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LONG-TIME RELAXATION PROCESSESIN THE NONLINEAR SCHRÖDINGER EQUATIONYu. N. Ovhinnikov a;b*, I. M. Sigal ;d**aMax-Plank Institute for Physis of Complex System01187, Dresden, GermanybLandau Institute for Theoretial Physis, Russian Aademy of Sienes117334, Mosow, RussiaUniversity of Toronto, Toronto CanadadUniversity of Notre Dame, IN USAReeived June 30, 2010The nonlinear Shrödinger equation, known in low-temperature physis as the Gross�Pitaevskii equation, hasa large family of exitations of di�erent kinds. They inlude sound exitations, vorties, and solitons. Thedynamis of vorties stritly depends on the separation between them. For large separations, some kind ofadiabati approximation an be used. We onsider the ase where an adiabati approximation an be used(large separation between vorties) and the opposite ase of a deay of the initial state, whih is lose to thedouble vortex solution. In the last problem, no adiabati parameter exists (the interation is strong). Never-theless, a small numerial parameter arises in the problem of the deay rate, onneted with an existene of alarge entrifugal potential, whih leads to a small value of the inrement. The properties of the nonlinear waveequation are brie�y onsidered in the Appendix A.1. INTRODUCTIONThe nonlinear Shrödinger equation is probably thesimplest model where both the wave-like and �parti-le�-like exitations�vorties and solitons � exist. Theinteration of vorties with one another and with so-und-like exitations leads to a nontrivial dynamis ofvorties.We onsider the simplest equation of the typei� �t = ���2 �r2 + (1� j j2) � (1)in the two-dimensional spae. The energy E orre-sponding to the state  an be de�ned asE = 12 Z d2r(�� �r�2 + 12(1� j j2)2) : (2)The absolute minimum of E is reahed on the state = exp(i�); (3)where � is a onstant phase.*E-mail: ov�itp.a.ru**E-mail: sigal�math.toronto.edu

The ground state is degenerate with respet to mul-tipliation by an arbitrary phase fator. This degene-ray leads to the existene of sound-like exitations.To �nd these exitations, we set = exp(i�0)(1 + u1 + iu2); (4)where u1;2 are real andju1;2j � 1:It follows from Eqs. (1) and (4) that��t  u1u2 ! = �2u1 01 !+ �2�r2  �u2u1 ! : (5)The general solution of Eq. (5) is a linear superpo-sition of the type u1u2 ! = Ak;!0B� k2! sin(!t� k � r)os(!t� k � r) 1CA ; (6)where ! and k satisfy the equation!2 = k2(2 + k2): (7)539



Yu. N. Ovhinnikov, I. M. Sigal ÆÝÒÔ, òîì 139, âûï. 3, 2011For small values of the frequeny !, sound-like ex-itations therefore exist in the system with! = p2 k: (8)It follows from Eq. (1) that the total energy E(Eq. (2)) is onserved and the energy �ow SE is givenby SE = �12 �� �t � ��r + � ��t � �r � : (9)In a plane wave with jkj � 1, the main ontributionto the energy �ow is due to the imaginary part of theperturbation u2 (Eq. (4)).Equation (1) also has time-independent solutions(vorties) of the form n(r) = exp(in') fn(r); (10)where r = jrj.If  n(r) is a solution of Eq. (1), then ~ n(r) and~ �n(r) are also solutions of Eq. (1), where~ n(r) =  n(r� a) exp(i�0); (11)where a and �0 are some onstants. Solutions oftype (10) are haraterized by a disrete topologialharge n.2. NONLINEAR ADIABATIC THEORYWe now suppose that we have a system of vortieswith a large separation,jri � rj j � 1;from one another. Our task is to derive a system ofequations for the positions ri(t) of the enters of vor-ties. For this, we de�ne the ation A asA = Z Ldt;L = E � i4 Z d2r� � � �t �  � ��t � : (12)The seond term in Eq. (12) an be regarded as a dy-namial one, AD = 12 Z dt Z d2rj j2 ���t ; (13)where  = j j exp(i�): (14)

