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ENGINEERING OF SCHRÖDINGER CAT STATES BY A SEQUENCEOF DISPLACEMENTS AND PHOTON ADDITIONSOR SUBTRACTIONSS. A. Podoshvedov *Center for Subwavelength Opti
s and Department of Physi
s and Astronomy, Seoul National University151-742, Seoul, KoreaRe
eived O
tober 14, 2010Revised version July 16, 2010A method to generate S
hrödinger 
at states in free propagating opti
al �elds based on the use of displa
edstates (or displa
ement operators) is developed. Some opti
al s
hemes with photon-added 
oherent states arestudied. The s
hemes are modi�
ations of the general method based on a sequen
e of displa
ements and photonadditions or subtra
tions adjusted to generate S
hrödinger 
at states of a larger size. The e�e
ts of dete
tionine�
ien
y are taken into a

ount.1. INTRODUCTIONIt is widely re
ognized that non
lassi
al states oflight are a valuable resour
e for numerous appli
ations.It is often desirable to generate non
lassi
al states intraveling opti
al modes, as opposed to ones in expe-riments in a 
avity, where the generated state 
anbe probed only indire
tly. Many ingenious s
hemeshave been proposed and experimentally demonstratedto generate single-photon states [1℄ and various multi-photon entangled states su
h as the Greenberger�Hor-ne�Zeilinger (GHZ) states [2℄, 
luster states [3℄, andthe so-
alled NOON (jNi1jOi2 � jOi1jNi2) states [4℄.Considerable attention has also been devoted to 
on-tinuous-variable states. It is well known that if thepostulates of quantum me
hani
s are applied to ma
ro-s
opi
 systems, then there must exist, for example, alinear superposition of dead-
at and alive-
at states(the S
hrödinger 
at paradox) [5℄. It is not very easy toa
tually imagine a superposition of alive and dead 
ats.Therefore, a sear
h for approximations of the obje
tthat S
hrödinger had in view looks logi
al. Quantumme
hani
s allows two 
oherent states with the ampli-tudes equal in modulus but with different sign to be ina superposition state [6℄, whi
h is 
onsidered an im-plementation of the S
hrödinger 
at paradox [5℄ foropti
s or the same 
oherent state (CS) superposition(S
hrödinger-
at-like states, or simply 
at states). It*E-mail: podoshvedov�mail.ru

is well known that two CSs with opposite amplitudesmay give ma
ros
opi
ally distinguishable out
omes bya homodyne measurement [7℄, espe
ially if their ampli-tudes are well separated. The CS superpositions shownon
lassi
al properties su
h as interferen
e patterns inphase spa
e and negative values of the Wigner fun
-tions [8℄.The two-mode version of CS superposition, namely,an entangled CS, is a valuable resour
e of entangle-ment [9�15℄. On
e a single-mode CS superposition isprodu
ed, it is relatively easy to generate an entangledCS by passing the CS superposition through a balan
edbeam splitter (another input port of the beam split-ter being empty). The power of the entangled CSs,as the resour
e of entanglement for quantum informa-tion pro
essing with CSs, lies in the fa
t that all thefour Bell entangled CSs 
an be dis
riminated in a de-terministi
 way only using a beam splitter and photon
ounting [10�13℄, whi
h is obviously not the 
ase forthe single-photon-based approa
h. Even though thereis a nonzero failure probability in distinguishing Bellentangled CSs due to a nonzero overlap,Pf = 2 exp(�2j�j2)1 + exp(�4j�j2) ;where � is the amplitude or the size of the entangledCS, the failure probability Pf is small for an appro-priate 
hoi
e of � and the failure event is known fromthe result whenever it o

