ОСОБЕННОСТИ ЗАТУХАНИЯ КВАЗИЧАСТИЦ В ДВУМЕРНЫХ ЭЛЕКТРОННЫХ СИСТЕМАХ СО СПИН-ОРБИТАЛЬНЫМ ВЗАИМОДЕЙСТВИЕМ

И. А. Нечаев^{а,b*}, В. М. Силкин^{с,d,e,f}, Е. В. Чулков^{с,d,g}

^а Костромской государственный университет им. Н. А. Некрасова 156961, Кострома, Россия

^b Научно-образовательный центр «Физика и химия высокоэнергетических систем» Томского государственного университета 634050, Томск, Россия

^c Departamento de Física de Materiales, Facultad de Ciencias Químicas, UPV/EHU and Centro Mixto CSIC-UPV/EHU, Apdo. 1072 20080, San Sebastián, Basque Country, Spain

> ^d Donostia International Physics Center (DIPC) 20018, San Sebastián, Basque Country, Spain

^e IKERBASQUE, Basque Foundation for Science 48011, Bilbao, Spain

f Томский политехнический университет 634050, Томск, Россия

^g Centro de Física de Materiales CFM-MPC, Centro Mixto (CSIC-UPV/EHU) 20018, San Sebastián, Spain

Поступила в редакцию 28 января 2010 г.

В рамках G^0W^0 -приближения исследуется зависимость от волнового вектора и энергии возбуждения ширины спектральной функции электронов и дырок в двумерной электронной системе со спин-орбитальным взаимодействием, обусловленным структурной инверсионной асимметрией. В случае низкой электронной плотности показано, что появляется дополнительный по отношению к рождению электрон-дырочных пар канал затухания дырок за счет эмиссии плазмона. В области электронных возбуждений проявляет себя заметная спиновая асимметрия ширины спектральной функции.

1. ВВЕДЕНИЕ

В настоящее время спин-орбитальное взаимодействие представляет собой одно из базовых явлений, используемых в интенсивно развивающемся новом направлении прикладной физики — спиновой электронике (спинтронике). Наибольший практический интерес в этом направлении вызывают двумерные электронные системы, образуемые, например, электронами поверхностных состояний металлов и упорядоченных поверхностных сплавов или электронами в квантовых ямах полупроводниковых гетероструктур. В таких системах наиболее ярко проявляет себя спин-орбитальное взаимодействие, вызванное структурной инверсионной асимметрией (так называемый вклад Рашбы [1]). Величиной вклада Рашбы можно управлять с помощью стехиометрии поверхностного сплава [2] или приложенным внешним электрическим полем [3, 4].

Наиболее обсуждаемыми процессами при рассмотрении динамики электронов и дырок в двумерных электронных системах со спин-орбитальным взаимодействием являются спиновая релаксация и расфазировка спинов. Соответствующие характер-

^{*}E-mail: ianechaev@mail.ru

Рис. 1. Схематическое представление расщепленного спин-орбитальным взаимодействием энергетического спектра, характерного для поверхностей благородных металлов и квантовых ям гетероструктур (*a*), упорядоченных поверхностных сплавов (*б*), а также рассматриваемого в работе случая *a* при низкой электронной плотности (*6*)

ные времена этих процессов поэтому достаточно хорошо изучены [5]. Однако такое важное свойство квазичастиц, как их время жизни, обусловленное неупругим электрон-электронным рассеянием, остается недостаточно изученным для указанных систем. Эта величина, обратно пропорциональная ширине квазичастичной спектральной функции, традиционно играет значимую роль в явлениях, основанных на когерентном транспорте. Совместно со скоростью квазичастиц время жизни определяет длину свободного пробега — важную характеристику динамики квазичастиц [6].

В модели Рашбы степень влияния спин-орбитального взаимодействия на энергетический спектр двумерной системы характеризуется энергией $E_R \equiv m^* \alpha^2/2$ (здесь и далее используется атомная система единиц, т. е. $e^2 = \hbar = m_e = 1$), где m^* эффективная масса электрона, а α определяет величину вклада спин-орбитального взаимодействия. В большинстве известных систем энергия Рашбы E_R много меньше чем $\Delta E = E_F - E_0$, где E_F энергия Ферми, а E_0 – энергия состояния электрона при $|\mathbf{k}| = 0$, где \mathbf{k} – двумерный волновой вектор электрона (см. рис. 1*a*). Проведенные для таких систем исследования показали, что в окрестности E_F влияние спин-орбитального взаимодействия на энергетическую зависимость времени жизни квазичастиц может рассматриваться как малый параметр теории возмущений [7]. В целом это влияние достаточно слабо, и на всем энергетическом интервале оно наиболее заметно при удалении от E_F в области, где в соответствии с законом сохранения энергии-импульса возможен плазмонный канал затухания возбужденных электронов [8–10].

