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ANALYTIC APPROACH TO THE APPROXIMATE SOLUTIONOF THE INDEPENDENT DGLAP EVOLUTION EQUATIONSWITH RESPECT TO THE HARD-POMERON BEHAVIORB. Rezaei *, G. R. Boroun **Physis Department, Razi University67149, Kermanshah, IranReeived April 22, 2010We show that it is possible to use hard-Pomeron behavior to the gluon distribution and singlet struture funtionat low x. We derive a seond-order independent di�erential equation for the gluon distribution and the singletstruture funtion. In this approah, both singlet quarks and gluons have the same high-energy behavior atsmall x. These equations are derived from the next-to-leading order DGLAP evolution equations. All results anbe onsistently desribed in the framework of perturbative QCD, whih shows an inrease of gluon distributionand singlet struture funtions as x dereases.The Dokshitzer�Gribov�Lipatov�Altarelli�Parisi(DGLAP) evolution equations [1℄ are fundamentaltools in the study of the Q2 and x evolutions ofstruture funtions, where x is the Bjorken salingand Q2 is the four-momenta transfer in deep inelastisattering (DIS) proesses [2℄. The measurements ofthe F2(x;Q2) struture funtions by DIS proessesin the small-x region have opened up a new era inparton density measurements inside hadrons. Thestruture funtions re�et the momentum distribu-tions of partons in a nuleon. It is also importantto know the gluon distribution inside a hadron atlow x beause gluons are expeted to be dominant inthis region. The steep inrease in F2(x;Q2) towardslow x observed at hadron-eletron ring aelerator(HERA) also indiates a similar inrease in the gluondistribution towards low x in perturbative quantumhromodynamis (PQCD). In the usual proedure,the DIS data are analyzed by the next-to-leadingorder QCD �ts based on the numerial solution of theDGLAP evolution equations, and it is found that theDGLAP analysis an desribe the data well in theperturbative region Q2�1 GeV2 [3℄. As an alternativeto the numerial solution, we an study the behaviorof quarks and gluons through analyti solutions of theevolution equations. Although exat analyti solutionsof the DGLAP equations are not possible in the entire*E-mail: brezaei�razi.a.ir**E-mail: boroun�razi.a.ir

range of x and Q2, suh solutions are possible underertain onditions [4; 5℄ and are then quite suessfulas far as the HERA small-x data are onerned.Small-x behavior of struture funtions for �xed Q2re�ets the high-energy behavior of the virtual Comp-ton sattering total ross setion with inreasing thetotal enter-of-mass energy squared W 2 beauseW 2 = Q2(1=x� 1):The appropriate framework for the theoretial de-sription of this behavior is the Regge-pole exhangepiture [6℄. It an be on�dently asserted that theRegge theory is one of the most suessful approahesto the desription of high-energy sattering of hadrons.This high-energy behavior an be desribed by twoontributions: an e�etive Pomeron with its intereptslightly above unity (� 1:08) and the leading mesonRegge trajetories with the interept �R(0)�0:5 [7℄.The hypothesis of the Pomeron with data of thetotal ross setion shows that a better desriptionis ahieved in alternative models with the Pomeronhaving unit interept, but with a harder j singularity(a double pole) [8℄. This model has two Pomeronomponents, eah with the interept �P = 1; one isa double pole and the other one is a simple pole [9℄.It is tempting, however, to explore the possibilityof obtaining approximate analyti solutions of theDGLAP equations themselves in the restrited domainof low x at least. Approximate solutions of theDGLAP equations have been reported [10�12℄ with440



