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The electronic transport properties of graphene-based superlattice structures are investigated. A graphene-based
modulation-doped superlattice structure geometry is proposed consisting of periodically arranged alternate layers:
InAs/graphene/GaAs/graphene/GaSb. The undoped graphene/GaAs/graphene structure displays a relatively
high conductance and enhanced mobilities at increased temperatures unlike the modulation-doped superlattice
structure, which is more steady and less sensitive to temperature and the robust electrical tunable control on
the screening length scale. The thermionic current density exhibits enhanced behavior due to the presence of
metallic (graphene) monolayers in the superlattice structure. The proposed superlattice structure might be of
great use for new types of wide-band energy gap quantum devices.

1. INTRODUCTION nanoscale, and hence new materials need to be intro-
duced [23]. Eventually, not only the materials [24] but
Graphene — a single layer of carbon atoms densely also the basic device operation principles and geome-
packed in a honeycomb structure — was recently first tries need to be revised [25].
isolated in its free-standing form [1, 2]. However, its
unusual material and physical properties have already
captured the interest of many researchers working in
condensed-matter physics [3-6]. This two-dimensional
material has a very high quality, is extremely strong,
it exhibits ballistic electronic transport on the micro-
meter scale at room temperature, and can be chemi-
cally doped, and its conductivity can be controlled with
an electric field [7-10]. Graphene has a linear gapless
spectrum, and therefore exhibits metallic conductivity
even in the limit of a nominally zero carrier concen-
tration [11-13]. At the same time, most electronic ap-
plications rely on the presence of a gap between the
valence and conduction bands [14-19].

Superlattices have been used to filter the energy of
electrons [26, 27]. The band structure can be tuned
by varying the composition and thickness of the lay-
ers [28]. In fact, superlattices are widely used in ap-
plications that have nothing to do with their electronic
properties [29-31]. This is to improve the cleanliness of
material during growth [32]. The structures discussed
below are vertical, in the sense that the current flows
along the direction of growth or along the normal to
the interface [33]. The obvious way of introducing car-
riers, used in classical devices, is to dope the regions
where electrons or holes are desired [34, 35]. The so-
lution is the remote or modulation doping, where the
doping increases in one region, but the carriers subse-
quently migrate to another [36]. Modulation doping
has achieved two benefits: it has separated electrons
from their donors (holes from their acceptors) to re-
duce scattering by ionized impurities, and the electrons
(holes) to two dimensions.

The continuing enhancing of quantum electronic de-
vices poses new challenges to the semiconductor in-
dustry for each new device generation [20-22]. At
the mesoscopic scale, there are important quantum ef-
fects, and the materials that worked well in previous-
generation devices do not perform properly at the

In this paper, we propose a new graphene-based

*E-mail: bolmat@phys.nthu.edu.tw modulation-doped superlattice structure geometry
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Fig.1.

Two monolayers of graphene are sandwiched between

thin layers of InAs at the bottom of the quantum de-

vice and thin layers of GaSb at the top. GaAs is placed
in the middle

Tunneling structure of the graphene device.

that consist of periodically arranged alternate layers:
InAs/graphene/GaAs/graphene/GaSh. Figure 1
illustrates the graphene device tunneling structure:
monolayers of graphene are sandwiched between thin
layers of InAs at the bottom of the quantum device
and thin layers of GaSbh at the top. In the middle of
the proposed superlattice structure, gallium arsenide
(GaAs) is placed, which has a higher saturated elec-
tron velocity and higher electron mobility and has
some electronic properties that are superior to those
of silicon. GaAs devices are relatively insensitive to
heat and generate less noise than silicon devices when
operated at high frequencies. GaAs layer is captured
by two graphene monolayers. Weak anti-localization,
mobility, and carrier density of the graphene allow
considering this geometry as an intrinsic semiconduc-
tor structure, which we treat in the first section of our
work. The weak van der Waals forces that provide
the cohesion of multilayer graphene stacks do not
always affect the electronic properties of the individual
graphene layers in the stack.