Недавно [11, 12] был обнаружен целый класс перспективных для спинтроники материалов, в которых легирование тяжелыми элементами (Sb, Pb и Ві) поверхностного слоя благородных металлов (Аg, Cu) приводит к образованию двумерной системы с гигантским спиновым расщеплением (см. рис. 16). По аналогии с указанными выше системами, данную можно рассматривать как двумерную дырочную систему с отрицательной эффективной массой, где $E_R \sim \Delta E$. Для анализа того, к каким эффектам может привести такое соотношение энергий в случае ранее изученных систем, в настоящей работе рассматривается двумерная электронная система с низкой электронной плотностью (см. рис. 1в). В качестве прототипа такой системы выбирается расщепленное спин-орбитальным взаимодействием поверхностное состояние на поверхности Au(111), которая характеризуется наибольшим среди благородных металлов значением параметра α . Изучение проводится как в рамках модели двумерного электронного газа со спин-орбитальным взаимодействием Рашбы (подобно работе [8]), так и в более реалистичной модели повторяющихся тонких пленок с использованием одномерного потенциала (как и в работе [9]). Так же, как и в указанных работах, мнимая часть собственной энергии, определяющая ширину спектральной функции квазичастиц, находится в рамках *G*⁰*W*⁰-приближения. Это приближение представляет собой одну из реализаций подхода, где ограничиваются рассмотрением первого члена разложения собственно-энергетической части в ряд по степеням динамически экранированного кулоновского потенциала [13, 14]. За последнее десятилетие этот подход получил широкое распространение, и сегодня он представляет собой один из самых точных методов описания энергетического спектра большого класса систем [15-17].

2. ПРИБЛИЖЕНИЯ

В модели двумерного электронного газа исследуемая нами система описывается гамильтонианом $H = H_0 + H_{so}$, где $H_0 = k^2/2m^*$, а слагаемое $H_{so} =$ $= \alpha (\sigma_x k_y - \sigma_y k_x)$ обусловлено наличием спин-орбитального взаимодействия Рашбы. Здесь $k_{x,y}$ представляют собой компоненты вектора **k**, $\sigma_{x,y}$ -матрицы Паули. Представленный гамильтониан может быть диагонализован, $H' = U_{\mathbf{k}}^{\dagger} H U_{\mathbf{k}}$, с помощью унитарного преобразования $U_{\mathbf{k}} = \exp(i\boldsymbol{\sigma}\cdot\mathbf{n}_{\mathbf{k}}\pi/4)$, индуцирующего поворот оси квантования спина $\mathbf{u}_{\mathbf{k}}$ на угол $\pi/2$ вокруг оси $\mathbf{n}_{\mathbf{k}} = \mathbf{i}\cos\varphi_{\mathbf{k}} + \mathbf{j}\sin\varphi_{\mathbf{k}}$, где $\varphi_{\mathbf{k}}$ — полярный угол вектора **k**. В результате $H'_{so} = -k\alpha\sigma_z$, а расщепленный спин-орбитальным взаимодействием энергетический спектр запишется как (отсчет от E_0)

$$E_{\mathbf{k}s} = \frac{\mathbf{k}^2}{2m^*} + sk\alpha. \tag{1}$$

Соответствующие волновые функции $\psi'_{\mathbf{k}s}(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}}|-s\rangle$, где индекс подзоны $s = \pm(\downarrow,\uparrow)$. Здесь \downarrow,\uparrow обозначают спиновые компоненты в новом спиновом базисе. В первоначальном базисе волновые функции $\psi_{\mathbf{k}s}(\mathbf{r}) = U_{\mathbf{k}}\psi'_{\mathbf{k}s}(\mathbf{r})$, а ориентация спина в **k**-пространстве определится как

$$\langle \psi_{\mathbf{k}s} | \boldsymbol{\sigma} | \psi_{\mathbf{k}s} \rangle = s \begin{pmatrix} \sin \varphi_{\mathbf{k}} \\ -\cos \varphi_{\mathbf{k}} \\ 0 \end{pmatrix}, \qquad (2)$$

отражая тот факт, что направление спина электрона связано с направлением его импульса.

