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A method to generate Schrédinger cat states in free propagating optical fields based on the use of displaced
states (or displacement operators) is developed. Some optical schemes with photon-added coherent states are
studied. The schemes are modifications of the general method based on a sequence of displacements and photon
additions or subtractions adjusted to generate Schrédinger cat states of a larger size. The effects of detection

inefficiency are taken into account.

1. INTRODUCTION

It is widely recognized that nonclassical states of
light are a valuable resource for numerous applications.
It is often desirable to generate nonclassical states in
traveling optical modes, as opposed to ones in expe-
riments in a cavity, where the generated state can
be probed only indirectly. Many ingenious schemes
have been proposed and experimentally demonstrated
to generate single-photon states [1] and various multi-
photon entangled states such as the Greenberger-Hor-
ne—Zeilinger (GHZ) states [2], cluster states [3], and
the so-called NOON (|N)1]O)5 + |O)1|N)2) states [4].
Considerable attention has also been devoted to con-
tinuous-variable states. It is well known that if the
postulates of quantum mechanics are applied to macro-
scopic systems, then there must exist, for example, a
linear superposition of dead-cat and alive-cat states
(the Schrodinger cat paradox) [5]. It is not very easy to
actually imagine a superposition of alive and dead cats.
Therefore, a search for approximations of the object
that Schrodinger had in view looks logical. Quantum
mechanics allows two coherent states with the ampli-
tudes equal in modulus but with different sign to be in
a superposition state [6], which is considered an im-
plementation of the Schrédinger cat paradox [5] for
optics or the same coherent state (CS) superposition
(Schrodinger-cat-like states, or simply cat states). It
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is well known that two CSs with opposite amplitudes
may give macroscopically distinguishable outcomes by
a homodyne measurement [7], especially if their ampli-
tudes are well separated. The CS superpositions show
nonclassical properties such as interference patterns in
phase space and negative values of the Wigner func-
tions [8].

The two-mode version of CS superposition, namely,
an entangled CS, is a valuable resource of entangle-
ment [9-15]. Once a single-mode CS superposition is
produced, it is relatively easy to generate an entangled
CS by passing the CS superposition through a balanced
beam splitter (another input port of the beam split-
ter being empty). The power of the entangled CSs,
as the resource of entanglement for quantum informa-
tion processing with CSs, lies in the fact that all the
four Bell entangled CSs can be discriminated in a de-
terministic way only using a beam splitter and photon
counting [10-13], which is obviously not the case for
the single-photon-based approach. Even though there
is a nonzero failure probability in distinguishing Bell
entangled CSs due to a nonzero overlap,

b _2exp(=2laP)
= 1 exp(—4|aP)’

where « is the amplitude or the size of the entangled
CS, the failure probability P; is small for an appro-
priate choice of a and the failure event is known from
the result whenever it occurs. For example, the failu-
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re probability Py is approximately 28 % for a = 0.8,
near 14 % for a = 1, and only of the order of 10~ for
a = 2. Thus, the entangled CS or CS superposition of
larger amplitudes is interesting both from the funda-
mental standpoint (the Schrédinger cat paradox) and
as regards possible applications. Entangled CSs with
small amplitudes a < 1 can be used for tests of Bell
inequalities by continuous variable states [16-21] using
various types of measurements.

We note that there are experimental demonstra-
tions of cat states in a cavity and in a trap [22,23]. We
also mention ideas to use trapped ions [24] and optical
solitons [25] to realize the cat states. But just free-tra-
veling cat states, whose generation is a nontrivial prob-
lem, are needed for the quantum information proces-
sing. It has been known theoretically that a cat state
can be generated from a CS by a nonlinear interaction
in a Kerr medium [26]. The authors of Refs. [27, 28]
noted that an optical fiber about 3000 km in length is
needed for an optical frequency w ~ 510 rad/s to
generate a CS superposition with the currently avail-
able Kerr nonlinearity using two-mode nonlinear inter-
actions and a Mach—Zehnder interferometer. A non-
linear cell about 1500 km in length is required when
single-mode interactions are used [29]. Although it is
possible to make such a long optical fiber in princi-
ple, the decoherence effect during the propagation be-
comes too large. A signal loses half of its energy over
about 15 km of propagation through a typical commer-
cial fiber.