Our idea here is to create two high-conductivity
channels in the current-spreading graphene layers, one
of which is sandwiched by GaAs (gapped material) at
the top and by InAs (electrons-doped region) at the
bottom, and the other is sandwiched by GaAs (gapped
material) at the bottom and by GaSb (holes-doped re-
gion) at the top. Electronic transport properties of this
structure are investigated in Sec. 2.
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2. ELECTRONIC PROPERTIES

Pure semiconductors that are free from impurities
are called intrinsic semiconductors. Ideally, the intrin-
sic conductivity is zero at 0 K and increases with tem-
perature owing to the thermal excitation of electrons
from the valence to the conduction band. The elec-
trons thus excited leave holes in the valence band. The
electric conductivity in these materials is due to both
the electrons in the conduction band and the holes in
the valence band. The conductivity in these materials
can be written as

(1)

where n, and nj, are the electron and hole concentra-
tions, pe and py are the electron and hole mobilities
(200000 cm?/V - s in graphene, 3000000 cm?/V - s in
two-dimensional electron gases), and e the charge of
the electron or the hole. The number of electrons avail-
able in the conduction band depends on two factors:
the number of electronic energy levels available in the
conduction band and the extent to which these energy
states are occupied. The first is given by the density
of states and the second factor comes from the Fermi-
Dirac distribution function.

If f(E) is the probability of finding the electron in
the energy state with energy E, then 1 — f(E) is the
probability for the electron (or the hole) to not be found
in that state. The total number N of electrons is given
by

0 = Ne€lle + Npellp,

1
N=) oum it
+zj: exp(J(

where Fj; is an energy level in the conduction band and
E; is an energy level in the filled band. In the case of
an intrinsic semiconductor, the total number of electron
states in the filled band is equal to N, that is,

Zl:N.
J

Hence, it follows from Eq. (2) that

1
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This shows the equality of the number of conduction
electrons (the left-hand side) and number of holes in
the filled band (the right-hand side) in intrinsic semi-
conductors,

Ne = Npy. (4)

The number of electrons in the conduction band (the
number of holes in the valence band) is obtained by
integrating the expression

0

m:/D@V@ME7m=/D@M#@WW
FE

g — 00

Here, the origin of energy is taken at the top of the
filled band and the inequality E, > kT is assumed.
Substituting the expressions for D(E) and f(E), we
then have

for electrons and

"t :% / (%Z?)L eXp{ KT

for holes. Now the electron and hole densities become

1 (kT u— B,
m_ggﬁ)wﬂjﬁﬁ, ()

1/ kT\® M

From equations (7), (8), and (4), we can determine
exp(u/kT) as

exp (%) = %ex
7)

o(p) O

It therefore follows from (7) and (8) that

1 (KT’ E,
e=np=—— (= e
e =1 Tusoh < h ) exp< 2kT) (10)

Equation (9) yields

— 1B ¢ kT 10g E (11)
=gl t il log
The chemical potential g in (11) lies in the vicin-
ity of the middle of the forbidden energy gap if the

value of log(vs/vk) (where v% ~ 1.11 - 105 m/s,
% ~ 1.04 - 10 m/s in graphene monolayer and
0% ~ 1.10 - 10% m/s, v ~ 1.07 - 10% m/s in layered
graphene) is of the order of unity and the temperature
is well below E,/k. Hence, the relations E,/k > T,
Ey — > ET and p > kT are satisfied at ordinary

temperature.

3. MODULATION-DOPED SUPERLATTICES

3.1. Neutrality

Because semiconductors contain mobile electric
charges, they tend to be electrically neutral, which is to
say they contain equal amounts of positive and negative
charge. Tt is interesting to see how large a non-neutral
region can be, without the occurrence of large potential
differences.

We focus on graphene-based modulation-doped su-
perlattice structures. Inherently, InAs and GaSh are
doping layers in a superlattice structure; graphene
monolayers make the electric carriers highly mobile and
the GaAs layer is active. We propose a varying poten-
tial that tends to a constant value, taken as zero. In
the constant potential, the hole (electron) density ng is
equal to the acceptor (donor) density A (without losing
the generality, we consider the p-type (hole) carriers).
Where the potential has charged to V', the hole density
is controlled by the Maxwell-Boltzmann relation

(i)
n = ng exp _ﬁ

(we recall assumption E, > kT'). In this case, the
Poisson equation is

PV _ -

dx? €5€0

—eng ev
v (exp (_k_T> — 1) ,  (12)

where €g is the permittivity and e is the relative per-
mittivity of the active region.

This equation is unpleasant to solve in the general
case, but when |eV/kT| < 1, we can use the first two
terms in a series approximation for the exponential,
which gives

>V eng
- = . 13
dx? eseokT (13)
Equation (13) has a solution
V =Voexp(—z/Ap), (14)
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where

[kT
Ap = 26560
e“No

is the Debye length. Equation (13) shows that a per-
turbation in the potential tends to increase or decrease
over distances of the order of \p.