Ширина квазичастичной спектральной функции и, следовательно, ширина линии энергетического спектра, обусловленная неупругим электрон-электронным рассеянием, определяется мнимой частью матричных элементов квазичастичной собственной энергии

$$\langle \Sigma_s(\mathbf{k},\omega) \rangle = \langle \psi_{\mathbf{k}s}(\mathbf{r}_1) | \Sigma(\mathbf{r}_1,\mathbf{r}_2;\omega) | \psi_{\mathbf{k}s}(\mathbf{r}_2) \rangle_{\mathbf{r}_1\mathbf{r}_2}$$

при энерги
и $\omega=E_{\mathbf{k}s}$ как

$$\Gamma_s(\mathbf{k}) = 2 |\operatorname{Im} \langle \Sigma_s(\mathbf{k}, E_{\mathbf{k}s}) \rangle|.$$

Эта величина связана с временем жизни квазичастиц τ_s соотношением неопределенности для энергии и времени: $\Gamma_s \tau_s = 1$ ат. ед. = 658 мэВ · фс. Как и в работах [8–10], в настоящей работе используется $G^0 W^0$ -приближение, в рамках которого указанные матричные элементы имеют следующий вид:

$$\operatorname{Im}\langle \Sigma_{s}(\mathbf{k},\omega)\rangle = -\sum_{s'} \int \frac{d\mathbf{q}}{(2\pi)^{2}} F_{\mathbf{k},\mathbf{q}}^{ss'} f_{\mathbf{q}s'} \times \\ \times \operatorname{Im} W^{0}(\mathbf{k}-\mathbf{q},\omega-E_{\mathbf{q}s'})\theta(E_{\mathbf{q}s'}-\omega) \quad (3)$$

при $\omega < E_F$ и

$$\operatorname{Im}\langle \Sigma_{s}(\mathbf{k},\omega)\rangle = \sum_{s'} \int \frac{d\mathbf{q}}{(2\pi)^{2}} F_{\mathbf{k},\mathbf{q}}^{ss'}[1-f_{\mathbf{q}s'}] \times \\ \times \operatorname{Im} W^{0}(\mathbf{k}-\mathbf{q},\omega-E_{\mathbf{q}s'})\theta(\omega-E_{\mathbf{q}s'}) \quad (4)$$

при $\omega > E_F$. В этих уравнениях $\theta(x)$ — ступенчатая функция, а $f_{\mathbf{q}s'}$ — фермиевская функция распределения. Факторы $F_{\mathbf{k},\mathbf{p}}^{ss'} = [1 + ss'\mathbf{u_k} \cdot \mathbf{u_p}]/2$ появляются из $|\langle s'|U_{\mathbf{p}}^{\dagger}U_{\mathbf{k}}|s\rangle|^2$ и отражают изменение спинового базиса. Экранированный кулоновский потенциал $W^0(\mathbf{q},\omega) = v_c(\mathbf{q}) \left[1 - P^0(\mathbf{q},\omega)v_c(\mathbf{q})\right]^{-1}$ определяется найденным в приближении хаотических фаз поляризационным оператором

$$P^{0}(\mathbf{q},\omega) = \sum_{ss'} \int \frac{d\mathbf{k}}{(2\pi)^{2}} F_{\mathbf{k},\mathbf{k}+\mathbf{q}}^{ss'} \times \left\{ \frac{(1-f_{\mathbf{k}+\mathbf{q}s})f_{\mathbf{k}s'}}{\omega + E_{\mathbf{k}s'} - E_{\mathbf{k}+\mathbf{q}s} + i\eta} - \frac{f_{\mathbf{k}+\mathbf{q}s}(1-f_{\mathbf{k}s'})}{\omega + E_{\mathbf{k}s'} - E_{\mathbf{k}+\mathbf{q}s} - i\eta} \right\}.$$
 (5)

В последнем уравнении η — бесконечно малая величина, характеризующая способ обхода полюсов при интегрировании. Для вычисления $P^0(\mathbf{q}, \omega)$ используется схема работы [18]. Присутствующее в W^0 кулоновское взаимодействие $v_c(\mathbf{q}) = 2\pi/(|\mathbf{q}|\varepsilon_0)$ ослаблено средой, в которую «погружен» двумерный электронный газ. Здесь ε_0 — диэлектрическая константа среды.

