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We study the chaotic dynamics in the Bose-Einstein condensate (BEC) system of a double lattice. Chaotic
space—time evolution is investigated for the particle number density in a BEC. By changing of the s-wave scat-
tering length with a Feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity.
Numerical calculation shows that there is periodic orbit according to the s-wave scattering length only if the
maximal Lyapunov exponent of the system is negative.

1. INTRODUCTION

Creation of the Bose-Einstein condensate (BEC)
has provided a platform for investigating many impor-
tant phenomena in atomic physics, condensed-matter
physics, and quantum optics. BEC has attracted
much more attention for its potentially great appli-
cation. Apart from being a marriage of two very re-
cent disciplines within atomic and laser physics, BEC
in optical lattices have relatives in many other fields
of physics. The dynamics of the system is described
by a Schrodinger equation combined with a nonlinear
term, which represents the many-body interactions in
the mean field approximation. This nonlinearity allows
bringing chaos into the quantum system. The existence
of the BEC chaos has been proved and the chaotic pro-
perties have also been extensively researched in many
previous works [1-9]. Naturally, chaos, which plays a
role in the regularity of the system, causes instability
of the condensate wave function [10].

Chaos in a collapsing BEC has also been discussed
in [6] and [11]. Chaos is also relevant to the phe-
nomenon of macroscopic quantum self-trapping in a
BEC [12]. Therefore, it is important to investigate the
chaotic characteristics in the BEC system. For the pur-
pose of applications, control of chaos is anticipated in
practical investigations [13-21].
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Chaos control has always been a widely attractive
field since the pioneering work of Ott, Grebogi, and
Yorker in 1990 [22]. Controlling chaos can be sepa-
rated into two categories: feedback control (active con-
trol) and nonfeedback control (passive control). The
basic characteristics for nonfeedback control is that the
controlling signal is not affected by system variation
changes.

The main purpose of this present paper is to con-
trol the chaos in the stable states in the BEC by means
of changing the s-wave scattering length by using the
Feshbach resonance. We can force the system to a stab-
le periodic orbit.

2. ANALYSIS OF THE CHAOTIC DYNAMICS

In the mean field approximation of the two-mode
Gross—Pitaevskii (GP) equation, the BEC system is
governed by the GP equation

Loy h? 2
¢ E—_%¢xz+gld|w| Y+

+ (V1 sin® kyx — Vs sin® k‘gl‘) v, (1)
where m is the atomic mass and g4 denotes the in-
teratomic interaction. The value v is the macroscopic
quantum wave function. The parameters V7 and V5 are
optical intensities. The parameters k; and ko are laser
wave vectors.
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Fig. 1. The chaotic attractors projection on the RR, plane and the time series with V; = 0.0116698, k; = 27/85, V> = 0.02,
= 0.410278, ko = 67/85, c1 = 0.01. g = 0.5 (a—d) and —0.82 (e,f)

We set

0<V13 ‘/2<<E’l’a

2m

The parameter E, is the recoil energy. The GP equa-
tion is

1 .
- 5 d)tt +9|1/’|21/) +
+ (V1 sin? z — V5 sin? k—i x> =, (2)

where all variables and parameters are dimensionless.
The parameter g = 4masky denotes the interatomic in-

teraction with a being the s-wave scattering length.
The variable = is the spatial coordinate.
We set

¥ = R(x) exp [i6(x)] . (3)

Substituting Eq. (3) in Eq. (2) yields

Rue = RO? +2gR3 +
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Fig.2. The maximal Lyapunov exponent A,.. as a function of the s-wave scattering length g with Vi = 0.0116698,
k1 =2m/85, Vo =0.02, p = 0.410278, k2 = 67/85, and ¢; = 0.01

where R(x) is the amplitude and 6(x) is the phase of
the state.
We integrate Eq. (4):

where
Cc1 = 995 (l‘())R2 (1‘0)

is a constant. Substituting Eq. (6) in Eq. (4), we
obtain
_ cf 3
sz = ﬁ + 29R +

+2 (Vlsin2x—Vgsin2%x—,u> R. (7)
1
Equation (7) is the Duffing equation [23].