urs. For example, the failu-636
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hrödinger 
at states by a sequen
e : : :re probability Pf is approximately 28% for � = 0:8,near 14% for � = 1, and only of the order of 10�4 for� = 2. Thus, the entangled CS or CS superposition oflarger amplitudes is interesting both from the funda-mental standpoint (the S
hrödinger 
at paradox) andas regards possible appli
ations. Entangled CSs withsmall amplitudes � < 1 
an be used for tests of Bellinequalities by 
ontinuous variable states [16�21℄ usingvarious types of measurements.We note that there are experimental demonstra-tions of 
at states in a 
avity and in a trap [22; 23℄. Wealso mention ideas to use trapped ions [24℄ and opti
alsolitons [25℄ to realize the 
at states. But just free-tra-veling 
at states, whose generation is a nontrivial prob-lem, are needed for the quantum information pro
es-sing. It has been known theoreti
ally that a 
at state
an be generated from a CS by a nonlinear intera
tionin a Kerr medium [26℄. The authors of Refs. [27; 28℄noted that an opti
al �ber about 3000 km in length isneeded for an opti
al frequen
y ! � 5 � 1014 rad/s togenerate a CS superposition with the 
urrently avail-able Kerr nonlinearity using two-mode nonlinear inter-a
tions and a Ma
h�Zehnder interferometer. A non-linear 
ell about 1500 km in length is required whensingle-mode intera
tions are used [29℄. Although it ispossible to make su
h a long opti
al �ber in prin
i-ple, the de
oheren
e e�e
t during the propagation be-
omes too large. A signal loses half of its energy overabout 15 km of propagation through a typi
al 
ommer-
ial �ber.Currently, all proposals to generate free-traveling
at states are based on the use of squeezed va
uumand squeezed number states at di�erent interpretations.For example, the setup in [30℄ requires a sour
e ofsqueezed va
uum states, beam splitters, strong 
ohe-rent beams, photodete
tors with single-photon sensi-tivity, and a �nal squeezer. Be
ause photon numberresolving dete
tors are required, the s
heme in [30℄ 
anbe hardly realized with the 
urrent te
hnology level.With time, the opti
al s
hemes have be
ome more re-�ned [31�36℄ and better approximating realisti
 experi-mental situation. For example, the su

essful observa-tion in [31; 32℄ that squeezed single photons 
an appro-ximate odd CS superpositions with small amplitudesand that their amplitudes 
an be nondeterministi
allyampli�ed using realisti
 resour
es, gave rise to a wholenew dire
tion related to adding and subtra
ting pho-ton(s) from a squeezed va
uum. Consequently, thereis a large number of theoreti
al ideas [37�40℄ basedon single-photon-subtra
ted squeezed states, whi
h are
lose to the CS superpositions with small amplitudes,and their experimental realization [41�45℄. For examp-

le, a squeezed CS superposition in a free propagating�eld with a limited amplitude (� � 1:6) and small �-delity (near 50%) with CS superposition (not squeezed)was experimentally realized based on the idea of ho-modyne 
onditioning on the photon number state [45℄.The result in [45℄ is 
onsidered the best experimentala
hievement in the area. Another remarkable experi-mental result by subtra
ting up to three photons froma squeezed va
uum was re
ently presented in [46℄.The problem of generating a free-traveling CS su-perposition of large amplitudes � � 2 needed for quan-tum information pro
essing remains open and 
hallen-ging. In this paper, we develop a method based ondispla
ements, photon additions, and subtra
tions togenerate CS superpositions of larger amplitudes. Ourmotivation, in parti
ular, is inspired by the proposalin [47℄, where it was shown that an arbitrary single-mode state 
an be engineered starting from the va
uumby applying a sequen
e of displa
ements and single-photon additions. Another reason to 
onsider the prob-lem is to relate displa
ed photon number states and CSsuperpositions. We analyze several opti
al s
hemes.One of them involves pairs of photon-added CSs to
ombine them on a beam splitter to generate trun
atedversions of CS superpositions. Another treatment 
on-sists in a sequen
e of displa
ements, photon additionsand subtra
tions. This approa
h allows introdu
ing adispla
ed version of CS superpositions, whi
h are di�er-ent from squeezed CS superpositions [45℄. The analysisis done in terms of the photon number states.2. GENERATION OF A CS SUPERPOSITIONWITH THE HELP OF DISPLACEDPHOTON-ADDED CSsWe introdu
e the following de�nitions to be usedthroughout the paper. We de�ne a CS superposition(CSS) (or, equivalently, the S
hrödinger 
at state) asjCSS'(�)i = N'(�) �j0;��i+ ei'j0; �i� (1)with the normalization fa
torN'(�) = 1=p2 [1 + 
os' exp(�2j�j2)℄ ;where j0; �i = D̂(�)j0i is a CS with amplitude �(jn; �i = D̂(�)jni is a displa
ed n-photon-numberstate) with D(�) = exp(�ay � ��a) being the dis-pla
ement operator, a (ay) the bosoni
 annihilation(
reation) operator, and jni a photon number state.We refer to � as the size or the amplitude of theCS superposition. Be
ause jCSS+(�)i = jCSS'=0(�)i(jCSS�(�)i = jCSS'=�(�)i) 
ontains an even (odd)637
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either |SPACS (�)i