Приемлемость использования как приближения хаотических фаз, так и G^0W^0 -приближения в рассматриваемом нами случае определяется значением такой величины, как электронный радиус Вигнера-Зейтца $r_s = m^*/(\varepsilon_0 \sqrt{\pi n_{2D}})$, где n_{2D} — плотность двумерной электронной системы. Для исследуемого в работе двумерного электронного газа (см. ниже) $r_s = 2.0$, что достаточно далеко от сильнокоррелированного режима, который наблюдается, например, в такой двумерной электронной системе как Si-MOSFET (металл-оксидный полевой транзистор на кремнии) [19]. Однако даже для подобных систем с существенно бо́льшим r_s указанные приближения способны описать экспериментальные зависимости без учета вершинных поправок к P^0 и к собственно-энергетической части G⁰W⁰-приближения (см., например, работы [20, 21]).

В данной работе также используется модель повторяющихся тонких пленок с одномерным псевдопотенциалом [22], воспроизводящим «реальный» потенциал пленки в *z*-направлении, перпендикулярном ее поверхности (см. работу [23]). Такой потенциал позволяет достаточно точно описать положение энергетических уровней в центре поверхностной зоны Бриллюэна. Дисперсия уровней восстанавливается с помощью параболических зависимостей с различными эффективными массами, которые подбираются таким образом, чтобы получить экспериментально наблюдаемые характеристики электронной структуры поверхности. Указанный подход делает возможным исследование динамики квазичастиц на металлической поверхности в рамках $G^0 W^0$ -приближения. В работе [24] такое исследование позволило устранить значительное расхождение между экспериментальными и теоретическими значениями времени жизни дырок в поверхностном состоянии на поверхности благородных металлов. Результаты, хорошо согласующиеся с экспериментальными данными, были получены и в случае незанятых поверхностных состояний и состояний потенциала изображения [25, 26], а также состояний квантовой ямы [27-29]. Использование метода тонких пленок с одномерным псевдопотенциалом также делает возможным изучение в рамках $G^0 W^0$ -приближения величины $\Gamma_s(\mathbf{k})$ для поверхностных состояний металлических тонких пленок уже с учетом спин-орбитального взаимодействия. Это обусловлено минимальной модификацией приведенных выше соотношений, вызванной учетом поведения волновой функции электрона в *z*- направлении (см. работу [9] и ссылки в ней).

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В модели двумерного электронного газа со спин-орбитальным взаимодействием Рашбы эффективную массу $m^* = 0.25$ и параметр $\alpha =$ $= 3.7 \cdot 10^{-11}$ эВ м, определяющий величину вклада Рашбы, выбираем, как и в работе [8], при моделировании двумерной электронной системы с плотностью $n_{2D} \approx 5.1 \cdot 10^{13}$ см⁻², образованной электронами поверхностного состояния на поверхности Au(111). Диэлектрическая константа среды в данном случае $\varepsilon_0 = 16.0$ (см. работу [8]). Для реализации случая $E_R \sim \Delta E$ в данной работе мы «уменьшили» электронную плотность n_{2D} в 70 раз.

На рис. 2 представлены результаты расчетов ширины спектральной функции квазичастиц $\Gamma_s(\mathbf{k})$, проведенных для двумерного электронного газа, характеризуемого указанными выше параметрами. Анализируя Γ_s как функцию k, отметим, во-первых, сдвиг кривых Γ_+ и Γ_- друг относительно друга на величину, задаваемую разницей между векторами Φ ерми $k_F^s = k_F - sm^*\alpha$, где $k_F = \sqrt{2m^*E_F + (m^*\alpha)^2}$. Во-вторых, в области дыроч-

Рис.2. Ширина Γ_s как функция модуля волнового вектора (слева) и как функция энергии возбуждения (справа) в двумерном электронном газе со спин-орбитальным взаимодействием Рашбы. Сплошная линия (штриховая) изображает рассчитанную Γ_- (Γ_+). Тонкая сплошная линия соответствует $\Gamma_-(k)$, найденной без учета плазмонного канала затухания дырочных возбуждений. Для сравнения штрихпунктирная линия отображает поведение ширины спектральной функции в двумерном электронном газе с той же электронной плотностью, но без спин-орбитального взаимодействия ($\alpha = 0$). На вставке — энергетический спектр рассматриваемых систем

