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ENGINEERING OF SCHRÖDINGER CAT STATES BY A SEQUENCEOF DISPLACEMENTS AND PHOTON ADDITIONSOR SUBTRACTIONSS. A. Podoshvedov *Center for Subwavelength Optis and Department of Physis and Astronomy, Seoul National University151-742, Seoul, KoreaReeived Otober 14, 2010Revised version July 16, 2010A method to generate Shrödinger at states in free propagating optial �elds based on the use of displaedstates (or displaement operators) is developed. Some optial shemes with photon-added oherent states arestudied. The shemes are modi�ations of the general method based on a sequene of displaements and photonadditions or subtrations adjusted to generate Shrödinger at states of a larger size. The e�ets of detetionine�ieny are taken into aount.1. INTRODUCTIONIt is widely reognized that nonlassial states oflight are a valuable resoure for numerous appliations.It is often desirable to generate nonlassial states intraveling optial modes, as opposed to ones in expe-riments in a avity, where the generated state anbe probed only indiretly. Many ingenious shemeshave been proposed and experimentally demonstratedto generate single-photon states [1℄ and various multi-photon entangled states suh as the Greenberger�Hor-ne�Zeilinger (GHZ) states [2℄, luster states [3℄, andthe so-alled NOON (jNi1jOi2 � jOi1jNi2) states [4℄.Considerable attention has also been devoted to on-tinuous-variable states. It is well known that if thepostulates of quantum mehanis are applied to maro-sopi systems, then there must exist, for example, alinear superposition of dead-at and alive-at states(the Shrödinger at paradox) [5℄. It is not very easy toatually imagine a superposition of alive and dead ats.Therefore, a searh for approximations of the objetthat Shrödinger had in view looks logial. Quantummehanis allows two oherent states with the ampli-tudes equal in modulus but with different sign to be ina superposition state [6℄, whih is onsidered an im-plementation of the Shrödinger at paradox [5℄ foroptis or the same oherent state (CS) superposition(Shrödinger-at-like states, or simply at states). It*E-mail: podoshvedov�mail.ru

is well known that two CSs with opposite amplitudesmay give marosopially distinguishable outomes bya homodyne measurement [7℄, espeially if their ampli-tudes are well separated. The CS superpositions shownonlassial properties suh as interferene patterns inphase spae and negative values of the Wigner fun-tions [8℄.The two-mode version of CS superposition, namely,an entangled CS, is a valuable resoure of entangle-ment [9�15℄. One a single-mode CS superposition isprodued, it is relatively easy to generate an entangledCS by passing the CS superposition through a balanedbeam splitter (another input port of the beam split-ter being empty). The power of the entangled CSs,as the resoure of entanglement for quantum informa-tion proessing with CSs, lies in the fat that all thefour Bell entangled CSs an be disriminated in a de-terministi way only using a beam splitter and photonounting [10�13℄, whih is obviously not the ase forthe single-photon-based approah. Even though thereis a nonzero failure probability in distinguishing Bellentangled CSs due to a nonzero overlap,Pf = 2 exp(�2j�j2)1 + exp(�4j�j2) ;where � is the amplitude or the size of the entangledCS, the failure probability Pf is small for an appro-priate hoie of � and the failure event is known fromthe result whenever it ours. For example, the failu-636



ÆÝÒÔ, òîì 139, âûï. 4, 2011 Engineering of Shrödinger at states by a sequene : : :re probability Pf is approximately 28% for � = 0:8,near 14% for � = 1, and only of the order of 10�4 for� = 2. Thus, the entangled CS or CS superposition oflarger amplitudes is interesting both from the funda-mental standpoint (the Shrödinger at paradox) andas regards possible appliations. Entangled CSs withsmall amplitudes � < 1 an be used for tests of Bellinequalities by ontinuous variable states [16�21℄ usingvarious types of measurements.We note that there are experimental demonstra-tions of at states in a avity and in a trap [22; 23℄. Wealso mention ideas to use trapped ions [24℄ and optialsolitons [25℄ to realize the at states. But just free-tra-veling at states, whose generation is a nontrivial prob-lem, are needed for the quantum information proes-sing. It has been known theoretially that a at statean be generated from a CS by a nonlinear interationin a Kerr medium [26℄. The authors of Refs. [27; 28℄noted that an optial �ber about 3000 km in length isneeded for an optial frequeny ! � 5 � 1014 rad/s togenerate a CS superposition with the urrently avail-able Kerr nonlinearity using two-mode nonlinear inter-ations and a Mah�Zehnder interferometer. A non-linear ell about 1500 km in length is required whensingle-mode interations are used [29℄. Although it ispossible to make suh a long optial �ber in prini-ple, the deoherene e�et during the propagation be-omes too large. A signal loses half of its energy overabout 15 km of propagation through a typial ommer-ial �ber.Currently, all proposals to generate free-travelingat states are based on the use of squeezed vauumand squeezed number states at di�erent interpretations.For example, the setup in [30℄ requires a soure ofsqueezed vauum states, beam splitters, strong ohe-rent beams, photodetetors with single-photon sensi-tivity, and a �nal squeezer. Beause photon numberresolving detetors are required, the sheme in [30℄ anbe hardly realized with the urrent tehnology level.With time, the optial shemes have beome more re-�ned [31�36℄ and better approximating realisti experi-mental situation. For example, the suessful observa-tion in [31; 32℄ that squeezed single photons an appro-ximate odd CS superpositions with small amplitudesand that their amplitudes an be nondeterministiallyampli�ed using realisti resoures, gave rise to a wholenew diretion related to adding and subtrating pho-ton(s) from a squeezed vauum. Consequently, thereis a large number of theoretial ideas [37�40℄ basedon single-photon-subtrated squeezed states, whih arelose to the CS superpositions with small amplitudes,and their experimental realization [41�45℄. For examp-