either |STCSS2 (�initial)ior |STCSS3 (�initial)i Va
uum
or |TPACS (�)iFig. 1. S
hemati
 representation of the 
on-ditional preparation of jSTCSS2(�initial)i andjSTCSS3(�initial)i states with the help of displa-
ed-photon-added CSs: BS � beam splitter; 1 and 2are the spatial modesnumber of photons, su
h states are 
alled even (odd)CS superpositions.We use the opti
al s
heme in Fig. 1, and assumethat we have a pair of normalized single-photon-addedCSs (SPACS)jSPACS(�)i = NSPACS(�)ayj0; �i == j1; �i+ ��j0; �ip1 + j�j2 ; (2)where � is the amplitude of su
h CSs and NSPACS isa normalization fa
tor. The single-photon-added CS is
onditionally generated by using a nondegenerate para-metri
 ampli�er des
ribed by the intera
tion Hamilto-nian H = i~�(ay1ay2 � a1a2);where the 
oupling 
oe�
ient � is related to the non-linear se
ond-order sus
eptibility tensor �(2). For theinput j	ini = j0; �i1j0i2 to the Hamiltonian, we havethe outputj	outi = exp(�iHt=~)j	ini �� h1 + g �ay1ay2 � a1a2�i j	iniin the 
ase of a low parametri
 gain g � 1, whereg = �t (t is the intera
tion time), if a single photonis registered in the se
ond output mode [48℄. A beamsplitter with the unitary matrixB = 1p2 " 1 �11 1 #

is used in Fig. 1 to 
ombine two states (2).A state of a subsystem of a 
orrelated bipartite sys-tem �
ollapses� into a parti
ular state if another sub-system is measured and the result of the measurementis known. We need to distinguish between the displa-
ed-va
uum, the single-photon, and two-photon statesto produ
e the desired state. For this, we use a dis-pla
ement operator D ��p2�� in the �rst mode, su
-
eeded by a dete
tor being on/o� observable (Fig. 1).A beam splitter 
an be des
ribed by the displa
ementoperator D ��p2��, where �p2� = �p1� T 2, forhigh transmittivity T ! 1 and a strong an
illary 
o-herent �eld j0; �i with an amplitude �. To be more a
-
urate, the density matrix is generated in this 
ase, andthe density matrix is well approximated by the inputwave fun
tion shifted by some value. A pure trun
atedCS superposition (TCSS) 
ontaining two terms,jTCSS2(�initial)i = j0i+ �2initialj2i=p2p1 + j�initialj2=2 ; (3)where �2initial = �1=��2 and � is purely imaginary,� = ij�j, is then generated if the dete
tor registersnothing (the va
uum) in the 
ase of the unit dete
tore�
ien
y � = 1. The dete
tor e�
ien
y is less than1 in real experiments, whi
h gives rise to an ensembleof quantum states des
ribed by some density matrix�. The �delity 
an serve as a measure of the distan
ebetween quantum states. The �delity is de�ned by [49℄F =phCSS+(�initial)j�jCSS+(�initial)i:Figure 2a shows the �delity between an output state �and an even CS superposition as a fun
tion of �initialfor di�erent dete
tor e�
ien
ies �.We now extend the treatment above to involve apair of two-photon-added CSs (TPACS) de�ned asjTPACS(�)i = f(�)ay2j0; �i == ��2j0; �i+ 2��j1; �i+p2 j2; �ip2 + 4j�j2 + j�j4 : (4)It 
an be shown that the output of the beam splitterin Fig. 1 is a trun
ated CS superposition that 
ontainsthree terms jTCSS3(�initial)i, where �2initial = �2=��2and � = ij�j. The 
orresponding �delity of the ge-nerated jTCSS3(�initial)i state with an even CS su-perposition is plotted in Fig. 2b. The 
orrespondingsu