ных возмущений при $k < m^* \alpha$ (меньше радиуса кольца экстремумов, где $E_{\mathbf{k}-}$ достигает минимума) у Г_ наблюдается «наплыв», обусловленный появлением дополнительного по отношению к рождению электрон-дырочных пар канала затухания за счет эмиссии плазмона. Действительно, как подробно показано на рис. 3, плазмонная ветвь (жирная сплошная линия) входит в область I, соответствующую допустимым переходам с одной подзоны на другую. Это означает, что для некоторых таких переходов в соответствии с законом сохранения энергии-импульса возможен плазмонный канал затухания квазичастиц. Отметим, что вклад этого канала в ширину Г – в области дырочных возбуждений уменьшается как при ослаблении спин-орбитального взаимодействия Рашбы, так и при приближении уровня Ферми к E_0 , т. е. при исчезновении области I (как и в гипотетическом случае работы [9]), или наоборот при значительном повышении E_F (как в случае поверхностного состояния на Au(111), рассмотренного в работе [8]). При отсутствии спин-орбитального взаимодействия в двумерном электронном газе плазмонный канал затухания возможен лишь для возбужденных электронов [30].

Рис. 3. Спектр плазмона (двумерного — жирная сплошная линия, акустического поверхностного — жирная штриховая линия) и границы области рождения электрон-дырочных пар (штриховые тонкие линии), включая нижнюю границу дополнительной области затухания Ландау (см. работу [18]), для двумерного электронного газа со спин-орбитальным взаимодействием Рашбы. Тонкие сплошные линии ограничивают области допустимых значений аргументов у мнимой части потенциала экранированного кулоновского взаимодействия $\lim W^0(\xi k_F, y k_F^2/2m^*)$ при интегрировании в соотношении, определяющем $\Gamma_s(k)$ для s = - и $k < m^* \alpha$. Область I соответствует переходам с подзоны s = - в подзону s' = +, тогда как области II и III — переходам с подзоны s = — в подзону s' = -. Полутоновым изображением представлен контурный график факторов $F^{ss'}$, изменяющихся от нуля (белый) до единицы (темно- серый). Используемые обозначения: $\gamma = m^* lpha / k_F$, $x = k/k_F$, $y_{ph}^{\pm} = \xi^{2} \pm 2\xi, \quad y_{so} = -(\xi + 2\gamma)^{2} + 2(\xi + 2\gamma), \\ y_{0} = 2\gamma x - x^{2}, \quad y_{F} = 1 - \gamma + y_{0}, \quad y_{1}^{\pm} = \xi^{2} \pm 2\xi(\gamma - x), \\ y_{2}^{\pm} = \xi^{2} \pm 2\xi(\gamma + x) + 4\gamma x$

Устанавливая связь между $\Gamma_s(\mathbf{k})$ и $E_{\mathbf{k}s}$ через вектор \mathbf{k} и получая ширину спектральной функции как функцию энергии возбуждения, можно судить о зависимости этой величины от индекса подзоны s, т. е. от направления спина в выбранном (в силу анизотропии — в любом) направлении вектора \mathbf{k} . На рис. 2 хорошо видно, что такая зависимость проявляется в превышении единицы отношения Γ_-/Γ_+ (в среднем на 0.12 в исследуемом интервале электронных возбуждений). Таким образом, благодаря спиновому расщеплению, обусловленному наличием спин-орбитального взаимодействия, наблюдается заметная спиновая асимметрия ширины спектральной функции и, как следствие, длины свободного пробега возбужденных электронов. Отметим, что этот эффект существенно слабее в системах с такой же энергией E_R , но много большей энергией Ферми (см. работу [8]).

Рассматриваемая ситуация, в принципе, может быть реализована на практике путем модификации энергии и величины спинового расщепления поверхностного состояния металлов (см., например, работы [2, 31]). В этом случае роль низкоэнергетических коллективных возбуждений будет играть недавно предсказанный теоретически [23, 32] и обнаруженный экспериментально [33] акустический поверхностный плазмон. Здесь также можно ожидать появления дополнительного канала затухания дырочных возбуждений за счет эмиссии указанного плазмона.