For large distanes between the vorties,jri � rj j � 1;in the leading approximation, the phase � is equals tothe sum of phases of the individual vorties:� =Xi �i; �i = ni artg� y � yix� xi� : (15)In the same approximation, the modulus of  is givenby j j2 = 1�����r�2 : (16)Equations (13), (15), and (16) allow writing the dy-namial part of the ation AD asLD = 12 ZDR d2r���t � 12 ZDR d2r(1� j j2)���t : (17)The integral in Eq. (17) is taken over a irle DR of alarge radius R. In the approximation given by Eq. (15),to the logarithmi auray, the last term is equal tothe quantity�Xj 6=k n2jnk �rjk�t Jrjkjrjk j2 ln jrjk j; (18)where rjk = rj � rkand J =  0 �11 0 ! (19)is the simpleti matrix. Compared to the �rst term,this term has the parametri smallness r�2ij and is ne-gleted in what follows. For the �rst term in Eq. (17),we obtainLD = �Xj nj2jrj j �rj�t Jrj 2�Z0 d'�� RZ0 dr r r os'� rjr2 + r2j � 2rrj os': (20)The integral in Eq. (20) is given by540



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Long-time relaxation proesses : : :2�Z0 d' r os'� rjr2 + r2j � 2rrj os' == i2rj 8><>:2�i+ r2 � r2j2rj Ijzj=1 dz(z � r=rj)(z � rj=r)9>=>; ==8><>: 0; r > rj ;�2�rj ; r < rj : (21)As a result, we obtainAD = �2 Xj nj Z dt�rj�t Jrj == �2 Xj Z dt�nj �rj � �rj�t �� dt; (22)where nj = nj(0; 0; 1).In the next approximation, an outgoing wave arisesdue to the vortex motion. This phenomenon an betaken into aount with the help of an additional termÆS in the ation,ÆS = 12 Z dt Z d2r(��'s�r �2 � 12 ��'s�t �2 �� �'�t ���t � 12 ����t �2) ; (23)where 's is a single-valued salar funtion, onnetedwith small vibrations of the phase.The ation in (12) and (22) should take an extremalvalue on a trajetory. This leads to the equation [1℄nj �rj�t = � 1�J �E�rj : (24)In the leading approximation of large distanes betweenvorties, the energy E an be written asE =Xi Ei +Xi 6=j Eij ; (25)where Ei is the self energy of a separate vortex and Eijis the pair interation energy. From Eqs. (2) and (15),Eij = 12 Zjrj<R d2r���i�r ��j�r � == �ninj ln� Rjri � rj j� : (26)Equation of motion (24) is independent of the uto� distane R. There are some speial on�gurations of

vorties, where all quantities �E=�ri vanish in the ap-proximation (26). We all suh on�gurations foreless.For foreless on�gurations, it is neessary to evaluatethe energyE in the next approximation in the distanesjri� rj j. The interation energy in suh a ase an notbe presented as a pair interation energy. Equation (24)ontinues to hold for that ase.3. EMISSIONEquation of motion (24) does not take the emissionof exitations of type (6) into aount. To do so wewrite Eq. (1) in the formj j2 = 1�����r�2 � ���t + 1j j �2j j�r2 ;��j j2�t = 2j j2 �2��r2 + 2���r �j j2�r : (27)From the system of equations (27), we obtain thefollowing equation for the phase �:�2��t2 � 2�2��r2 == �2���r ��r "����r�2 + ���t � 1j j �2j j�r2 #�� 2(1� j j2)�2��r2 � ��t "����r�2 � 1j j �2j j�r2 # : (28)We solve Eq. (28) treating the right-hand side as a per-turbation. In the �rst approximation, we therefore setthe right-hand side of Eq. (28) equal to zero and searh� of the form� = �0 + ~�; �0 =Xi �i(r� ri(t)); (29)where the funtions �i are given in Eq. (15) and ri(t)are solutions of Eq. (24). In the �rst approximation,we have~� = � Z dt1 �� Z d2r1G(t� t1; r� r1)�2�0(r1; t1)�t21 ; (30)where the Green's funtionG(t; r) = �(t)2�p2 8><>: 0; p2t < jrj;1p2t2 � r2 ; p2t > jrj; (31)is a solution of the equation541