Currently, all proposals to generate free-traveling
cat states are based on the use of squeezed vacuum
and squeezed number states at different interpretations.
For example, the setup in [30] requires a source of
squeezed vacuum states, beam splitters, strong cohe-
rent beams, photodetectors with single-photon sensi-
tivity, and a final squeezer. Because photon number
resolving detectors are required, the scheme in [30] can
be hardly realized with the current technology level.
With time, the optical schemes have become more re-
fined [31-36] and better approximating realistic experi-
mental situation. For example, the successful observa-
tion in [31, 32] that squeezed single photons can appro-
ximate odd CS superpositions with small amplitudes
and that their amplitudes can be nondeterministically
amplified using realistic resources, gave rise to a whole
new direction related to adding and subtracting pho-
ton(s) from a squeezed vacuum. Consequently, there
is a large number of theoretical ideas [37-40] based
on single-photon-subtracted squeezed states, which are
close to the CS superpositions with small amplitudes,
and their experimental realization [41-45]. For examp-

le, a squeezed CS superposition in a free propagating
field with a limited amplitude (o ~ 1.6) and small fi-
delity (near 50 %) with CS superposition (not squeezed)
was experimentally realized based on the idea of ho-
modyne conditioning on the photon number state [45].
The result in [45] is considered the best experimental
achievement in the area. Another remarkable experi-
mental result by subtracting up to three photons from
a squeezed vacuum was recently presented in [46].

The problem of generating a free-traveling CS su-
perposition of large amplitudes o > 2 needed for quan-
tum information processing remains open and challen-
ging. In this paper, we develop a method based on
displacements, photon additions, and subtractions to
generate CS superpositions of larger amplitudes. Our
motivation, in particular, is inspired by the proposal
in [47], where it was shown that an arbitrary single-
mode state can be engineered starting from the vacuum
by applying a sequence of displacements and single-
photon additions. Another reason to consider the prob-
lem is to relate displaced photon number states and CS
superpositions. We analyze several optical schemes.
One of them involves pairs of photon-added CSs to
combine them on a beam splitter to generate truncated
versions of CS superpositions. Another treatment con-
sists in a sequence of displacements, photon additions
and subtractions. This approach allows introducing a
displaced version of CS superpositions, which are differ-
ent from squeezed CS superpositions [45]. The analysis
is done in terms of the photon number states.

2. GENERATION OF A CS SUPERPOSITION
WITH THE HELP OF DISPLACED
PHOTON-ADDED CSs

We introduce the following definitions to be used
throughout the paper. We define a CS superposition
(CSS) (or, equivalently, the Schrodinger cat state) as

|CSSp (@) = Ny(a) (10, —a) +€'[0,a)) (1)

with the normalization factor

Ny(@) = 1/1/2[1 + cos p exp(=2[a]?)],

where [0,a) = D(a)|0) is a CS with amplitude «
(In,a) = D(a)n) is a displaced n-photon-number
state) with D(a) = exp(aa’ — a*a) being the dis-
placement operator, a (a') the bosonic annihilation
(creation) operator, and |n) a photon number state.
We refer to o as the size or the amplitude of the
CS superposition. Because |CSSy(a)) = |CSSy=o(a))
(ICSS_(a)) = |CSSy=r(a)}) contains an even (odd)
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either [STCSS2 (initiar))
or |STCSS3 (winitial))

either |SPACS (3))
or |[TPACS (B8))

Fig.1.
ditional

representation of the
of |STCSS2(ainitiar))

Schematic
preparation
[STCSS3(initiar)) states with the help of displa-
ced-photon-added CSs: BS — beam splitter; 1 and 2
are the spatial modes

con-
and

number of photons, such states are called even (odd)
CS superpositions.

