)|} = B_{1/2} \left(2S_{\rm Cu} \frac{(z_{\rm Cu(Mn)} - 1)J_{\rm CuMn}S_{\rm Mn}\sigma_{\rm Mn}(T)}{k_B T} \right).$$
(4b)

Совокупность уравнений (1)-(4) позволяет описать экспериментальные температурные зависимости сверхтонкого магнитного поля $H_{\rm Sn}(T)$ (см. рис. 5) и намагниченности $\sigma(T)$ (рис. 6) манганита; при этом парные обменные интегралы $J_{\rm MnMn}$ и J_{CuMn} выступают в качестве подгоночных параметров. На рис. 5 и 6 приведены расчетные зависимости $H_{\mathrm{Sn}}(T)$ и $\sigma(T)$, полученные при значениях обменных интегралов $J_{\rm MnMn}$ = -0.6 ± 0.6 К и $J_{\rm CuMn} = -51 \pm 1 \; {\rm K}$ (указан доверительный интервал статистических ошибок при коэффициенте доверия 0.9), а также вклады в сверхтонкое магнитное поле и намагниченности от соответствующих подрешеток (см. вставки на рис. 5 и 6). При этом для лучшего описания экспериментальных данных $H_{\mathrm{Sn}}(T)$ в области низких температур $(T \rightarrow 0)$ были скорректированы парциальные вклады $h_{\rm Mn}(0) = 40$ кЭ и $h_{\rm Cu}(0) = -22$ кЭ, которые тем не менее остаются очень близкими к соответствующим теоретическим величинам [3].

Существенное различие значений обменных интегралов, $|J_{CuMn}| \gg |J_{MnMn}|$, указывает на доминирующую роль в формировании магнитной структуры манганита межподрешеточных антиферромагнитных взаимодействий Cu(↓)-O-Mn(↑). Полученное нами значение $J_{\rm CuMn}$ = -51 \pm 1 K по абсолютной величине оказывается меньше, чем теоретически рассчитанное ранее [9] в рамках метода функционала электронной плотности значение $J_{\rm CuMn}$ = -20 мэВ ($J_{\rm CuMn}$ = -76 K), но в то же время существенно превышает характерные значения (5-30 К [10]) для обменных интегралов косвенных магнитных взаимодействий с участием катионов других 3*d*-металлов. Подобное расхождение, по-видимому, связано с аномально высокой для оксидных соединений степенью ковалентности связей Сu-O, образуемых в структуре CaCu₃Mn₄O₁₂ катионами Cu²⁺ с квадратной кислородной координацией.

Рис. 6. Температурная зависимость приведенной намагниченности σ манганита $CaCu_3Mn_{3.96}Sn_{0.04}O_{12}$ в поле H = 1000 Э: точки — эксперимент; кривая — расчет. На вставке показаны расчетные температурные зависимости парциальных вкладов в приведенную намагниченность от атомов марганца и меди

Обращает также на себя внимание небольшая абсолютная величина обменного интеграла J_{MnMn} , что указывает на слабый антиферромагнитный характер внутриподрешеточных косвенных взаимодействий Mn⁴⁺-O-Mn⁴⁺. Полученный результат, казалось бы, не согласуется с электронной конфигурацией t_{2q}^3 катионов Mn^{4+} , для которых перекрывание наполовину заполненных электронами t_{2q}-орбиталей должно приводить к сильному антиферромагнитному взаимодействию. Экспериментальным подтверждением этого могут служить перовскитоподобные оксиды $CaMnO_3$ ($T_N = 123$ K, $J_{\rm MnMn} \approx -10$ K [11]) и SrMnO₃ ($T_N = 233$ K, $J_{\rm MnMn} \approx -16$ K [12]), для которых антиферромагнитное упорядочение магнитных моментов катионов Mn⁴⁺ происходит лишь за счет косвенных *п*-связей $Mn^{4+}-O-Mn^{4+}$.

Покажем, что при анализе знака и силы косвенных обменных взаимодействий между катионами Mn^{4+} в структуре рассматриваемого манганита решающую роль играет угол обменных связей Mn-O-Mn. В соответствии с результатами нашей предыдущей работы [3] можно выделить три основные группы взаимодействий в зависимости от характера перекрывания 3*d*-орбиталей катионов Mn^{4+} с 2p-орбиталями разделяющего их аниона O^{2-} : π/π -, σ/σ - и σ/π -взаимодействия. Руководствуясь данными теоретических исследований [13], запишем выражения для обменных интегралов, отвечающих этим взаимодействиям, и кратко остановимся на физической сути электронных процессов, лежащих в основе каждого из них.