Major field changes occur over distances longer
than Ap. In what follows, we consider a superlat-
tice structure with different boundary conditions, tak-
ing into account that graphene is quite different from
most conventional three-dimensional materials: intrin-
sic graphene is a semimetal or zero-gap semiconductor.
We set & = 0 at the surface of the lower graphene mono-
layer and assume the potential to be zero at =z = 0.
The electron gas outside the metal is so rarefied that
it can be treated classically. Then V(z) increases as x
increases from 0 to infinity, and V(c0) = oo because
n(oco) = 0, and V'(o0) = 0 because the electric field
should vanish as * — oco. In terms of V, the Poisson
equation can be written as

r(~i)

Multiplying this by V' and integrating, and using the
boundary conditions given above, we obtain

eV

2

e“ng eV

VII — _ _ -
kT

(15)

€s€0

nge?

1 2
2(V ) = v ET exp ( kT) , (16)
whence
2nge> 3 eV
! P —_—
V= ( = kT) exp< QkT) . (17)

Integrating this result once again yields

= ()

Because we have assumed that V(0) = 0, substitut-
ing x = 0 in (18) yields the value of the integration
constant Ap. Therefore, (18) can be rewritten as

eV

kT

2nge?
escokT

1/2
) (z+Ap).  (18)

e VY- =z +1
PAwT) TN, T
whence
A
V:2Volog(x+ D). (19)
AD
Substituting this in (12), we finally obtain
\ 2
n(z) = ng (x +D)\D> . (20)

Electrical potential behavior is illustrated in Fig. 2.
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Fig.2. Electrostatic potential behavior in term of

screening length units. The dashed line (V1) is cal-

culated from (14) and the solid line (1?2) is calculated
from (19)

3.2. Boltzmann transport equation

In the preceding section, we considered the case of
intrinsic semiconductors, where the number of electrons
that are excited to the conduction band is equal to the
number of holes in the valence band. The electric con-
ductivity of electrons or holes in graphene-based su-
perlattice structures due to the doping electrons (con-
fined to one material, InAs) and holes (confined to the
other, GaSb) can be investigated by considering the
Boltzmann transport equation

(5)
coll

of of of _
ot T ox T ok
where x is the coordinate, k the momentum, f the
distribution function of carriers, and F the exter-
nal force acting on a particle. In the paradigm of
graphene-based modulation-doped superlattice struc-
tures of InAs/graphene/GaAs/graphene/GaSb, the in-
terface modes in graphene monolayers emerge as crucial
factors and the higher-frequency mode produces a sym-
metric field in the GaAs well, which markedly enhances
the intrasubband scattering rate.
It suffices to find the current density in the form of
a term proportional to the electric field. Under the as-
sumptions of steadiness and uniformity, the Boltzmann
equation becomes

of

F
+vVv + at

(21)

of

ok

f-fo

T

—eE - (22)
In order to determine an expression correct to the first
order in E, the distribution function f in the right-hand
side may be replaced by the zeroth approximation fj,
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i.e., the solution in the case where E = 0. Noting that
fo is a function of E, we obtain

f=rf+ —fTev E. (23)

According to this expression, the electric current is pro-
duced by a shift of the center of the Fermi distribution.
This is most clearly seen in the case where (k) = hivk:

f=fole +Tev - E).

The current density is obtained by multiplying Eq. (23)
by —ewv and integrating over all values of the momen-

tum,
oot ()

where dk stands for dk, - dk, and the factor 4 accounts
for the weight due to spin and valley. Therefore, the
components of the electric conductance can be written

as
2
TV ( ) dk

_ 2
7= /3h2
=2

4dk
h2

dfo

9- )70V E

i= (24)

9o
Os

46 TU
3kT

E/g D(E (25)

For the Maxwell-Boltzmann distribution, the identity
_0fo 1 >

e KT
holds, and the electric conductivity is approximated on
screening length scale by

—¢
fo, fo=-exp <ukT

: (26)

The electric conductance behavior of graphene-based
superlattice structures is illustrated in Figs. 3 and 4.

3.3. Thermionic current

At T = 0 K, electrons take the minimum-energy
configuration. The electrons in the donors fall into the
acceptor levels until the acceptors are all filled; in this
configuration, the Fermi level must lie at the donor
level:

1
u(0) = 5By — Ea.