We use the optical scheme in Fig. 1, and assume
that we have a pair of normalized single-photon-added

CSs (SPACS)

ISPACS(5)) = Nspacs(B)at|0, 3) =
_ LA +570,5)
VI+BE

where [ is the amplitude of such CSs and Nspacs is
a normalization factor. The single-photon-added CS is
conditionally generated by using a nondegenerate para-
metric amplifier described by the interaction Hamilto-
nian

(2)

H = ihy(alal — aya,

);

where the coupling coefficient y is related to the non-
linear second-order susceptibility tensor y(2). For the
input |¥;,) =10, 5)1]0)> to the Hamiltonian, we have
the output

|Uout) = exp(—iHt/h)|P;,) ~
~ [1 +g (a{a; — alaQ)] [P )

in the case of a low parametric gain ¢ < 1, where
g = xt (t is the interaction time), if a single photon
is registered in the second output mode [48]. A beam
splitter with the unitary matrix

|

1

V2

1
1

-1
1
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is used in Fig. 1 to combine two states (2).

A state of a subsystem of a correlated bipartite sys-
tem “collapses” into a particular state if another sub-
system is measured and the result of the measurement
is known. We need to distinguish between the displa-
ced-vacuum, the single-photon, and two-photon states
to produce the desired state. For this, we use a dis-
placement operator D (—v/2 ) in the first mode, suc-
ceeded by a detector being on/off observable (Fig. 1).
A beam splitter can be described by the displacement
operator D (—v/28), where —/23 = £/1 -T2, for
high transmittivity 7' — 1 and a strong ancillary co-
herent field |0, &) with an amplitude £. To be more ac-
curate, the density matrix is generated in this case, and
the density matrix is well approximated by the input
wave function shifted by some value. A pure truncated
CS superposition (TCSS) containing two terms,

10) + 0 isiat2)/ V2

TCSSQ Qinitia =
| (@initiar) 1+ |@initiar|?/2

NE)

2 i = —1/B** and B is purely imaginary,
B = i|B], is then generated if the detector registers
nothing (the vacuum) in the case of the unit detector
efficiency 7 = 1. The detector efficiency is less than
1 in real experiments, which gives rise to an ensemble
of quantum states described by some density matrix
p. The fidelity can serve as a measure of the distance
between quantum states. The fidelity is defined by [49]

where a?

F = \/(CSS (Qinitiar)|p|CSS + (Qinitial))-

Figure 2a shows the fidelity between an output state p
and an even CS superposition as a function of a;nizial
for different detector efficiencies 7.

We now extend the treatment above to involve a
pair of two-photon-added CSs (TPACS) defined as

ITPACS(8)) = f(B)a?|0, 8) =

_ B720,8) +28°[1, 8) + V212, 8)
V2 + 4B + B[ '

It can be shown that the output of the beam splitter
in Fig. 1 is a truncated CS superposition that contains
three terms |TCSS3(initiar)), where a? ..., = —2/3*?
and f = i|f|. The corresponding fidelity of the ge-
nerated |TCSS3(initiar)) state with an even CS su-
perposition is plotted in Fig. 2. The corresponding
success probabilities to generate |TCSS2(;nitiar)) and
|TCSS3(@initiar)) states are plotted in Fig. 3 for diffe-

rent detection efficiencies. A typical method to increase

(4)
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Fig.2. The fidelity between the even CS superposition and |TCSS2) (a) and |[TCSS3) (b) states versus the amplitude.
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curves (from top down) are obtained for the detector efficiencies n = 1 (the ideal case), n = 0.9, and n = 0.8
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Fig.3. The success probabilities to produce |TCSS2) (a) and |TCSS3) (b) states versus the amplitude. The curves (from
top down) are obtained for the detector efficiencies =1 (the ideal case), n = 0.9, n = 0.8, and n = 0.7

the size of the generated CS superposition [45] is to use
the single-mode squeezing operator given by