Для проверки этого предположения рассмотрим, как и в работе [9], в рамках метода повторяющихся пленок поверхность Au(111) с «измененной» энергией расщепленного спин-орбитальным взаимодействием поверхностного состояния $E_0 \approx -3$ мэВ (уровень Ферми всей системы принят за начало отсчета энергетической шкалы). Таким значением E_0 мы воспроизводим ситуацию, когда $E_R \sim \Delta E$. Полученная для такой «модифицированной» поверхности дисперсия низкоэнергетических поверхностных плазменных колебаний (акустического поверхностного плазмона) представлена на рис. З жирной штриховой линией. Из рисунка следует, что плазмонный канал затухания дырок начнет проявлять себя при меньших k (а следовательно, x), чем в случае двумерного электронного газа, рассмотренного выше. Это обусловлено тем, что, начиная с малых значений импульса передачи ξk_F , дисперсионная кривая указанного плазмона будет находиться достаточно «глубоко» в области І. Однако при этом ветвь акустического поверхностного плазмона почти сразу «входит» в область рождения электрон-дырочных пар, что приводит к существенному увеличению ширины линии плазмона. Это означает, что именно при малых k и должен заметно проявить себя плазмонный канал затухания дырок, что и наблюдается в ширине Γ_s , представленной на рис. 4.

4. ЗАКЛЮЧЕНИЕ

В работе в рамках G^0W^0 -приближения рассмотрена ширина спектральной функции квазичастиц в двумерной электронной системе со спин-орбитальным взаимодействием, обусловленная неупру-

Рис.4. Ширина Γ_s как функция модуля волнового вектора (слева) и как функция энергии возбуждения (справа) для поверхностного состояния «модифицированной» поверхности Au(111). Сплошные (штриховые) линии соответствуют Γ_- (Γ_+). На вставке — дисперсия поверхностного состояния, расщепленного спин-орбитальным взаимодействием Рашбы

гим электрон-электронным рассеянием. Спин-орбитальное взаимодействие учтено в рамках модели Рашбы. В качестве объектов исследования были рассмотрены двумерные электронные системы, образуемые электронами поверхностных состояний на металлической поверхности, с низкой электронной плотностью с целью моделирования ситуации, когда энергия Рашбы $E_R \sim \Delta E$, что наблюдается в поверхностных сплавах — новом классе материалов для спинтроники. Проведенные вычисления показали, что вследствие наличия спинового расщепления энергетического спектра, вызванного спин-орбитальным взаимодействием, появляется дополнительный по отношению к рождению электрон-дырочных пар канал затухания дырок за счет эмиссии плазмона. Это указывает на возможный путь исследования предсказанных теоретически и недавно обнаруженных экспериментально низкоэнергетических плазменных колебаний на металлических поверхностях.

В области электронных возбуждений проявляет себя спиновая асимметрия ширины спектральной функции, а следовательно, и длины свободного пробега. Известно, что различие в длинах свободного пробега для электронов со спином «вверх» и электронов со спином «вниз» составляет основу эффекта спинового фильтра, наблюдаемого в транспорте возбужденных электронов через ферромагнетики (см. обзоры [5, 34]). В рассмотренных случаях спиновая асимметрия, определяемая величиной вклада Рашбы, существенно меньше, чем в ферромагнетиках (см., например, работу [35]). Однако, например, в квантовых ямах полупроводниковых гетероструктур, где ожидаются такие же особенности в затухании квазичастиц при соотношении $E_R \sim \Delta E$, величина спиновой асимметрии может управляться внешним электрическим полем.

До непосредственных вычислений свойств квазичастиц в поверхностных сплавах, что представляет собой отдельную и труднорешаемую в настоящее время задачу, полученные данные могут служить предсказанием возможных механизмов затухания квазичастиц в таких системах. В силу гигантского спинового расщепления поверхностных состояний в поверхностных сплавах ожидается значительное усиление обнаруженных особенностей.

Работа выполнена при частичной финансовой поддержке Федерального агентства по науке и инновациям Министерства образования и науки РФ (госконтракт № 02.740.11.5098 от 5 октября 2009), университета Страны басков (проект GV-UPV/EHU, грант № IT-366-07), а также Министерства науки и технологии Испании (грант № FIS2007-66711-C02-01). Расчеты проводились на суперкомпьютере СКИФ-Суberia Томского государственного университета, а также на вычислительном кластере Костромского государственного университета им. Н. А. Некрасова.