le, a squeezed CS superposition in a free propagating�eld with a limited amplitude (� � 1:6) and small �-delity (near 50%) with CS superposition (not squeezed)was experimentally realized based on the idea of ho-modyne onditioning on the photon number state [45℄.The result in [45℄ is onsidered the best experimentalahievement in the area. Another remarkable experi-mental result by subtrating up to three photons froma squeezed vauum was reently presented in [46℄.The problem of generating a free-traveling CS su-perposition of large amplitudes � � 2 needed for quan-tum information proessing remains open and hallen-ging. In this paper, we develop a method based ondisplaements, photon additions, and subtrations togenerate CS superpositions of larger amplitudes. Ourmotivation, in partiular, is inspired by the proposalin [47℄, where it was shown that an arbitrary single-mode state an be engineered starting from the vauumby applying a sequene of displaements and single-photon additions. Another reason to onsider the prob-lem is to relate displaed photon number states and CSsuperpositions. We analyze several optial shemes.One of them involves pairs of photon-added CSs toombine them on a beam splitter to generate trunatedversions of CS superpositions. Another treatment on-sists in a sequene of displaements, photon additionsand subtrations. This approah allows introduing adisplaed version of CS superpositions, whih are di�er-ent from squeezed CS superpositions [45℄. The analysisis done in terms of the photon number states.2. GENERATION OF A CS SUPERPOSITIONWITH THE HELP OF DISPLACEDPHOTON-ADDED CSsWe introdue the following de�nitions to be usedthroughout the paper. We de�ne a CS superposition(CSS) (or, equivalently, the Shrödinger at state) asjCSS'(�)i = N'(�) �j0;��i+ ei'j0; �i� (1)with the normalization fatorN'(�) = 1=p2 [1 + os' exp(�2j�j2)℄ ;where j0; �i = D̂(�)j0i is a CS with amplitude �(jn; �i = D̂(�)jni is a displaed n-photon-numberstate) with D(�) = exp(�ay � ��a) being the dis-plaement operator, a (ay) the bosoni annihilation(reation) operator, and jni a photon number state.We refer to � as the size or the amplitude of theCS superposition. Beause jCSS+(�)i = jCSS'=0(�)i(jCSS�(�)i = jCSS'=�(�)i) ontains an even (odd)637
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or |TPACS (�)iFig. 1. Shemati representation of the on-ditional preparation of jSTCSS2(�initial)i andjSTCSS3(�initial)i states with the help of displa-ed-photon-added CSs: BS � beam splitter; 1 and 2are the spatial modesnumber of photons, suh states are alled even (odd)CS superpositions.We use the optial sheme in Fig. 1, and assumethat we have a pair of normalized single-photon-addedCSs (SPACS)jSPACS(�)i = NSPACS(�)ayj0; �i == j1; �i+ ��j0; �ip1 + j�j2 ; (2)where � is the amplitude of suh CSs and NSPACS isa normalization fator. The single-photon-added CS isonditionally generated by using a nondegenerate para-metri ampli�er desribed by the interation Hamilto-nian H = i~�(ay1ay2 � a1a2);where the oupling oe�ient � is related to the non-linear seond-order suseptibility tensor �(2). For theinput j	ini = j0; �i1j0i2 to the Hamiltonian, we havethe outputj	outi = exp(�iHt=~)j	ini �� h1 + g �ay1ay2 � a1a2�i j	iniin the ase of a low parametri gain g � 1, whereg = �t (t is the interation time), if a single photonis registered in the seond output mode [48℄. A beamsplitter with the unitary matrixB = 1p2 " 1 �11 1 #