At sufficiently high temperatures, the electrons in the
filled band can be excited to the conduction band.
When the density of holes in the filled band and the
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Fig.3. The electric conductance behavior of the

graphene-based superlattice structure shows enhanced

mobilities at increased temperature. Evenly increasing

the energy gap to the thermal energy (E,/kT =~ T,

E,/kT = 14, and E4/kT = 28) shows a tendency

to steady tunable electrical control and optical con-

finement on a length scale greater than the screening
one

25
T, kt/h

10 15 20

Fig.4. Electric conductance behavior (power-law de-
pendence on temperature) for intrinsic undoped gra-
phene/GaAs/graphene (T*-like behavior, 2), undoped
GaAs (T*/2-like behavior, 1) and the graphene-based
modulation-doped superlattice structure InAs/graphe-
ne/GaAs/graphene/GaSbh (T-like behavior, 3). The
undoped sample exhibits a relatively high conductance,
unlike the doped one, which is more steady and less
sensitive to the temperature, which is more valuable
for tunable wide-band gap quantum devices

density of electrons in the conduction band become
much larger than the number of donors and acceptors,
the effects of donors and acceptors can be neglected,
and the sample shows characteristics similar to those of
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Fig.5. The thermionic current density for different

electrostatic potentials (the upper for (19) and the
lower for (14)) fixed on the screening length scale shows
a temperature dependence

an intrinsic semiconductor. In this case, the Fermi level
is in the middle of the energy gap E, and p(co) = 0. At
the temperatures between these extreme cases ("= 0
and T' = 00), p has a value between those given above.
Summarizing, we can say that the behavior of yu is as
follows: at T = 0 K, p coincides with the donor level.
It increases with the temperature and then approaches
the middle of the gap between the conduction band and
the filled band. This is not exact, but is sufficient for a
qualitative discussion on the screening length scale.
At a finite temperature, electrons having higher en-
ergies than the work function W = eV at the upper tail
of the Fermi distribution can escape from the graphene
surface to the interior of the superlattice structure in
the direction normal to the surface. When an appro-
priate potential difference is applied, it is possible to
collect all of the electrons escaping from the metal
(graphene). For a graphene-based modulation-doped
superlattice structure, the electric current density that
occurs without any fluctuations in equilibrium can be
written as j = oE, where E can be represented as
E = V(x)/x. In Fig. 5, we illustrate the thermionic
current density behavior, which was enhanced due to a
more realistic intrinsic electrostatic potential in (19).

4. CONCLUSION

We investigated electric transport properties for
graphene-based modulation-doped superlattice struc-
tures providing a qualitatively good description. We

have shown that slightly doped superlattice structures
based on graphene monolayers as a high-conductivity
channels, in tuning to the point of intrinsic-type struc-
tures where carrier concentrations are relatively insen-
sitive to heat, generate less noise when operated at high
frequencies, avoiding scattering effects on the screening
length scale. The thermionic current density behavior
is enhanced due to a more realistic intrinsic electro-
static potential, which was calculated taking the effect
of metallic (graphene) monolayers into account. The
proposed structure might be of great use for new types
of wide-band energy gap quantum devices.

The authors are greatly indebted to Prof. J. Kwo
and Prof. M. Hong for the stimulating discussions and
fruitful suggestions. We acknowledge support from the
National Center for Theoretical Sciences in Taiwan.

REFERENCES

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and
A. A. Firsov, Nature 438, 197 (2005).

2. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Na-
ture 438, 201 (2005).

3. C. Hummel, F. Schwierz, A. Hanisch, and J. Pezoldt,
Phys. Stat. Sol. B 247, 903 (2010).

4. B. L. Huang and C. Y. Mou, EPL 88, 63005 (2009).

5. L. A. Falkovsky, Phys. Rev. B 80, 113413 (2009);
L. A. Falkovsky, Zh. Eksp. Teor. Fiz. 137, 361 (2010).

6. M. Topsakal, H. Sevincli, and S. Ciraci, Appl. Phys.
Lett. 92, 173118 (2008).

7. H. Sevincli, M. Topsakal, E. Durgun, and S. Ciraci,
Phys. Rev. B 77, 195434 (2008).

8. P. Y. Chang and H. H. Lin, Appl. Phys. Lett. 95,
082104 (2009).

9. M. K. Li, S. J. Lee, and T. W. Kang, Current Appl.
Phys. 9, 769 (2009).

10. M. Titov, P. M. Ostrovsky, and I. V. Gornyi, Semi-
cond. Sci. Technol. 25, 034007 (2010).

11. M. Titov and C. W. J. Beenakker, Phys. Rev. B 74,
041401(R) (2006).

12. D. Bolmatov and C. Y. Mou, Zh. Eksp. Teor. Fiz. 137,
695 (2010); D. Bolmatov and C. Y. Mou, Physica B:
Condens. Matter 405, 2896 (2010).