Yu. N. Ovhinnikov, I. M. Sigal ÆÝÒÔ, òîì 139, âûï. 3, 2011�2G�t2 � 2�2G�r2 = Æ(t� t1)Æ(r � r1): (32)We now onsider a system of two vorties with equaltopologial �harge� n = 1. We suppose that the dis-tane between vorties is R0. Then in the approxima-tion Eq. (24), vorties rotate relative the �middle� pointwith the frequeny ! = 4R20 : (33)It follows from Eqs. (15), (29), and (33) that��0�t = R20!2 �� R20=4� r2 os(2('� !t))r4 +R40=16� r2(R20=2) os(2('� !t)) : (34)Expression (34) an be expanded into a series inos(2k('�!t)), k = 0; 1; 2 : : : Simple alulations give��0�t = I2 os(2('� !t)) + : : :++ I2n os(2n('� !t)); (35)where I2 = R20!2 8>><>>: � 1r2 ; r > R0=2;16r2R40 ; r < R0=2: (36)The ontribution from other harmonis to ~� is smalland is not inluded.From Eqs. (30), (32), and (35), in the wave zoner � !�1, we obtain~� = 21=4(�!)1=22r1=2 os hp2! �r�p2 t�+2'��4 i�� 1Z0 d�1�1I2(�1; !)J2 �p2!�1� ; (37)where J2 is the Bessel funtion andr = r(os'; sin') (38)is the observation point.In Eq. (37), only the domain where �1 � R0=2 isessential and simple alulations give~� = �21=4(�!)1=2!R208r1=2 �� os hp2! �r �p2t�+ 2'� �4 i : (39)

Similarly, it is possible to �nd all higher harmonis of~�. With the help of Eqs. (30), (34), and (35), in thewave zone, we obtain~� = 1Xn=1�2n os�p2n! �r�p2t�+2n'��4� ; (40)�2n = (�)n+121=4p�n!2pr 1Z0 d�1�1I2n �p2n!�1� :The �rst term in Eq. (40) oinides with expression(37). Only large values of �1 � (n!)�1 � R0 are es-sential in the integral in Eq. (40). In this domain fromEqs. (34) and (35), we obtainI2n � �2!� R204r2�n : (41)Finally, we obtain�2n = (�)n21=4p�n!pr !(n!)2(n�1)�(2n) �R208 �n : (42)It follows from Eq. (42) that the amplitude of higherharmonis very rapidly dereases as n inreases.The right-hand side of Eq. (24) is loalized near theirle of the radius � = R0=r. Essential distanes inthe kernel in Eqs. (30) and (37) are of the order of thewave length � � !�1. As a result, the orretion tothe value of ~� given by Eq. (40) due to right-hand sideof Eq. (28) is small. The order of magnitude of thisorretion an be estimated as follows. In the leadingapproximation, we have����r�2 = 4r2r4+R40=16�r2(R20=2) os(2('�!t)) == 16R20 � r4 +R40=16jr4 �R40=16j � 1� os(2('� !t)) + : : : (43)Using Eqs. (37) and (43), we obtain the orretion tothe phase ~� that omes from the term��t ����r�2in Eq. (28):Æ ~� � !1=2r1=2 (!R20)!2 lnR0 �� os hp2!(r �p2t) + 2'� �4 i : (44)Beause of the small expansion parameter !2 lnR0,this orretion is smaller than the leading ontributiongiven by Eq. (34).542