A~

S5(r)

(5)

exp [%(a”’ - a2)] ,

where r is the squeezing parameter. This operator re-
duces quantum noise of a vacuum state in the phase
quadrature by the factor exp(—2r), while increasing
quantum noise by the factor exp(2r) in the amplitude
quadrature. Figure 1 shows the squeezing operator ap-
plied to either the post-selected |TCSS2(initiar)) oOr
the |TCSS3(initiar)) state. The resultant state, which
is a squeezed truncated CS superposition (STCSS2),
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can be expanded in terms of photon-number states as

ISTCSS2(initiar)) = S(r)| TCSS2(initiar)) =

A o

X
V 1+ |Qinitiar|*/2
> 2(n +1)! th"*p
3 |y | +
=2 e+ 1) Vehr

2 thr

initial
V2 V2chr

1
vchr

a

_'_a?nitial 2(n+1)' th" r —
V2 n'2nv/2  /chdr

2(n +1)! th""2p
2nt1(n+1)! V2chr

>}pm+ny
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Fig.4. An example of the amplifying action of the squeezing operator on the conditional state in Fig. 1. From top down:

(a) the fidelity between |STCSS2(ainitiar = 1.6)) and (b) |STCSS3(@initiar = 1.8)) states with an even |CSS(a)) state

versus the amplitude with the amplifying squeezing parameter r = 0.6 for the detector efficiencies n = 1 (the ideal case),
n=0.9,n=0.8, and n = 0.7. The horizontal lines are for eye guide

State (6) contains only even photon numbers and has the truncated CS superpositions, because click events

the coefficients decaying exponentially as n increases.
The fidelity

F = F(a,r, ainitial) =

= VACSS1(a)lp(r, ainitiar )| CSS (@)

of state (6) with an even |CSS(«a)) state, where
p(r, Qinitiar) 1 the output density matrix, is calculated
numerically. Some sample values for perfect detection
are

F(a =1.5,r = 0.3763, ainjtiar = 1.2648) = 0.9979
and
F(a=1.6,r = 0.418984, ajnitiar = 1.32753) =
= 0.99653.

Detection imperfections essentially affect the out-
put state by decreasing its fidelity. The corresponding
results are given in Fig. 4, which show that highly ef-
ficient detectors are required for our purpose. If the
detection efficiency is 90 % [50], which is a reasonable
value for avalanche photodetectors, then we can achieve
F > 0.95. Currently, highly efficient detectors have re-
latively high dark-count rates, while less efficient detec-
tors have very low dark-count rates. Therefore, highly
efficient detectors [50] are preferable for generation of
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are discarded in Fig. 1. We assumed that the initial
prearranged states, either |[SPACS(f)) or | TPACS(3)),
are pure. Current technology (down converters) can-
not produce pure single-photon-added CSs; the states
always involve an admixture of the vacuum,

p1 = p|SPACS(5)) (SPACS(5)| + (1 = p)[0){0l,

where p is the state production efficiency. Therefore,
silicon avalanche photodiodes operating at visible wave-
lengths, with a relatively high efficiency and small dark
count rate have, to be used to initially create either
[SPACS(B)) or |TPACS(/3)) state. Even if the detector
misses an incoming photon, the discarded event influ-
ences only probability distributions. In practice, the
input density matrix p; @ p2 (Fig. 1) has three terms:
the term with p? is the desired one, but p(1 — p) and
(1 — p)? are undesired error terms. It can be shown
that the influence of the undesired terms can be de-
creased (purification effect) in Fig. 1. We show this in
the example of the term proportional to (1 — p)%. Af-
ter the displacement D (—\/iﬂ) in Fig. 1, the state
proportional to (1 — p)? is |0, —v/23)(0, —/2 | and
the probability to register the vacuum for the state is
exp(—2|3]?) < 1, which reduces the contribution of the
term proportional to (1 — p)2.
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3. SCHRODINGER CAT STATES AS A
SEQUENCE OF DISPLACEMENTS AND
PHOTON ADDITIONS AND
SUBTRACTIONS