Обменный интеграл $J_{\pi\pi}$, связанный с π/π -взаимодействиями $t_{2g} \stackrel{\pi}{-} p \stackrel{\pi}{-} t_{2g}$, в которых принимают участие наполовину заполненные t_{2g} -орбитали обоих катионов Mn^{4+} , содержит два слагаемых:

$$J_{\pi\pi} = \left\{ J_{\pi\pi}^{kin} + J_{\pi\pi}^{halfcov} \right\}_{AF} \propto \frac{t_{pd\pi}^4}{\Delta_{\pi}^2} \times \left(\frac{2}{U_d} + \frac{4}{2\Delta_{\pi} + U_p} \right) \left(1 - \frac{1}{2} \sin^2 \vartheta \right).$$
(5)

Первое слагаемое, $J_{\pi\pi}^{kin}$, в выражении (5), называемое кинетическим обменом, связано с виртуальным переносом t_{2g} -электрона от одного катиона марганца к другому:

$$\operatorname{Mn}^{4+}(t_{2g}^3) + \operatorname{Mn}^{4+}(t_{2g}^3) \to \operatorname{Mn}^{3+}(t_{2g}^4) + \operatorname{Mn}^{5+}(t_{2g}^2).$$

Второе слагаемое, $J_{\pi\pi}^{halfcov}$, связано с так называемым полуковалентным обменом, суть которого состоит в одновременном переносе двух электронов с p_{π} -орбитали аниона кислорода на спин-поляризованные t_{2g} -орбитали окружающих их катионов марганца:

$$O^{2-}(p_{\pi}^2) + Mn^{4+}(t_{2g}^3) \to O^{-}(p_{\pi}^1) + Mn^{3+}(t_{2g}^4)$$

Фигурирующие в выражении (5) величины U_d и Δ_{π} — энергии, необходимые для осуществления рассматриваемых электронных переносов; $t_{pd\pi}$ — резонансный интеграл, отвечающий за ковалентное π -смешивание t_{2g} (Mn)- и p_{π} (O)-орбиталей; U_p энергия отталкивания между двумя электронными дырками, локализованными на атоме кислорода. В соответствии с моделью Канамори – Гуденафа – Андерсона [14], оба слагаемых в левой части выражения (5) приводят к антиферромагнитному (AFM) взаимодействию в цепочках Mn–O–Mn, которое становится наиболее эффективным при $\vartheta \rightarrow 180^{\circ}$.

Обменный интеграл $J_{\sigma\sigma}$, связанный с σ/σ -взаимодействиями $e_g - p - e_g$, содержит единственное слагаемое $J_{\sigma\sigma}^{halfcov}$, отвечающее полуковалентному обмену [14] с участием спин-поляризованных неза-полненных e_g -орбиталей:

$$J_{\sigma\sigma} = \left\{ J_{\sigma\sigma}^{halfcov} \right\}_{AFM} \propto \frac{t_{pd\sigma}^4}{\Delta_{\sigma}^2} \frac{J_H^{\rm Mn}}{(2\Delta_{\sigma} + U_p)^2} \cos^2 \vartheta, \ (6)$$

где $t_{pd\sigma}$ — резонансный интеграл между $e_g({\rm Mn})$ -
и $p_\sigma({\rm O})$ -орбиталями, $J_H^{\rm Mn}$ — внутриатомный обмен-

ный интеграл Хунда, Δ_{σ} — энергия зарядового переноса

$$O^{2-}(p_{\sigma}^2) + Mn^{4+}(e_g^0) \to O^{-}(p_{\sigma}^1) + Mn^{3+}(e_g^1).$$

Поскольку переносимые с аниона O^{2-} *p*-электроны имеют противоположно направленные друг другу спины, данный тип взаимодействий приводит к антиферромагнитному упорядочению магнитных моментов катионов марганца.