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Long-time relaxation proesses : : :We now onsider the orretion to the phase ~� as-soiated with the term��2�r ��r ���1�r �2 + ��1�r ��r ���2�r �2 :This term and the similar one originate from the term���r ��r ����r�2in Eq. (28).We �nd��2�r ��r ���1�r �2+��1�r ��r ���2�r �2 == �2r2R20 sin[2('�!t)℄[r4+R40=16�r2R20=2 os(2('�!t))℄2 = 16r2R20 �� �1� r4 +R40=16jr4 �R40=16j� sin(2('� !t)) + : : : (45)From Eqs. (28), (37), and (47) we obtainÆ ~� � !1=2r1=2 (!2 lnR0)�� sin hp2!(r �p2t) + 2'� '0i : (46)This orretion is of the same order as the one inEq. (44). The orretion in Eq. (40) to the phase ~�deays at large distanes as r�1=2 and leads to emis-sion of sound-like exitations. As a result, the distanebetween two vorties inreases with time. To �nd thedependene R0(t) we �rst derive the energy �ow hSEiaveraged over the period of motion. It follows fromEq. (9) that hSEi = �!5R4032 rr2 = 32�R60 rr2 : (47)The energy onservation law and Eqs. (26) and (47)give the following equation for the quantity R0(t) [2℄:�R0�t = 32�R50 : (48)

The general solution of Eq. (48) isR60(t) = R60(t0) + 32 � 6�(t� t0); (49)whih means that R60(t) is a linear funtion of time.Equation (49) is valid only in the range R0 � 1.4. DECAY OF A DOUBLE VORTEXWe now onsider the opposite limit ase R0 � 1,the initial stage of the deay of a double vortex. In thisrange, we an searh for a solution of Eq. (1) in theform = f2(r)e2i' + f0(r)e�i�t + f�4 (r)e4i'ei��t; (50)where f2 is a double vortex solution of Eq. (1) and f0;4are small, jf0;4j � 1. In the linear approximation weobtain�1r ��r �r�f0�r �� (1� 2f22 )f0 + f22 f4 = �f0;�1r ��r �r�f4�r �+ 16r2 f4 ��(1� 2f22 )f4 + f22 f0 = ��f4: (51)We should �nd solution of system (51) subjet to theboundary ondition that f0;4 are �nite for r ! 0, andan outgoing wave exists for r !1.The funtion f2(r) is a solution of the Eq. (10) withthe topologial harge n = 2. For r � 1, we have (seeAppendix B)f2(r) = Br2 � B12r4 + B384r6 : : : (52)and�f0f4� = C10BB� 1�1+�4 r2+(1+�)264 r4� r636 � (1+�)364 �2B2�+O(r8)B220 r6+O(r8) 1CCA+ C20BB� B2100r10 +O(r12)r4 � 1� �20 r6 +O(r8) 1CCA ; (53)where C1;2 are arbitrary onstants. We put belowC1 = 1. The oe�ients B;C2 are found in Ap-pendix B. In the range r � 1, we have (see Appendix B)f2(r) = 1� 2r2 � 6r4 � 68r6 + Cpr exp��p2r� (54)543



Yu. N. Ovhinnikov, I. M. Sigal ÆÝÒÔ, òîì 139, âûï. 3, 2011and�f0f4� = C3 exp(�S)pr ����+ C4 exp(�i ~S)pr �~�~��; (55)where C3;4 are onstants. The funtions S; ~S, and�; ~�; �; ~� are found in Appendix B:S = �1 +p1 + �2�1=2 r + 18 + 2(1� 2�)p1 + �2rp1 +p1 + �2 �� 1� 12rp1 +p1 + �2! ; (56)~S = �p1 + �2 � 1�1=2 r + �18 + 2(1� 2�)p1 + �2rpp1 + �2 � 1 �� 1 + i2rpp1 + �2 � 1! ;and���� =  1�+p1 + �2 !++ 4 + 2�(1 + �2)r2  1� 2p1 +p1 + �2rp1 + �2 !�� � ��+p1 + �2 �1 ! ; (57)�~�~�� =  � ��+p1 + �2 �1 !�� 4 + 2�(1 + �2)r2  1 + 2ipp1 + �2 � 1rp1 + �2 !�� 1�+p1 + �2 ! :We note that the equation�1r ��r  r� ~f0�r !� ~f0(1� 2f22 (r)) = ~� ~f0 (58)has a negative eigenvalue~� = �0:399689: (59)On the other hand, in the range of values of r wherethe funtion f2 is essentially di�erent from 1 the en-trifugal potential in Eq. (51) for the funtion f4 is large.