13. D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan,
W. A. de Heer, P. N. First, and J. A. Stroscio, Science
324, 5929 (2009).

124



KITD, Tom 139, BHmm. 1, 2011

Graphene-based modulation-doped superlattice structures

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Yu. E. Lozovik, S. P. Merkulova, and I. V. Ovchin-
nikov, Phys. Lett. A 282, 407 (2001); Yu. E. Lozovik
and A. A. Sokolik, Phys. Lett. A 374, 326 (2009).

M. Litinskaya and V. M. Agranovich, J. Phys.: Con-
dens. Matter 21, 415301 (2009).

J. Pomplun, S. Burger, F. Schmidt, A. Schliwa,
D. Bimberg, A. Pietrzak, H. Wenzel, and G. Erbert,
Phys. Stat. Sol. B 247, 846 (2010).

M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and
A. M. Sergent, Science 283, 1897 (1999).

M. Esmailpour, A. Esmailpour, R. Asgari, M. Elahi,
and M. R. R. Tabar, Sol. Stat. Comm. 150, 655 (2010).

M. Mucha-Kruczynski, E. McCann, and V. I. Fal’ko,
Semicond. Sci. Technol. 25, 033001 (2010).

X. Wang, Y. Ezzahri, J. Christofferson, and A. Shak-
ouri, J. Phys. D: Appl. Phys. 42, 075101 (2009).

S. Das Sarma and D. W. Wang, Phys. Rev. Lett.
83, 816 (1999); D. W. Wang, A. J. Millis, and
S. Das Sarma, Phys. Rev. Lett. 85, 4570 (2000).

C. H. Shih, and C. C. Lin, Semicond. Sci. Technol. 25,
065003 (2010).

L. K. Chu, W. C. Lee, M. L. Huang, Y. H. Chang,
L. T. Tung, C. C. Chang, Y. J. Lee, J. Kwo, and
M. Hong, J. Crystal Growth 311, 2195 (2009).

K. Trachenko and M. T. Dove, arXiv:0805.1392v1.

P. Cisell, R. Zhang, Z. Wang, C. T. Reynolds, M. Bax-
endale, and T. Peijs, Eur. Polymer J. 45, 2741 (2009).

125

26

27

28

29.

30.

31.

32.

33.

34.

35.

. H. Sevinli, M. Topsakal, and S. Ciraci, Phys. Rev.
B 78, 245402 (2008).

. N. Abedpour, A. Esmailpour, R. Asgari, and

M. R. R. Tabar, Phys. Rev. B 79, 165412 (2009).

. L. A. Chernozatonskii and P. B. Sorokin, Phys. Stat.
Sol. B 245, 2086 (2008); L. A. Chernozatonskii and
P. B. Sorokin, J. Phys. Chem. C 114(7), 3225 (2010).

Yu-Xian Li, J. Phys.:
(2010).

Condens. Matter 22, 015302

Z. P. Niu, F. X. Li, B. G. Wang, L. Sheng, and
D. Y. Xing, Eur. Phys. J. B 66, 245 (2008).

T. Ouyang, Y. P. Chen, K. K. Yang, and J. X. Zhong,
EPL 88, 28002 (2009).

A. K. M. Newaz, Y. Wang, J. Wu, S. A. Solin,
V. R. Kavasseri, I. S. Ahmad, and I. Adesida, Phys.
Rev. B 79, 195308 (2009).

S. Saito and A. Zettl, Carbon Nanotubes: Quantum
Cylinders of Graphene, Elsevier, Oxford (2008).

B. Borca, S. Barja, M. Garnica, J. J. Hinarejos,
A. L. V. Parga, R. Miranda, and F. Guinea, Semicond.
Sci. Technol. 25, 034001 (2010).

A. Nduwimana and Xiao-Qian Wang, Nano Lett. 9(1),
283 (2009).

36. Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori,

Phys. Rev. B 79, 075123 (2009).