ЛИТЕРАТУРА

- Э. И. Рашба, ФТТ 2, 1224 (1960); Ю. А. Бычков,
 Э. И. Рашба, Письма в ЖЭТФ 39, 66 (1984); J. Phys. C 17, 6039 (1984).
- C. R. Ast, D. Pacilé, L. Moreschini et al., Phys. Rev. B 77, 081407(R) (2008).
- 3. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
- M. Studer, G. Salis, K. Ensslin et al., Phys. Rev. Lett. 103, 027201 (2009).
- I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
- E. V. Chulkov, A. G. Borisov, J. P. Gauyacq et al., Chem. Rev. 106, 4160 (2006).
- D. S. Saraga and D. Loss, Phys. Rev. B 72, 195319 (2005).
- 8. И. А. Нечаев, Е. В. Чулков, ФТТ 51, 1672 (2009).

- I. A. Nechaev, M. F. Jensen, E. D. L. Rienks et al., Phys. Rev. B 80, 113402 (2009).
- I. A. Nechaev, P. M. Echenique, and E. V. Chulkov, Phys. Rev. B 81, 195112 (2010).
- 11. C. R. Ast, J. Henk, A. Ernst et al., Phys. Rev. Lett. 98, 186807 (2007).
- 12. H. Mirhosseini, J. Henk, A. Ernst et al., Phys. Rev. B 79, 245428 (2009).
- 13. L. Hedin, Phys. Rev. 139, A796 (1965).
- 14. F. Aryasetiawan and S. Biermann. Phys. Rev. Lett. 100, 116 402 (2008).
- 15. W. G. Aulbur, L. Jönsson, and J. Wilkins, in *Solid State Physics*, ed. by H. Ehrenreich and F. Saepen, Academic Press, New York (2000), Vol. 54, p. 1.
- 16. M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett. 96, 226402 (2006).
- 17. F. Bruneval, Phys. Rev. Lett. 103, 176403 (2009).
- 18. M. Pletyukhov and V. Gritsev, Phys. Rev. B 74, 045307 (2006).
- A. A. Shashkin, A. A. Kapustin, E. V. Deviatov et al., J. Phys. A: Math. Theor. 42, 214010 (2009).
- 20. E. H. Hwang and S. Das Sarma, Phys. Rev. B 64, 165409 (2001).
- 21. Y. Zhang and S. Das Sarma, Phys. Rev. B 71, 045322 (2005); 72, 075308 (2005).

- 22. E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Surf. Sci. 391, L1217 (1997); 437, 330 (1999).
- 23. V. M. Silkin, J. M. Pitarke, E. V. Chulkov, and P. M. Echenique, Phys. Rev. B 72, 115435 (2005).
- 24. J. Kliewer, R. Berndt, E. V. Chulkov et al., Science 288, 1399 (2000).
- 25. A. Schäfer, I. L. Shumay, M. Wiets et al., Phys. Rev. B 61, 13159 (2000).
- 26. W. Berthold, U. Höfer, P. Feulner et al., Phys. Rev. Lett. 88, 056805 (2002).
- 27. E. V. Chulkov, J. Kliewer, R. Berndt et al., Phys. Rev. B 68, 195422 (2003).
- 28. I-Po Hong, C. Brun, F. Patthey et al., Phys. Rev. B 80, 081409(R) (2009).
- 29. A. Zugarramurdi, N. Zabala, V. M. Silkin et al., Phys. Rev. B 80, 115425 (2009).
- **30**. G. F. Giuliani and G. Vignale, *Quantum Theory* of the Electron Liquid, Cambridge University Press, Cambridge (2005).
- H. Bentmann, F. Forster, G. Bihlmayer et al., Europhys. Lett. 87, 37003 (2009).
- 32. V. M. Silkin, A. García-Lekue, J. M. Pitarke et al., Europhys. Lett. 66, 260 (2004).
- 33. B. Diaconescu, K. Pohl, L. Vattuone et al., Nature (London) 448, 57 (2007).
- 34. В. П. Жуков, Е. В. Чулков, УФН 179, 113 (2009).
- **35**. И. А. Нечаев, Е. В. Чулков, ФТТ **51**, 713 (2009).