As a result, the funtions f0 and f4 in Eq. (51) overlapweakly, and we an hope that Eq. (51) has an eigen-value of � with a small imaginary part and with thereal part lose to ~�. Mathing the numerial solutionof Eq. (51) starting from values given by (53) for r � 1with values given by Eq. (55) for r � 1, we obtain alloe�ients (�;C2; C3; C4). These oe�ients are givenin Appendix B. Spei�ally,� = �0:443673+ i 0:004937: (60)The imaginary part of � is nearly hundred times smallerthen its real part. Suh a high quality of osillation inthe system is related to the high value of the entrifugalpotential in the �loalization� range of the funtion f0.5. EXITATIONS OF THE SOLITON TYPEWe next onsider the third-type exitations, solitons.For a long-wavelength soliton of small amplitude, weobtain from system of Eqs. (27) that [2℄�2��t2 � 2�2��r2 = �2 ��t ����r�2 �� 2���t �2��r2 � 12 �2�t2 �2��r2 : (61)We searh a solution of Eq. (60) in the form� = �(x� vt): (62)For the quantityz = ���~x ; ~x = x� vt; (63)we then obtain the equation(v2 � 2)z = 3vz2 � v22 �2z�~x2 : (64)This equation with the boundary ondition z ! 0 as~x! �1 is equivalent to the equation(v2 � 2)z2 � 2vz3 + v22 ��z�~x�2 = 0: (65)The solution of Eq. (65) isz = � Ah2(�~x) ; (66)where �2 = 2� v22v2 ; A = 2� v22v : (67)Equations (61) and (65) are valid only in the range0 < p2� v � 1: (68)544



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Long-time relaxation proesses : : :6. CONCLUSIONSThe dynamis of vortex states essentially dependson the type of the equation. It is quite di�erent forthe nonlinear Shrödinger and wave equations. For thenonlinear Shrödinger equation, there exists an adia-bati parameter, the distane jri;j j between vorties.In the leading approximation in this parameter, emis-sion of sound-like exitations is weak and the equationof motion of the vorties is given by simple Eqs. (24),of the �rst order in time. In suh an approximation,the energy of a vortex state is onserved. In the nextapproximation, the motion of vorties an lead to emis-sion of sound-like exitations. We note that even if theadiabati parameter is missing (the initial state of thedouble vortex deays), the inrement is numeriallysmall due to a large value of the entrifugal poten-tial. Two vorties of opposite vortiity (harge) atlarge distanes move together with a veloity smallerthan the sound veloity (p2 in our ase) and hene donot radiate. If the distane between suh vorties issmaller than some ritial value (rr � 1), then suhvorties ollapse, annihilating eah other and produ-ing a shok wave [2℄. Reently, the interest in vortexdynamis in the time-dependent Shrödinger equationwas inreasing very rapidly. Numerial simulationsof di�erent vortex on�gurations have been reported[3℄, in partiular, the time dependene of the distaneR0(t) between two equal-harge vorties (see Eq. (51))was on�rmed to a high auray. Also a ollapse oftwo vorties of the opposite harge and shok wave for-mation at r < rr were found [3℄. Equation (1) also hassolutions in the form of a two-dimensional soliton [4�6℄.The researh of Yu. N. O. was supported under thegrant EOARD � 097006 and the Programm of DFS,RAS. The researh of I. M. S. was supported under theNSERC (grant �NA7901).APPENDIX AIn this Appendix, we �nd an ation for the equation��2 �t2 = ���2 �r2 + (1� j j2) � : (A.1)We suppose that in the state given by the funtion , there is a ertain number of vorties with zeros atpoints aj and with vortiities nj . If the distanes bet-ween the vorties are large, jai � aj j � 1 for eah pairi 6= j, then the vorties an be onsidered partiles.