Наконец, обменный интеграл $J_{\sigma\pi}$, связанный с σ/π -взаимодействиями $e_g \stackrel{\sigma}{-} p \stackrel{\pi}{-} t_{2g}$, в которых принимает участие пустая e_g -орбиталь одного катиона Mn^{4+} и наполовину заполненная t_{2g} -орбиталь соседнего с ним катиона Mn^{4+} , содержит слагаемые кинетического $J_{\sigma\pi}^{kin}$ и полуковалентного $J_{\sigma\pi}^{halfcov}$ обменов:

$$J_{\sigma\pi} = \left\{ J_{\sigma\pi}^{kin} + J_{\sigma\pi}^{halfcov} \right\}_{FM} \propto \frac{t_{pd\sigma}^2 t_{pd\pi}^2}{\Delta_{\sigma} \Delta_{\pi}} \times \left(\frac{4J_H^{Mn}}{U_d^2} + \frac{8J_H^{Mn}}{(\Delta_{\sigma} + \Delta_{\pi} + U_p)^2} \right) \sin^2 \vartheta. \quad (7)$$

Данное взаимодействие, имеющее наибольший вклад при ϑ → 90°, обеспечивает ферромагнитное (FM) упорядочение магнитных моментов соседних катионов марганца.

К сожалению, в литературе отсутствует какая-либо информация об экспериментальных значениях или же о данных теоретических расчетов параметров, входящих в уравнения (5)–(7). Поэтому в наших расчетах мы воспользовались усредненными значениями этих параметров, полученных для других перовскитоподобных оксидных соединений, содержащих катионы Mn⁴⁺:

$$t_{pd\sigma} = 2t_{pd\pi} = 1.5 \text{ } \text{sB}, \quad U_d = 7.8 \text{ } \text{sB},$$

 $U_p = 1.0 \text{ } \text{sB}, \quad \Delta_\sigma \approx \Delta_\pi = 2.0 \text{ } \text{sB}, \quad J_H^{\text{Mn}} = 2.4 \text{ } \text{sB}.$

В соответствии с угловой зависимостью обменных интегралов (5)–(7) взаимодействия между катионами Mn⁴⁺ будут носить антиферромагнитный характер при значениях углов обменных связей Mn–O–Mn, близких к 180°. При уменьшении угла ϑ ($\vartheta \to 90^{\circ}$) эти взаимодействия сначала ослабевают, а затем, при некотором критическом значении угла ϑ_J^{cr} , меняют знак и становятся ферромагнитными. Значение ϑ_J^{cr} можно оценить из следующего равенства:

$$\left\{ J_{\pi\pi}^{kin} + J_{\pi\pi}^{halfcov} \right\}_{AFM} + \left\{ J_{\sigma\sigma}^{halfcov} \right\}_{FM} = \\ = \left\{ J_{\sigma\pi}^{kin} + J_{\sigma\pi}^{halfcov} \right\}_{FM}.$$
(8)

В результате подстановки в выражения (5)–(7) всех необходимых параметров и решения уравнения (8) мы получили критическое значение $\vartheta_I^{cr} = 138^\circ$, которое оказывается достаточно близким к величине $\vartheta_1 = 142^{\circ}$ [2], соответствующей углу обменных связей Mn-O-Mn в незамещенном манганите. Несмотря на отсутствие надежных экспериментальных значений параметров, входящих в уравнения (5)-(7), полученный результат ($\vartheta_I^{cr} \approx \vartheta_1$) служит полуколичественным доказательством того, что в структуре CaCu₃Mn₄O₁₂ угол обменных связей Mn-O-Mn попадает в область значений (рис. 7a), при которых антиферромагнитные взаимодействия между катионами марганца сначала ослабевают $(\vartheta > \vartheta_I^{cr})$, а затем меняют знак и становятся ферромагнитными ($\vartheta \leq \vartheta_I^{cr}$).