ess probabilities to generate jTCSS2(�initial)i andjTCSS3(�initial)i states are plotted in Fig. 3 for diffe-rent dete
tion e�
ien
ies. A typi
al method to in
rease638
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Fig. 2. The �delity between the even CS superposition and jTCSS2i (a) and jTCSS3i (b) states versus the amplitude. The
urves (from top down) are obtained for the dete
tor e�
ien
ies � = 1 (the ideal 
ase), � = 0:9, and � = 0:8
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Fig. 3. The su

ess probabilities to produ
e jTCSS2i (a) and jTCSS3i (b) states versus the amplitude. The 
urves (fromtop down) are obtained for the dete
tor e�
ien
ies � = 1 (the ideal 
ase), � = 0:9, � = 0:8, and � = 0:7the size of the generated CS superposition [45℄ is to usethe single-mode squeezing operator given byŜ(r) = exp hr2(ay2 � a2)i ; (5)where r is the squeezing parameter. This operator re-du
es quantum noise of a va
uum state in the phasequadrature by the fa
tor exp(�2r), while in
reasingquantum noise by the fa
tor exp(2r) in the amplitudequadrature. Figure 1 shows the squeezing operator ap-plied to either the post-sele
ted jTCSS2(�initial)i orthe jTCSS3(�initial)i state. The resultant state, whi
his a squeezed trun
ated CS superposition (STCSS2),


an be expanded in terms of photon-number states asjSTCSS2(�initial)i = Ŝ(r)jTCSS2(�initial)i == 1p1 + j�initial j4=2 ��(� 1p
h r � �2initialp2 th rp2 
h r� j0i ++ 1Xn=0" p2(n+ 1)!2n+1(n+ 1)! thn+1 rp
h r # ++ �2initialp2  p2(n+ 1)!n!2np2 thn rp
h5 r �� p2(n+ 1)!2n+1(n+ 1)! thn+2 rp2 
h r !) j2(n+ 1)i: (6)639
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� �Fig. 4. An example of the amplifying a
tion of the squeezing operator on the 
onditional state in Fig. 1. From top down:(a) the �delity between jSTCSS2(�initial = 1:6)i and (b) jSTCSS3(�initial = 1:8)i states with an even jCSS(�)i stateversus the amplitude with the amplifying squeezing parameter r = 0:6 for the dete
tor e�
ien
ies � = 1 (the ideal 
ase),� = 0:9, � = 0:8, and � = 0:7. The horizontal lines are for eye guideState (6) 
ontains only even photon numbers and hasthe 
oe�
ients de
aying exponentially as n in
reases.The �delityF = F (�; r; �initial) ==phCSS+(�)j�(r; �initial)jCSS+(�)iof state (6) with an even jCSS(�)i state, where�(r; �initial) is the output density matrix, is 
al
ulatednumeri
ally. Some sample values for perfe
t dete
tionareF (� = 1:5; r = 0:3763; �initial = 1:2648) = 0:9979andF (� = 1:6; r = 0:418984; �initial = 1:32753) == 0:99653:Dete
tion imperfe
tions essentially a�e
t the out-put state by de
reasing its �delity. The 
orrespondingresults are given in Fig. 4, whi
h show that highly ef-�
ient dete
tors are required for our purpose. If thedete
tion e�
ien
y is 90% [50℄, whi
h is a reasonablevalue for avalan
he photodete
tors, then we 
an a
hieveF > 0:95. Currently, highly e�
ient dete
tors have re-latively high dark-
ount rates, while less e�
ient dete
-tors have very low dark-
ount rates. Therefore, highlye�
ient dete
tors [50℄ are preferable for generation of