The dynamis of the vortex motion an be desribedwith the help of the ationA = Z Ldt (A.2)withL = 12 Z d2r(����� �r ����2+12(1�j j2)2� ����� �t ����2) : (A.3)We suppose that we have only one moving vortex.Beause Eq. (A.1) is Lorentz invariant, a solution forthe moving vortex an be found with the help of theLorentz transformationt0 = t� vxp1� v2 ; x0 = x� vtp1� v2 ;y = y0; z = z0; (A.4)where v is the vortex veloity. It means that vortiesare �heavy� with the massesm = Enj ; (A.5)where Enj = �n2j ln� Rjnj j�+ C(nj) (A.6)is the energy of the vortex state (see [7℄). In Eq. (A.6),R is radius of ut-o� irle, and nj is the vortiity of thevortex. In the nonrelativisti ase (v � 1), we obtainfrom Eqs. (A.3) and (A.6) thatL = E(a)� 12Xj Enj ( _aj)2 �� 12 Z d2rXi 6=j ( _air'i)( _ajr'j); (A.7)where 'j is the phase of jth vortex, aj is the positionof a zero, and a = faj ; njg. The energy E(a) is equalto [7℄E(a) =Xj Enj +Xi 6=j ninj ln Rjai � aj j +Rem: (A.8)The last term in Eq. (A.8) is of the order of O �ln a=a2�(a = min jai � aj j, i 6= j), and it an not be presentedas a pair interation only.For the last term in Eq. (A.7), we obtain9 ÆÝÒÔ, âûï. 3 545



Yu. N. Ovhinnikov, I. M. Sigal ÆÝÒÔ, òîì 139, âûï. 3, 2011Z d2r( _air'i)( _ajr'j) = ( _ai � _aj) RZ0 dr r �� 2�Z0 d' sin2 'r2+a2ij�2jaij j2 os'+(J _aiaij)(J _ajaij)a2ij �� 2�Z0 d' 1Z0 dr r os(2')� jaij j os'r2 + a2ij � 2jaij jr os'; (A.9)where aij = jai � aj j, jai;j j =p(aij)2.The integrals in Eq. (A.9) an easy be alulated,with the resultL = E(a)� �2 0�Xj nj _aj1A2 lnR�� �2 Xj �jn2j ln 1jnj j + C(nj)� � _a2j �� �2 Xi 6=j ninj( _ai � _aj)�12 + ln 1jaij j�++ �2 Xi 6=j ninj (J _aiaij)(J _ajaij)a2ij : (A.10)Equation (A.1) also has exitations of two types: vibra-tions of the phase, and vibrations of the modulus of  .The spetrum of the former exitations is !2 = k2, andof the seond ones, !2 = 2 + k2. In the low-frequenylimit, we an desribe these exitations with the addi-tional term in the ationÆA = 12 Z dt��(��'s�r �2 ���'s�t �2 � 2�'s�t �'0�t ) ; (A.11)where 's is a single-valued salar funtion that givesthe hange of the phase funtion  due to small vibra-tions of the phase, and '0 is the phase of vorties. Thelagrangian L in Eq. (A.10) ontains standard terms ofthe form of harge�harge and urrent�urrent intera-tions.But it also ontain two nonstandard terms. One isgiven by the term Rem in Eq. (A.8), and seond by thelast term in Eq. (A.10). Rem leads to a multipartileinteration. The additional term given by Eq. (A.11)leads to the exitation of waves due to the vortex mo-tion. For large distanes between vorties, this terman be taken into aount with the help of the pertur-bation theory.

The equation of motion for a �partile� isÆAÆaj = 0: (A.12)This equation leads to the following equation of mo-tion for �partiles�:� 2njXi 6=j niajia2ji + nj lnRXi ni�ai ++ �aj �n2j ln 1jnj j + C(nj)� �++ njXi 6=j ni ��t � _ai �12 + ln 1jaij j��++Xi 6=j ninj( _ai � _aj)ajia2ji �� 2njXi 6=j ni aji(J _aiaji)(J _ajaji)a4ji ++ njXi 6=j ni (J _aj)(J _aiaji) + (J _ai)(J _ajaji)a2ji �� njXi 6=j ni ��t " (Jaji)(J _aiaji)a2ji # = 0: (A.13)We now onsider the simplest ase of two vortieswith �n2 = n1 = 1:It is easy to see that there exist solutions of the systemof Eqs. (A.12) of the type�a2 = a1 = a(os!t; sin!t): (A.14)Inserting expression (A.14) in Eq. (A.13), we obtain!2 = �a2 �2 lnR + 1 + C(1)� + ln 12a���1 : (A.15)The veloity of motion given by Eq. (A.15) is smallonly due to the large value of the rest mass.Aording to Eq. (A.3), the energy inside the do-main D is given byED = 12 ZD d2r��(�� �r �2 + 12(1� j j2)2 +�� �t �2) : (A.16)Hene, we have�ED�t = 12 ZS ds�� �t � ��r + � ��t � �r � : (A.17)546