ÆÝÒÔ, òîì 139, âûï. 3, 2011 Analyti approah to the approximate solution : : :onsiderable phenomenologial suess. Suh an ap-proximate sheme involves a Taylor expansion, valid atlow x, and rephrases the DGLAP equations as partialdi�erential equations in x and Q2, whih an be solvedby standard methods.In the past three deades, some authors reporteda detailed analysis of the Regge input to the DGLAPequations [13�15℄. We have shown [16�19℄ that it waspossible to use Regge-like behavior as an input for theDGLAP evolution equations at low x. The small-xregion of the deep inelasti eletron�proton satteringo�ers a unique possibility to explore the Regge limit ofPQCD [6℄. This model gives the following parameteri-zations of the DIS distribution funtions:fi(x;Q2) = Ai(Q2)x��i(i = � (singlet struture funtion) and g (gluon distri-bution)), where �i is the Pomeron interept minus one;it follows that �i = d ln fi(x;Q2)d ln(1=x)de�nitely inreases with Q2. In this paper, we onen-trate on the Regge behavior, although good �ts to theresults learly show that the gluon distribution and thesinglet struture funtion require a model with a hardPomeron. In this sheme, this behavior, valid at lowx, is used, and the DGLAP evolution equations arerephrased as independent partial di�erential equationsin x and Q2, whih an be solved by standard methods.Also, we should be able to alulate �s and �g in thenext-to-leading order (NLO) DGLAP equations.The NLO DGLAP equations for the evolution ofthe singlet struture funtion and the gluon distribu-tion an be written asdG(x;Q2)d lnQ2 = �s2� �� 1�xZ0 dz �PLO+NLOgg (1� z)G� x1� z ;Q2� +

+ PLO+NLOgq (1� z)�� x1� z ;Q2�� ;d�(x;Q2)d lnQ2 = �s2� �� 1�xZ0 dz �PLO+NLOqq (1� z)�� x1� z ;Q2� ++ 2nfPLO+NLOqg (1� z)G� x1� z ;Q2�� ; (1)
whereG(x;Q2) = xg(x;Q2); �(x;Q2) = 185 F ep2 (x;Q2)(at small x, the nonsinglet ontribution Fns2 (x;Q2) isnegligible and an be ignored). In the evolution ker-nels and the running oupling, we take Nf = 4 (thenumber of ative �avors); for simpliity, we also ig-nore the threshold fators, whih beome irrelevant forQ2 � 4M2i , and illustrate our method using two quarkfamilies, u, d, s, and . ThenNf =Xe2i = 109 :The Pij are the NLO splitting funtions for quarks andgluons. The formal expressions for these funtions arefully known in the NLO [20℄.We �rst insert the hard Pomeron behavior of theparton distribution funtions (PDFs) in the DGLAPevolution equations. After integrating we �nd a set ofoupled formulas to extrat the gluon distribution andthe singlet struture funtiondGdt = �s2� [G(x; t)�1 +�(x; t)�1℄ ;d�dt = �s2� [G(x; t)�2 +�(x; t)�2℄ ; (2)where�1 = 2CA(1� x�g ) + �s2� (12CFNfTR � 46CANfTR)(1� x�g )�g ;�1 = 2CF (1� x�s) + �s2� (9CFCA � 40CFNfTR)(1� x�s)�s ;�2 = �s2�40CANfTR(1� x�g )�g ; �2 = �s2�40CFNfTR(1� x�s)�s : (3)
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B. Rezaei, G. R. Boroun ÆÝÒÔ, òîì 139, âûï. 3, 2011For the SU(N) gauge group, we haveCA = N; CF = N2�12N ; TF = NfTR; TR = 12 ;where CF and CA are the olor Casimir operators. Inthe NLO, the running oupling onstant �s=2� has theform �s2� = 2�0t �1� �1 ln t�20t � (4)with �0 = 13(33� 2Nf ); �1 = 102� 383 Nf ;and the variable t is de�ned byt = ln�Q2�2�and � is the QCD ut-o� parameter.We now ombine terms and de�ne a relation bet-ween exponents of the gluon and singlet distributions.Aording to the Regge theory, the high-energy (low-x)behavior of both gluons and sea quarks is ontrolled bythe same singularity fator in the omplex angular mo-mentum plane [6℄, and we therefore expet�s = �g = �:We have �tted exponents to a power law in the low-x limit that we took for the PDFs. In the Reggetheory, the high-energy behavior of hadron�hadron andphoton�hadron total ross setions is determined by thepomeron interept �P = 1 + �;and is given by �tot(h)p(�) / ��:This behavior is also valid for a virtual photon forx� 1, leading to the well-known behaviorF2 / x��of the struture funtions at �xed Q2 as x!0 [21�23℄.The power of � is found to be either � = 0 or � = 0:5.The �rst value orresponds to the soft Pomeron and theseond value to the hard (Lipatov) Pomeron interept.The form x��g of the gluon parameterization at smallx is suggested by Regge behavior, but beause the on-ventional Regge exhange is that of a soft Pomeron,with �g � 0, we may also allow a hard Pomeron with�g � 0:5.