We conclude from the foregoing that the method
developed above is very sensitive to detector imperfec-
tions. Therefore, we use the idea with displaced-pho-
ton-number states and give it an interpretation differ-
ent from that in Fig. 1. In this case, the CS superpo-
sition engineering starts with a coherent state |0, ay)
subject to a combination of displacements and photon
additions as (with the normalization factor omitted)

a'D(=2a1)a’ |0, a;) =
= a'D(=2a,)D(a1) Dt (ay)a’ D(ay)|0) =
=a'D(—ay)(al + a})|0) =
—ay)a'D(—ay)(a' + a})|0) =
—an)(at —af)(a’ +a)|0) =
—ap)(a” —ai?)|0) =

an) (V212) - ai%0)) =

= D(=ap)larl* (10) + apiriat|2/VZ ), (7)

where a; = i|a;| and o? = 2/|a1|?®. A possible

extension is given by

initial

a' D(=2as)a’ D(ay + as)a’ D(—2a1)at|0,a1) =
=a'D(—2as)a’ D(a; + as)D(—ay)(a? — at?)|0) =
= D(=as)(a® - a3?)(a? — a}?)|0) =
) (VA4 -v2(ai2+a5?)2) +aia5?)0)) =
= |a1[*|as|*D(~
% (10) + 002/ V2 + i 4)/VE )

D(-
Clg) X

(8)

where

o =iloyl], @y =ilasl,
O{2

initial = 2 (3 + \/3) /|042|2a
a?nitml =24 (2 + \/3) /|042|4-

States (7) and (8) are simply the displaced versions of
a truncated even CS superposition, respectively invol-
ving the two first and the three first terms. A paramet-
ric down-converter produces twin photons in two dif-
ferent modes. A photon counting at one of the modes
heralds that a photon has been added (a') to the in-
put field that passes through the down-converter. The
displacement operator with some amplitude is based

2 7KIOT®, Bein. 4
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on the beam splitter with transmittivity close to 1 and
a large-amplitude ancillary coherent field as described
above. Thus, successive two and four clicks in ancil-
lary modes of two down-converters result in respective
states (7) and (8). The same idea can be used to gene-
rate an odd CS superposition if a displaced single-pho-
ton input state [1] is used. Indeed, we have

atD(=2a1)al |1, ay) = (@' —af) (@ +ai)|1) =
33y ):
), 9)

( o 2V/31
; = 6/]ai|*. The corresponding

D(-a

= —a}? (|1> + N

if a1 = ilaq| and a2 ;. =
extension is given by

a'D(=2as)a’ D(ay + as)a' D(—2a1)at|1,a) =
= D(—az)D'(—as)a’ D(=az) DT (az)a’ D(as)e™ =
= D (—ay)a"D(—=a;) D (a)at D(ay)|1) =
="' D(—as)(a®® — a§2)(aT2 — o)1) =
= e a?a3?D(—az) x
y <I1> _3l(a}” +a32)3) 51/5) ) _
aa /3! a2a\/5!
=ear2a3’D(—as) x
% <|1>a12n\z73i'l|3> n a?n\i;z%lb) ) . (10)
where
T = Iyle“"%7 = V= lyle’” = et

Cnitiar = —2lyle’? (5 + Z\/B) ,

5Fivh
V30

4 i
Xinitial er =-

= 120[y[*,

627:4‘0 = ‘2 :F;\/g )

and 1 is the total phase shift. The generated states (9)
and (10) are the displaced truncated odd CS superpo-
sitions with two and three terms, respectively.