the trun
ated CS superpositions, be
ause 
li
k eventsare dis
arded in Fig. 1. We assumed that the initialprearranged states, either jSPACS(�)i or jTPACS(�)i,are pure. Current te
hnology (down 
onverters) 
an-not produ
e pure single-photon-added CSs; the statesalways involve an admixture of the va
uum,�1 = pjSPACS(�)ihSPACS(�)j+ (1� p)j0ih0j;where p is the state produ
tion e�
ien
y. Therefore,sili
on avalan
he photodiodes operating at visible wave-lengths, with a relatively high e�
ien
y and small dark
ount rate have, to be used to initially 
reate eitherjSPACS(�)i or jTPACS(�)i state. Even if the dete
tormisses an in
oming photon, the dis
arded event in�u-en
es only probability distributions. In pra
ti
e, theinput density matrix �1 
 �2 (Fig. 1) has three terms:the term with p2 is the desired one, but p(1 � p) and(1 � p)2 are undesired error terms. It 
an be shownthat the in�uen
e of the undesired terms 
an be de-
reased (puri�
ation e�e
t) in Fig. 1. We show this inthe example of the term proportional to (1 � p)2. Af-ter the displa
ement D ��p2�� in Fig. 1, the stateproportional to (1 � p)2 is j0;�p2�ih0;�p2�j andthe probability to register the va
uum for the state isexp(�2j�j2) < 1, whi
h redu
es the 
ontribution of theterm proportional to (1� p)2.640
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hrödinger 
at states by a sequen
e : : :3. SCHRÖDINGER CAT STATES AS ASEQUENCE OF DISPLACEMENTS ANDPHOTON ADDITIONS ANDSUBTRACTIONSWe 
on
lude from the foregoing that the methoddeveloped above is very sensitive to dete
tor imperfe
-tions. Therefore, we use the idea with displa
ed-pho-ton-number states and give it an interpretation di�er-ent from that in Fig. 1. In this 
ase, the CS superpo-sition engineering starts with a 
oherent state j0; �1isubje
t to a 
ombination of displa
ements and photonadditions as (with the normalization fa
tor omitted)ayD(�2�1)ayj0; �1i == ayD(�2�1)D(�1)Dy(�1)ayD(�1)j0i == ayD(��1)(ay + ��1)j0i == D(��1)Dy(��1)ayD(��1)(ay + ��1)j0i == D(��1)(ay � ��1)(ay + ��1)j0i == D(��1)(ay2 � ��21 )j0i == D(��1)�p2j2i � a�21 j0i� == D(��1)j�1j2 �j0i+ �2initialj2i=p2� ; (7)where �1 = ij�1j and �2initial = 2=j�1j2. A possibleextension is given byayD(�2�2)ayD(�1 + �2)ayD(�2�1)ayj0; �1i == ayD(�2�2)ayD(�1 + �2)D(��1)(ay2 � ��21 )j0i == D(��2)(ay2 � ��22 )(ay2 � ��21 )j0i == D(��2)�p4!j4i�p2(��21 +��22 )j2i+��21 ��22 j0i� == j�1j2j�2j2D(��2)�� �j0i+ �2initial j2i=p2! + �4initialj4i=p4!� ; (8)where �1 = ij�1j; �2 = ij�2j;�2initial = 2�3�p3� =j�2j2;�4initial = 24�2�p3� =j�2j4:States (7) and (8) are simply the displa
ed versions ofa trun
ated even CS superposition, respe
tively invol-ving the two �rst and the three �rst terms. A paramet-ri
 down-
onverter produ
es twin photons in two dif-ferent modes. A photon 
ounting at one of the modesheralds that a photon has been added (ay) to the in-put �eld that passes through the down-
onverter. Thedispla
ement operator with some amplitude is based