is used in Fig. 1 to ombine two states (2).A state of a subsystem of a orrelated bipartite sys-tem �ollapses� into a partiular state if another sub-system is measured and the result of the measurementis known. We need to distinguish between the displa-ed-vauum, the single-photon, and two-photon statesto produe the desired state. For this, we use a dis-plaement operator D ��p2�� in the �rst mode, su-eeded by a detetor being on/o� observable (Fig. 1).A beam splitter an be desribed by the displaementoperator D ��p2��, where �p2� = �p1� T 2, forhigh transmittivity T ! 1 and a strong anillary o-herent �eld j0; �i with an amplitude �. To be more a-urate, the density matrix is generated in this ase, andthe density matrix is well approximated by the inputwave funtion shifted by some value. A pure trunatedCS superposition (TCSS) ontaining two terms,jTCSS2(�initial)i = j0i+ �2initialj2i=p2p1 + j�initialj2=2 ; (3)where �2initial = �1=��2 and � is purely imaginary,� = ij�j, is then generated if the detetor registersnothing (the vauum) in the ase of the unit detetore�ieny � = 1. The detetor e�ieny is less than1 in real experiments, whih gives rise to an ensembleof quantum states desribed by some density matrix�. The �delity an serve as a measure of the distanebetween quantum states. The �delity is de�ned by [49℄F =phCSS+(�initial)j�jCSS+(�initial)i:Figure 2a shows the �delity between an output state �and an even CS superposition as a funtion of �initialfor di�erent detetor e�ienies �.We now extend the treatment above to involve apair of two-photon-added CSs (TPACS) de�ned asjTPACS(�)i = f(�)ay2j0; �i == ��2j0; �i+ 2��j1; �i+p2 j2; �ip2 + 4j�j2 + j�j4 : (4)It an be shown that the output of the beam splitterin Fig. 1 is a trunated CS superposition that ontainsthree terms jTCSS3(�initial)i, where �2initial = �2=��2and � = ij�j. The orresponding �delity of the ge-nerated jTCSS3(�initial)i state with an even CS su-perposition is plotted in Fig. 2b. The orrespondingsuess probabilities to generate jTCSS2(�initial)i andjTCSS3(�initial)i states are plotted in Fig. 3 for diffe-rent detetion e�ienies. A typial method to inrease638
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Fig. 2. The �delity between the even CS superposition and jTCSS2i (a) and jTCSS3i (b) states versus the amplitude. Theurves (from top down) are obtained for the detetor e�ienies � = 1 (the ideal ase), � = 0:9, and � = 0:8
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Fig. 3. The suess probabilities to produe jTCSS2i (a) and jTCSS3i (b) states versus the amplitude. The urves (fromtop down) are obtained for the detetor e�ienies � = 1 (the ideal ase), � = 0:9, � = 0:8, and � = 0:7the size of the generated CS superposition [45℄ is to usethe single-mode squeezing operator given byŜ(r) = exp hr2(ay2 � a2)i ; (5)where r is the squeezing parameter. This operator re-dues quantum noise of a vauum state in the phasequadrature by the fator exp(�2r), while inreasingquantum noise by the fator exp(2r) in the amplitudequadrature. Figure 1 shows the squeezing operator ap-plied to either the post-seleted jTCSS2(�initial)i orthe jTCSS3(�initial)i state. The resultant state, whihis a squeezed trunated CS superposition (STCSS2),