Hence, two additions and one displacement are re-
quired to generate either a displaced even or a displaced
odd CS superposition (Egs. (7) and (9)), while four
additions and three displacements are used to gener-
ate states (8) and (10). Displaced versions of the CS
superposition are analogs of the squeezed CS superpo-
sition considered in the preceding section. The method
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is less sensitive to detector imperfections. Indeed, de-
tection with a low dark-count rate described above can
be used to decrease the influence of dark counts. The
probability to generate down-converted twin photons
prevails over the probability to generate higher-order
correlated photons, which decreases the effect of imper-
fections on the output state. We note that a possible
complication of the optical scheme for generation of a
displaced CS superposition (DCSS) may be overcome
if the corresponding inputs given by a superposition of
displaced-photon-number states are used. We consider
this in the example of application of the subtraction
operator to the displaced state
)+

a?|2,a
\/_

a*|4, on)

)
BT

aN [a <|0 aq) +2

+ (altan) + T = D)o+
x{ <|0 ar) + 5_ >-I- 54_?0): 2
(e )] v

) 4 02 atld)

(0B Z S ) W

where oy = —aa/band N is a normalization factor. We
again produce a displaced truncated even CS superpo-
sition (with three terms (8)) if a > b by application
of only one subtraction operator, which can be condi-
tionally done by a beam splitter with high transmitti-
vity that reflects only a negligible part of the incident
beam. We note that only if we choose ay —ab/a
can we generate a displaced odd CS superposition (9)
under the condition a > b. Properties of displaced
CS superpositions deserve separate consideration. We
only note that even truncated versions of CS superpo-
sitions (if we apply the displaced operator with the op-
posite amplitude) may be useful in various applications
(hence, Fig. 5 shows the fidelity of CS superpositions
with states (7)—(11) without displacement).

4. CONCLUSION

The interest in continuous variable states and, in
particular, in Schrédinger cat states only increases. In
particular, it is related to a possible application of
the free-propagating Schrodinger cat states to quan-
tum computing [11,13]. Squeezed Schrodinger cat
states and methods of their generation based on dif-
ferent modifications of additions and subtractions from
a squeezed vacuum (or squeezed photon number states)
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Fig.5. The fidelity between nonsqueezed and nondis-

placed states (7), (9), (8), and (10) (from left to right)

and even and odd CS superpositions. Nondisplaced ver-

sions of CS superpositions (7)—(11) approximate small-
size CS superpositions well

are well studied and understood [30-46]. We were in-
terested in relating Schrodinger cat states to displaced
(not squeezed) photon-number states. As a conse-
quence, we began our analysis with either a CS or dis-
placed photon-number CSs. We also introduced the
notion of displaced Schriédinger cat states by analogy
with squeezed Schrodinger cat states [45]. Some set
of different optical schemes to connect displaced states
with a free-propagating CS superposition is considered
and analyzed. The scheme in Fig. 1 may be useful for
generation of even CS superpositions of a small size up
to a ~ 1.2 (Fig. 2) [45] even without squeezing amplifi-
cation (Fig. 4) to avoid complicating the scheme. The
calculations for the scheme in Fig. 1 were done taking
detection imperfections into account that substantially
deteriorate the quality of the generated CS superpo-
sition due to generation of a mixture of states at the
output.

To avoid the problem with detection imperfec-
tions, we considered other possible optical schemes,
which consist of some sequences of photon additions
and displacements. This allows realizing displaced
Schrodinger cat states (both even and odd) of a
larger size at the cost of complications of the optical
schemes. Another possibility to produce larger-size
CS superpositions is to use the distillation procedure
(Eq. (11)) with one subtraction operator if the input
is the corresponding wave function. We note that the
treatment in Sec. 2 is simply some modification of the
methods of photon additions. We can see from Fig. 5
that the generated CS superposition of a larger size
a > 1.2 is produced and we do not need to address
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squeezing amplification. In contrast to previous
schemes, our method requires a x(?) nonlinearity only
for photon additions. Displacement can be performed
only using a beam splitter. The treatment with
displaced states (or displacement operators) deserves
further consideration to adjust it to realistic cases and
presents best recommendations for experimentalists in-
terested in generation of larger-size CS superpositions.

This work was supported by the World
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