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Long-time relaxation proesses : : :It follows from Eq. (A.17) that the energy �ow densitySE is equal toSE = �12 �� �t � ��r + � ��t � �r� : (A.18)At large distanes from vorties, we �ndSE = ��'s�t �'s�r : (A.19)The equation of motion for the phase 's follows fromEq. (A.11), �2's�t2 � �2's�r2 = ��2'0�t2 : (A.20)This equation is solved by's(t) = � tZ�1 dt1 Z d2r1G(t� t1; r� r1)�� �2'0(r1; t1)�t21 ; (A.21)where Green's funtion G is the solution of the equation�2G�t2 � �2G�r2 = Æ(t� t1)Æ(r� r1): (A.22)The expliit form of G isG(t; r) = �(t)2� 8>><>>: 0; t < jrj1pt2 � r2 ; t > jrj: (A.23)Rotation of two vorties with di�erent harge(Eq. A.13)) leads to emission of exitations. As a re-sult, two vorties of di�erent harge ollapse.APPENDIX BWe �nd the solution of Eqs. (51) that is �nite asr ! 0 and has the form of an outgoing wave for r !1.The funtion f2(r) is a solution of Eq. (10) with topo-logial harge n = 2.For r � 1, the funtion f2(r) is given by expan-sion (52). The funtion f2(r) is an analytial funtionof r and series (52) is onvergent inside the irle withthe radius equal to the distane to the nearest pole offuntion f2(r) on the imaginary axis of r.For large values of r � 1, we have (54). To ob-tain the oe�ient B, we solve Eq. (10) numerially,starting from small values of r (Eq. (52)), and mathit with an expression (54) for r � 1. In this way, we

obtain the exat value of B and an approximate valueof C. To obtain a more aurate value of oe�ient C,we solve Eq. (10), starting from large values, r � 1,and math the solution suh found with values of thefuntion f2(r), given by expansion (52) for r � 0:1. Inthis way, we obtain the oe�ients B and C with highauray: B = 0:15289; C = �16:69: (B.1)Using expansion (52), we �nd the general solution ofthe system of Eqs. (51), �nite as r ! 0, in form (53).At large distanes r � 1, we seek a solution of Eqs. (51)in form (55).In the leading approximation, we then obtain���S�r �2����+ (�+ �)�11� = �� ����: (B.2)Multiplying both sides of Eq. (B.2) by (��; �), we ob-tain the following equation for � and �:�2 � �2 + 2��� = 0: (B.3)There are two linearly independent solutions, whihsatisfy boundary ondition at the in�nity. The �rstsolution is � = 1; � = �+p1 + �2;�S�r = �1 +p1 + �2 �1=2 : (B.4)The seond solution is~� = 1; ~� = ���+p1 + �2 � ;� ~S�r = i�p1 + �2 � 1�1=2 : (B.5)Corretions to expressions (B.4) and (B.5) an be foundin the usual way via the perturbation theory. For this,we write Eq. (B.2) taking the terms���S�r �2����+ 2��S�r � ��r����++�� 14r2 + �2S�r2 � �2�r2�����+ (� + �)�11�++ 16r2�0���� 4r2 + 8r4��2�+ �2� + �� = �� ���� (B.6)in the asymptoti expansion into aount.547 9*



Yu. N. Ovhinnikov, I. M. Sigal ÆÝÒÔ, òîì 139, âûï. 3, 2011For the �rst linearly independent solution (B.4), we�nd���� = � 1�+p1 + �2�+ �1r2 ��� �1 + 2r ��� ��+p1 + �2 �1 �;S = �1 +p1 + �2 �1=2 r + �3r ��1 + 4r � ; (B.7)
where 1;2;3;4 are onstants. From the �rst two equa-tions in (B.7), we easily obtain the useful relations�2 � �2 = �2��+p1 + �2 ��� ��+ 21r2 �1 + 2r �� ;�� = ��+p1 + �2 ��� �1 + 21r2 �1 + 2r �p1 + �2 � ;�� = ��+p1+�2 ��1� 2�1r2 �1 + 2r �� :