an be expanded in terms of photon-number states asjSTCSS2(�initial)i = Ŝ(r)jTCSS2(�initial)i == 1p1 + j�initial j4=2 ��(� 1ph r � �2initialp2 th rp2 h r� j0i ++ 1Xn=0" p2(n+ 1)!2n+1(n+ 1)! thn+1 rph r # ++ �2initialp2  p2(n+ 1)!n!2np2 thn rph5 r �� p2(n+ 1)!2n+1(n+ 1)! thn+2 rp2 h r !) j2(n+ 1)i: (6)639
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� �Fig. 4. An example of the amplifying ation of the squeezing operator on the onditional state in Fig. 1. From top down:(a) the �delity between jSTCSS2(�initial = 1:6)i and (b) jSTCSS3(�initial = 1:8)i states with an even jCSS(�)i stateversus the amplitude with the amplifying squeezing parameter r = 0:6 for the detetor e�ienies � = 1 (the ideal ase),� = 0:9, � = 0:8, and � = 0:7. The horizontal lines are for eye guideState (6) ontains only even photon numbers and hasthe oe�ients deaying exponentially as n inreases.The �delityF = F (�; r; �initial) ==phCSS+(�)j�(r; �initial)jCSS+(�)iof state (6) with an even jCSS(�)i state, where�(r; �initial) is the output density matrix, is alulatednumerially. Some sample values for perfet detetionareF (� = 1:5; r = 0:3763; �initial = 1:2648) = 0:9979andF (� = 1:6; r = 0:418984; �initial = 1:32753) == 0:99653:Detetion imperfetions essentially a�et the out-put state by dereasing its �delity. The orrespondingresults are given in Fig. 4, whih show that highly ef-�ient detetors are required for our purpose. If thedetetion e�ieny is 90% [50℄, whih is a reasonablevalue for avalanhe photodetetors, then we an ahieveF > 0:95. Currently, highly e�ient detetors have re-latively high dark-ount rates, while less e�ient dete-tors have very low dark-ount rates. Therefore, highlye�ient detetors [50℄ are preferable for generation of

the trunated CS superpositions, beause lik eventsare disarded in Fig. 1. We assumed that the initialprearranged states, either jSPACS(�)i or jTPACS(�)i,are pure. Current tehnology (down onverters) an-not produe pure single-photon-added CSs; the statesalways involve an admixture of the vauum,�1 = pjSPACS(�)ihSPACS(�)j+ (1� p)j0ih0j;where p is the state prodution e�ieny. Therefore,silion avalanhe photodiodes operating at visible wave-lengths, with a relatively high e�ieny and small darkount rate have, to be used to initially reate eitherjSPACS(�)i or jTPACS(�)i state. Even if the detetormisses an inoming photon, the disarded event in�u-enes only probability distributions. In pratie, theinput density matrix �1 
 �2 (Fig. 1) has three terms:the term with p2 is the desired one, but p(1 � p) and(1 � p)2 are undesired error terms. It an be shownthat the in�uene of the undesired terms an be de-reased (puri�ation e�et) in Fig. 1. We show this inthe example of the term proportional to (1 � p)2. Af-ter the displaement D ��p2�� in Fig. 1, the stateproportional to (1 � p)2 is j0;�p2�ih0;�p2�j andthe probability to register the vauum for the state isexp(�2j�j2) < 1, whih redues the ontribution of theterm proportional to (1� p)2.640



ÆÝÒÔ, òîì 139, âûï. 4, 2011 Engineering of Shrödinger at states by a sequene : : :3. SCHRÖDINGER CAT STATES AS ASEQUENCE OF DISPLACEMENTS ANDPHOTON ADDITIONS ANDSUBTRACTIONSWe onlude from the foregoing that the methoddeveloped above is very sensitive to detetor imperfe-tions. Therefore, we use the idea with displaed-pho-ton-number states and give it an interpretation di�er-ent from that in Fig. 1. In this ase, the CS superpo-sition engineering starts with a oherent state j0; �1isubjet to a ombination of displaements and photonadditions as (with the normalization fator omitted)ayD(�2�1)ayj0; �1i == ayD(�2�1)D(�1)Dy(�1)ayD(�1)j0i == ayD(��1)(ay + ��1)j0i == D(��1)Dy(��1)ayD(��1)(ay + ��1)j0i == D(��1)(ay � ��1)(ay + ��1)j0i == D(��1)(ay2 � ��21 )j0i == D(��1)�p2j2i � a�21 j0i� == D(��1)j�1j2 �j0i+ �2initialj2i=p2� ; (7)where �1 = ij�1j and �2initial = 2=j�1j2. A possibleextension is given byayD(�2�2)ayD(�1 + �2)ayD(�2�1)ayj0; �1i == ayD(�2�2)ayD(�1 + �2)D(��1)(ay2 � ��21 )j0i == D(��2)(ay2 � ��22 )(ay2 � ��21 )j0i == D(��2)�p4!j4i�p2(��21 +��22 )j2i+��21 ��22 j0i� == j�1j2j�2j2D(��2)�� �j0i+ �2initial j2i=p2! + �4initialj4i=p4!� ; (8)where �1 = ij�1j; �2 = ij�2j;�2initial = 2�3�p3� =j�2j2;�4initial = 24�2�p3� =j�2j4:States (7) and (8) are simply the displaed versions ofa trunated even CS superposition, respetively invol-ving the two �rst and the three �rst terms. A paramet-ri down-onverter produes twin photons in two dif-ferent modes. A photon ounting at one of the modesheralds that a photon has been added (ay) to the in-put �eld that passes through the down-onverter. Thedisplaement operator with some amplitude is based