on the beam splitter with transmittivity 
lose to 1 anda large-amplitude an
illary 
oherent �eld as des
ribedabove. Thus, su

essive two and four 
li
ks in an
il-lary modes of two down-
onverters result in respe
tivestates (7) and (8). The same idea 
an be used to gene-rate an odd CS superposition if a displa
ed single-pho-ton input state [1℄ is used. Indeed, we haveayD(�2�1)ayj1; �1i = D(��1)(ay���1)(ay+��1)j1i == ���21 �j1i+ 3!j3ij�1j2p3! � == ���21 �j1i+ �3initialj3ip3! � ; (9)if �1 = ij�1j and �2initial = 6=j�1j2. The 
orrespondingextension is given byayD(�2�2)ayD(�1 + �2)ayD(�2�1)ayj1; �1i == D(��2)Dy(��2)ayD(��2)Dy(�2)ayD(�2)ei == Dy(��1)ayD(��1)Dy(�1)ayD(�1)j1i == ei D(��2)(ay2 � ��22 )(ay2 � ��21 )j1i == ei ��21 ��22 D(��2)�� j1i � 3!(a�21 + ��22 )j3i��21 ��22 p3! + 5!j5i��21 ��22 p5! ! == ei ��21 ��22 D(��2)���j1i�2initialj3ip3! + �4initialj5ip5! � ; (10)wherex = jyjei' 2� ip53 ; x = 1��21 ; y = jyjei' = 1��22 ;�2initial = �2jyjei' �5� ip5� ;�4initial = 120jyj2; ei' = �5� ip5p30 ;e2i' = 2� ip53 ;and  is the total phase shift. The generated states (9)and (10) are the displa
ed trun
ated odd CS superpo-sitions with two and three terms, respe
tively.Hen
e, two additions and one displa
ement are re-quired to generate either a displa
ed even or a displa
edodd CS superposition (Eqs. (7) and (9)), while fouradditions and three displa
ements are used to gener-ate states (8) and (10). Displa
ed versions of the CSsuperposition are analogs of the squeezed CS superpo-sition 
onsidered in the pre
eding se
tion. The method2 ÆÝÒÔ, âûï. 4 641
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tor imperfe
tions. Indeed, de-te
tion with a low dark-
ount rate des
ribed above 
anbe used to de
rease the in�uen
e of dark 
ounts. Theprobability to generate down-
onverted twin photonsprevails over the probability to generate higher-order
orrelated photons, whi
h de
reases the e�e
t of imper-fe
tions on the output state. We note that a possible
ompli
ation of the opti
al s
heme for generation of adispla
ed CS superposition (DCSS) may be over
omeif the 
orresponding inputs given by a superposition ofdispla
ed-photon-number states are used. We 
onsiderthis in the example of appli
ation of the subtra
tionoperator to the displa
ed stateaN �a�j0; �1i+ �2j2; �1ip2! + �4j4; �1ip4! � ++ b��j1; �1i+ �3j3; �1ip3! �� = ND(�1)(a+ �1)�� �a�j0; �1i+ �2j2; �1ip2! + �4j4; �1ip4! � ++ b��j1; �1i+�3j3; �1ip3! �� = �ND(�1)�(a2�b2)b ���j0i+ �2j2ip2 + a2a2 � b2 �4j4ip4! � ; (11)where �1 = ��a=b andN is a normalization fa
tor. Weagain produ
e a displa
ed trun
ated even CS superpo-sition (with three terms (8)) if a � b by appli
ationof only one subtra
tion operator, whi
h 
an be 
ondi-tionally done by a beam splitter with high transmitti-vity that re�e
ts only a negligible part of the in
identbeam. We note that only if we 
hoose �1 = ��b=a
an we generate a displa
ed odd CS superposition (9)under the 
ondition a � b. Properties of displa
edCS superpositions deserve separate 
onsideration. Weonly note that even trun
ated versions of CS superpo-sitions (if we apply the displa
ed operator with the op-posite amplitude) may be useful in various appli
ations(hen
e, Fig. 5 shows the �delity of CS superpositionswith states (7)�(11) without displa
ement).4. CONCLUSIONThe interest in 
ontinuous variable states and, inparti
ular, in S
hrödinger 
at states only in
reases. Inparti
ular, it is related to a possible appli
ation ofthe free-propagating S
hrödinger 
at states to quan-tum 
omputing [11; 13℄. Squeezed S
hrödinger 
atstates and methods of their generation based on dif-ferent modi�
ations of additions and subtra
tions froma squeezed va
uum (or squeezed photon number states)