Поскольку зондовые атомы олова локализованы в позициях атомов марганца, может показаться странным, что, несмотря на слабые обменные взаимодействия Mn^{4+} –O– Mn^{4+} ($J_{MnMn} = -0.6$ K), парциальный вклад $h_{\rm Mn}(0) = 40$ кЭ в сверхтонкое магнитное поле $H_{\mathrm{Sn}}(0)$ на ядрах катионов Sn^{4+} от каждого из окружающих их катионов Mn⁴⁺ заметно превышает соответствующий вклад $h_{\rm Cu}(0) = -22 \ {\rm k} \Im$ от катионов меди. Как было показано нами ранее [3], величина $h_{\rm Mn}(0)$ может быть представлена в виде суперпозиции разных по знаку вкладов h_{Mn}^{π} и h_{Mn}^{σ} , имеющих, также как и рассмотренные выше обменные интегралы, разные угловые зависимости (рис. 76). Однако, в отличие от обменных интегралов (рис. 7*a*), критическое значение угла $\vartheta_h^{cr} = 168^\circ$, при котором h_{Mn}^{π} \approx h_{Mn}^{σ} , т.е. суммарный парциальный вклад $h_{\rm Mn}$ меняет знак, значительно больше величины $\vartheta_1 = 142^\circ$ (рис. 76). Физическая причина этого (см. работу [3]) состоит в существенном различии значений параметров ковалентности $(a_{\sigma,\mathrm{Mn}}^{\uparrow})^2 - (a_{\sigma,\mathrm{Mn}}^{\downarrow})^2 = -0.008$ и $(a_{\pi,\mathrm{Mn}}^{\uparrow})^2 = 0.167$, отвечающих *σ*- и *π*-связям Mn–O.

4. ЗАКЛЮЧЕНИЕ

На основании результатов проведенных исследований можно утверждать, что определяющими в формировании магнитной структуры двойного манганита CaCu₃Mn₄O₁₂ являются антиферромагнитные межподрешеточные взаимодействия $Cu^{2+}(\uparrow)$ –O–Mn⁴⁺(\downarrow). Большое значение обменного интеграла $|J_{CuMn}| = 51$ К свидетельствует о высокой степени ковалентности связей Cu–O, образуемых катионами Cu²⁺ с квадратной кислородной координацией. Антиферромагнитный характер

Рис. 7. Угловые зависимости различных вкладов в обменный интеграл $J_{\mathrm{MnMn}}(a)$ и вкладов h_{Mn}^{π} и h_{Mn}^{σ} в парциальное поле $h_{\mathrm{Mn}}(b)$

слабых внутриподрешеточных взаимодействий $Mn^{4+}(\downarrow)-O-Mn^{4+}(\uparrow)$ качественно согласуется со структурными параметрами исследуемого манганита, среди которых определяющую роль играет угол обменных связей Mn-O-Mn. Полученные значения обменных интегралов позволили описать экспериментальные температурные зависимости как

сверхтонкого магнитного поля на ядрах зондовых атомов 119 Sn, так и намагниченности манганита $CaCu_3Mn_{3.96}Sn_{0.04}O_{12}$.

Авторы выражают благодарность Д. И. Хомскому за участие в обсуждении механизмов обменных взаимодействий в структуре исследованного манганита. Работа выполнена при поддержке РФФИ (грант № 08-02-00354-а).

ЛИТЕРАТУРА

- И. О. Троянчук, А. Н. Чобот, Кристаллография 42, 1058 (1997).
- Z. Zeng, M. Greenblatt, J. E. Sunstrom IV et al., J. Sol. St. Chem. 147, 185 (1999).
- В. С. Русаков, И. А. Пресняков, А. В. Соболев и др., ЖЭТФ 135, 692 (2009).
- 4. В. С. Русаков, Мессбауэровская спектроскопия локально неоднородных систем, ИЯФ НЯЦ РК, Алматы (2000).
- R. Ingals, A. Van der Woude, and G. A. Sawatzky, in *Mössbauer Isomer Shifts*, ed. by G. K. Shenoy, North-Holland, Amsterdam (1978), Ch. 7.
- H. Shiraki, T. Saito, T. Yamada et al., Phys. Rev. B 76, 140403(R) (2007).
- V. Chechersky, A. Nath, I. Isaac et al., Phys. Rev. B 59, 497 (1999).
- J. M. D. Coey and G. A. Sawatzky, Phys. Stat. Sol. (b) 44, 673 (1971).
- R. Weht and W. E. Pickett, Phys. Rev. B 65, 014415 (2001).
- С. Крупичка, Физика ферритов и родственных им магнитных окислов, т. 1, Мир, Москва (1976).
- 11. A. J. Millis, Phys. Rev. B 55, 6405 (1997).
- O. Chmaissem, B. Dabrowski, S. Kolesnik et al., Phys. Rev. B 64, 134412 (2001).
- 13. S. V. Streltsov and D. I. Khomskii, Phys. Rev. B 77, 064405 (2008).
- J. B. Goodenough, Magnetism and the Chemical Bond, Interscience, New York (1963).