on the beam splitter with transmittivity lose to 1 anda large-amplitude anillary oherent �eld as desribedabove. Thus, suessive two and four liks in anil-lary modes of two down-onverters result in respetivestates (7) and (8). The same idea an be used to gene-rate an odd CS superposition if a displaed single-pho-ton input state [1℄ is used. Indeed, we haveayD(�2�1)ayj1; �1i = D(��1)(ay���1)(ay+��1)j1i == ���21 �j1i+ 3!j3ij�1j2p3! � == ���21 �j1i+ �3initialj3ip3! � ; (9)if �1 = ij�1j and �2initial = 6=j�1j2. The orrespondingextension is given byayD(�2�2)ayD(�1 + �2)ayD(�2�1)ayj1; �1i == D(��2)Dy(��2)ayD(��2)Dy(�2)ayD(�2)ei == Dy(��1)ayD(��1)Dy(�1)ayD(�1)j1i == ei D(��2)(ay2 � ��22 )(ay2 � ��21 )j1i == ei ��21 ��22 D(��2)�� j1i � 3!(a�21 + ��22 )j3i��21 ��22 p3! + 5!j5i��21 ��22 p5! ! == ei ��21 ��22 D(��2)���j1i�2initialj3ip3! + �4initialj5ip5! � ; (10)wherex = jyjei' 2� ip53 ; x = 1��21 ; y = jyjei' = 1��22 ;�2initial = �2jyjei' �5� ip5� ;�4initial = 120jyj2; ei' = �5� ip5p30 ;e2i' = 2� ip53 ;and  is the total phase shift. The generated states (9)and (10) are the displaed trunated odd CS superpo-sitions with two and three terms, respetively.Hene, two additions and one displaement are re-quired to generate either a displaed even or a displaedodd CS superposition (Eqs. (7) and (9)), while fouradditions and three displaements are used to gener-ate states (8) and (10). Displaed versions of the CSsuperposition are analogs of the squeezed CS superpo-sition onsidered in the preeding setion. The method2 ÆÝÒÔ, âûï. 4 641



S. A. Podoshvedov ÆÝÒÔ, òîì 139, âûï. 4, 2011is less sensitive to detetor imperfetions. Indeed, de-tetion with a low dark-ount rate desribed above anbe used to derease the in�uene of dark ounts. Theprobability to generate down-onverted twin photonsprevails over the probability to generate higher-orderorrelated photons, whih dereases the e�et of imper-fetions on the output state. We note that a possibleompliation of the optial sheme for generation of adisplaed CS superposition (DCSS) may be overomeif the orresponding inputs given by a superposition ofdisplaed-photon-number states are used. We onsiderthis in the example of appliation of the subtrationoperator to the displaed stateaN �a�j0; �1i+ �2j2; �1ip2! + �4j4; �1ip4! � ++ b��j1; �1i+ �3j3; �1ip3! �� = ND(�1)(a+ �1)�� �a�j0; �1i+ �2j2; �1ip2! + �4j4; �1ip4! � ++ b��j1; �1i+�3j3; �1ip3! �� = �ND(�1)�(a2�b2)b ���j0i+ �2j2ip2 + a2a2 � b2 �4j4ip4! � ; (11)where �1 = ��a=b andN is a normalization fator. Weagain produe a displaed trunated even CS superpo-sition (with three terms (8)) if a � b by appliationof only one subtration operator, whih an be ondi-tionally done by a beam splitter with high transmitti-vity that re�ets only a negligible part of the inidentbeam. We note that only if we hoose �1 = ��b=aan we generate a displaed odd CS superposition (9)under the ondition a � b. Properties of displaedCS superpositions deserve separate onsideration. Weonly note that even trunated versions of CS superpo-sitions (if we apply the displaed operator with the op-posite amplitude) may be useful in various appliations(hene, Fig. 5 shows the �delity of CS superpositionswith states (7)�(11) without displaement).4. CONCLUSIONThe interest in ontinuous variable states and, inpartiular, in Shrödinger at states only inreases. Inpartiular, it is related to a possible appliation ofthe free-propagating Shrödinger at states to quan-tum omputing [11; 13℄. Squeezed Shrödinger atstates and methods of their generation based on dif-ferent modi�ations of additions and subtrations froma squeezed vauum (or squeezed photon number states)

0 0:2 0:4 0:6 0:8 1:0 1:2 1:4
1:0000:9950:9900:9850:9800:9750:970

F
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