0 0:2 0:4 0:6 0:8 1:0 1:2 1:4
1:0000:9950:9900:9850:9800:9750:970

F

�Fig. 5. The �delity between nonsqueezed and nondis-pla
ed states (7), (9), (8), and (10) (from left to right)and even and odd CS superpositions. Nondispla
ed ver-sions of CS superpositions (7)�(11) approximate small-size CS superpositions wellare well studied and understood [30�46℄. We were in-terested in relating S
hrödinger 
at states to displa
ed(not squeezed) photon-number states. As a 
onse-quen
e, we began our analysis with either a CS or dis-pla
ed photon-number CSs. We also introdu
ed thenotion of displa
ed S
hrödinger 
at states by analogywith squeezed S
hrödinger 
at states [45℄. Some setof di�erent opti
al s
hemes to 
onne
t displa
ed stateswith a free-propagating CS superposition is 
onsideredand analyzed. The s
heme in Fig. 1 may be useful forgeneration of even CS superpositions of a small size upto � � 1:2 (Fig. 2) [45℄ even without squeezing ampli�-
ation (Fig. 4) to avoid 
ompli
ating the s
heme. The
al
ulations for the s
heme in Fig. 1 were done takingdete
tion imperfe
tions into a

ount that substantiallydeteriorate the quality of the generated CS superpo-sition due to generation of a mixture of states at theoutput.To avoid the problem with dete
tion imperfe
-tions, we 
onsidered other possible opti
al s
hemes,whi
h 
onsist of some sequen
es of photon additionsand displa
ements. This allows realizing displa
edS
hrödinger 
at states (both even and odd) of alarger size at the 
ost of 
ompli
ations of the opti
als
hemes. Another possibility to produ
e larger-sizeCS superpositions is to use the distillation pro
edure(Eq. (11)) with one subtra
tion operator if the inputis the 
orresponding wave fun
tion. We note that thetreatment in Se
. 2 is simply some modi�
ation of themethods of photon additions. We 
an see from Fig. 5that the generated CS superposition of a larger size� > 1:2 is produ
ed and we do not need to address642



ÆÝÒÔ, òîì 139, âûï. 4, 2011 Engineering of S
hrödinger 
at states by a sequen
e : : :squeezing ampli�
ation. In 
ontrast to previouss
hemes, our method requires a �(2) nonlinearity onlyfor photon additions. Displa
ement 
an be performedonly using a beam splitter. The treatment withdispla
ed states (or displa
ement operators) deservesfurther 
onsideration to adjust it to realisti
 
ases andpresents best re
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