Using the fourth Runge-Kutta (RK) algorithm, we
solve Eq. (7) numerically, and illustrate the attractors
in the equivalent phase RR, in Fig. 1. To avoid tran-
sient chaos, the values of R and R, in the initial values

of 10000 steps are eliminated. Only the values of R
and R, in the final 20000 steps are retained. Figure 1
shows the final attractors and the time series. The
parameters in Fig. 1 are as follows: Vi = 0.0116698,
k1 = 27/85, Vo = 0.02, u = 0.410278, ko = 67/85,
and ¢; = 0.01. In Figs. la,b, the initial condition
is (R,R;) = (0.1,0.0) and ¢ = 0.5. The three Lya-
punov exponents are A\; = 3.3149 - 1074, A\, = 0.0, and
A3 = —3.51109 - 10~*. The BEC system is in a chaotic
state because the maximal Lyapunov exponent is pos-
itive. The chaotic orbit in the equivalent phase space
RR, is localized in a finite region and shows a confused
structure.

In Fig. 1¢,d, the initial condition is (R,R,) =
= (0.01,0.0) and ¢ = 0.5. The three Lyapunov ex-
ponents are A\; = 3.87209 - 10~%, X\ = 0.0, and \3 =
= —4.04412 - 10~*. The BEC system is in a chaotic
state because the maximal Lyapunov exponent is posi-
tive.

In Fig. le,f, the initial condition is (R, R,) =
= (0.03,0.01) and ¢ = —0.82. The three Lyapunov
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Fig. 3.

The attractors projection on the RR, and the time series of R at different s-wave scattering length with

Vi = 0.0116698, ky = 27/85, Va = 0.02, o = 0.410278, k2 = 67/85, and ¢; = 0.01. g = —0.033 (a,b), g = 0.525 (c.d)

exponents are A 0.01526, X\» = 0.0, and A3 =
= —0.01586. The BEC system is in a chaotic state
because the maximal Lyapunov exponent is positive.
The chaotic orbit in the equivalent phase space RR, is
localized in a finite region and shows a confused struc-
ture.

3. NUMERICAL RESULTS

To control the chaos in a BEC, we adjust the inte-
raction by changing the s-wave scattering length, that
is, changing the value of g. In this paper, we only con-
sider the effect of the s-wave.

Figure 2 shows the maximal Lyapunov exponent
as a function of the s-wave scattering length g. The
horizontal line shows the value of zero. We find that
in many ranges, for example, —0.617 < g < —0.593,
—0.043 < g < —0.02, and 0.514 < ¢ < 0.536, the max-
imal Lyapunov exponent is negative. If g takes a value
in these ranges, then the BEC is in a periodic state.
The BEC is in a periodic state when ¢ takes values
—0.033 and 0.525.
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We solve Eq. (7) numerically by using the fourth
RK algorithm. The values of R and R, in the ini-
tial 10000 steps are eliminated. The last 20000 steps
of R and R, are retained. The initial conditions are
(R,R;) = (0.3,0.01).

Figure 3 shows the attractor projected onto the
RR, plane, and the time series of R. The parame-
ters are the same as in Fig. 2, the other parameters
being g = —0.033 and 0.525. In Fig. 3a,c, the period is
1 when ¢ = —0.033 and 0.525. Figures 3b,d show the
respective time series. We can therefore transform the
chaotic state into a periodic regular state by modula-
ting the s-wave length g.

4. CONCLUSIONS

In summary, we have investigated the chaotic fea-
tures in the spatial distributions of the BEC. We
present a method to control chaos via modulating the
s-wave scattering length. Numerical calculation shows
that there is a periodic orbit depending on the s-wave
scattering length only if the maximal Lyapunov expo-
nent of the system is negative.
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It is well known that the periodic lattice systems in
a BEC exhibit many fantastic properties. For examp-
le, quantum computation with BEC atoms in a Mott
insulating state is an interesting advancement in the
application of the BEC. On the other hand, chaos is
associated with quantum entanglement and quantum
error correcting, which are both the fundamental sub-
jects in quantum computations. It is therefore valuable
to apply or control chaos in the system.

This work was supported by the National Natural
Science Foundation of China (Grant Ne10871203).
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