The form x��s in the sea-quark parameterizationomes from similar onsiderations beause the proessg ! qq dominates the evolution of the sea quarks atsmall x. Hene the �ts to early HERA data have asthe onstraint �s = �g = �, beause the value of �should be lose to 0:5 in quite a broad range of lowx [4; 7�9; 24℄.After suessive di�erentiations of both sides ofEqs. (2), multipliation by G�1(x; t), and some re-arrangments, we �nd independent inhomogeneous se-ond-order di�erential equations for �g and �s as fun-tions of t:2��1�s lnxd2�gdt2 � ��1 + �2�1 � 2�d(�1�s)�1dt ++ 2��1�s lnxd�gdt � �lnxd�gdt ++ d(�1��11 )dt � �s2� ��1�2�1 � �2�� = 0 (5)and2��2�s lnxd2�sdt2 � ��1 + �2�2 � 2�d(�2�s)�1dt ++ 2��2�s lnxd�sdt ��lnxd�sdt + d(�2��12 )dt �� �s2� ��1�2�2 � �1�� = 0: (6)The presented results give independent evolution equa-tions for the gluon and also the singlet struture fun-tion exponents at small x. These equations show thatthe exponents are funtions of Q2. The lnQ2 depen-dene of the exponents has a seond-degree polynomialbehavior. By solving these evolution equations, we andetermine exponents with the starting parameteriza-tions of exponents�i(t0) = d ln fi(x; t0)d ln(1=x)respetively given by the input distribution of the par-tons and its derivatives [25�28℄. Therefore, the e�e-tive power-law behavior of the gluon distribution andthe singlet struture funtion orresponds tofi(x; t) = fi(x; t0)x�(�i(t)��i(t0)); i = �; g: (7)If we want to perform parton distribution funtions,we need to �x these at the initial salet0 = ln Q20�2 :442
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Fig. 1. The gluon distribution vs. x at �xed Q2 values (irles) ompared with the DL �t [7; 28℄ (solid lines) and the GRVparameterization [27℄ (dashed lines)
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Fig. 2. The alulated values of the struture funtion F2 for several values of Q2 plotted as a funtion of x with the startingparameterization of the struture funtion at Q20 = 5 GeV2 (irles), ompared with the next-to-leading-order QCD �t tothe H1 data with total errors (triangles), and also with the DL �t [7; 28℄ (solid lines). The dashed lines represent the resultsin [23℄ for the GRV parameterization of the gluon distribution funtion and the parton struture funtionHere, we used the QCD ut-o� parameter �4MS == 0:323 GeV [11℄ for �s(Mz2) = 0:119. In our alula-tions, we also need the initial onditions fi(x; t0) and�i(t0) that orrespond to the input parameterization.To test the validity of our gluon distribution, we al- ulate the gluon (or singlet) distribution funtions andexponent of the gluon (or singlet) distribution usingEq. (7) and ompare them with the theoretial predi-tions starting with the evolution at Q20 = 5 GeV2. Theresults of alulation are shown in Figs. 1 and 2 at se-443
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