(B.8)
Multiplying Eq. (B.7) by the (��; �) and usingEq. (B.8), we obtain the oe�iets 1;2:1 = 2(2 + �)1 + �2 ;2 = �q1 +p1 + �2 2p1 + �2 : (B.9)Inserting the values of the funtions �, � and S fromEq. (B.7) in the �rst Eq. (B.6), we obtain the oe�-ients 3;4:3 = 1p1 +p1 + �2 �18 + 2(1� 2�)p1 + �2 � ;4 = � 12p1 +p1 + �2 : (B.10)

We similarly �nd for the seond linearly indepen-dent solution (B.5)�~�~�� = �� ��+p1 + �2 �1 �++ ~1r2 �1 + ~2r �� 1�+p1 + �2�;~S = i�rqp1 + �2 � 1 + ~3r �1 + ~4r �� : (B.11)
From the �rst two equations (B.11) we obtain the use-ful relations~�2 � ~�2 = 2��+p1 + �2 ��� ��� 2 ~1r2 �1 + ~2r �� ;~�~� = � 1�+p1 + �2 �� �1 + 2 ~1r2 p1 + �2�1 + ~2r �� ;~�~� = ���+p1+�2 ��1+2� ~1r2 �1+ ~2r �� :

(B.12)
As previously, multiplying Eqs. (B.6) by (�~�; ~�) andusing Eqs. (B.12), we easily obtain the oe�ients ~1;2:~1 = �2(2 + �)1 + �2 ;~2 = 2ip1 + �2qp1 + �2 � 1: (B.13)Inserting the values of the funtions ~�, ~� and ~S fromEq. (B.11) in the �rst Eq. (B.6), we obtain the oe�-ients ~3;4:~3 = 1pp1 + �2 � 1 ��18 + 2(1� 2�)p1 + �2 � ;~4 = i2pp1 + �2 � 1 : (B.14)As a result, for r � 1, the general solution of Eqs. (51)that satis�es the boundary ondition as r !1 an bepresented in the form548



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Long-time relaxation proesses : : :�f0f4� = C3pr exp(�"rq1 +p1 + �2 + 1=8 + 2(1� 2�)=p1 + �2rp1 +p1 + �2  1� 12rp1 +p1 + �2 !#)��(� 1�+p1 + �2�+ 2(2 + �)(1 + �2)r2  1� 2p1 +p1 + �2rp1 + �2 !��(�+p1 + �2)1 �)++ C4pr exp(�i"rqp1 + �2 � 1 + ��1=8 + 2(1� 2�)=p1 + �2 �rpp1 + �2 � 1  1 + i2rpp1 + �2 � 1 !#)��(�� ��+p1 + �2 �1 �� 2(2 + �)(1 + �2)r2  1 + 2ipp1 + �2 � 1rp1 + �2 !� 1�+p1 + �2�) : (B.15)To obtain the value of omplex oe�ients �, C2,C3, and C4, we solve Eqs. (51) numerially, startingfrom expression (53) for r � 1 and mathing the solu-tion thus found with expression (B.15) for r � 1. Asa result, we obtain the value of the oe�ients �, C2,and C4 with high auray and the approximate oe�-ient C3 (in front of the exponentially dereasing termas r ! 1 in expression (B.15)). To obtain a moreaurate value of C3, we solve Eqs. (51), starting fromexpression (B.15) for r � 1 and mathing this solutionwith expression (53) for r � 1. As a result, we obtainhigh-preision values for all the oe�ients �, C2, C3,and C4: � = �0:443673+ i 0:004937;C2 = �0:00734+ i 0:0001494;C3 = 99:88� i 33:12;C4 = 0:12618+ i 0:0275: (B.16)REFERENCES1. Yu. N. Ovhinnikov and I. M. Sigal, Nonlinearity 11,1277 (1998).
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