НЕЛИНЕЙНАЯ ТЕОРИЯ ИОННО-АКУСТИЧЕСКИХ ВОЛН В ГОРЯЧЕЙ КВАНТОВО-ВЫРОЖДЕННОЙ ЭЛЕКТРОН-ПОЗИТРОН-ИОННОЙ ПЛАЗМЕ

А. Е. Дубинов^{*}, М. А. Сазонкин^{**}

Саровский государственный физико-технический институт 607186, Саров, Нижегородская обл., Россия

Поступила в редакцию 16 января 2010 г.

Рассматривается бесстолкновительная незамагниченная *e-p-i*-плазма, состоящая из квантово-вырожденных газов ионов, электронов и позитронов, находящихся при ненулевых температурах. Выведено и проанализировано дисперсионное уравнение для изотермических ионно-звуковых волн и найдено точное выражение для линейной скорости ионного звука. Анализ дисперсионного уравнения позволил найти области параметров, в которых следует искать нелинейные решения в виде солитонов. Разработана нелинейная теория изотермических ионно-звуковых волн, в рамках которой получено и проанализировано точное решение исходных уравнений. Анализ выполнен методом псевдопотенциала Бернулли. Определены диапазоны фазовых скоростей периодических ионно-звуковых волн и скоростей солитонов. Показано, что в рассматриваемой плазме эти диапазоны не пересекаются и что скорость солитона не может быть меньше линейной скорости ионного звука. Построены графики профилей физических величин в периодической волне и в солитоне, а также графики зависимости скорости звука и критической скорости солитонов от концентрации ионов в плазме. Показано, что с увеличением концентрации ионов эти скорости возрастают.

1. ВВЕДЕНИЕ

За последние несколько лет в печати вышло огромное количество теоретических работ, изучающих различные коллективные процессы в электрон-позитрон-ионной плазме (далее для краткости е-р-і-плазма). Этот интерес вызван, прежде всего, тем, что в астрофизических условиях такая плазма является скорее типичной, чем исключительной. Считается, например, что она существует во внутренней области аккреционных дисков вблизи черных дыр [1,2], в магнитосферах нейтронных звезд [2-4], внутри активных галактических ядер [5] и даже в плазме солнечных вспышек [6]. Недавно вблизи компактных звездных объектов были обнаружены узкоколлимированные протяженные выбросы — джеты, которые представляют собой релятивистски движущиеся струи *e-p-i*-плазмы [5, 7–9]. Есть много доводов в пользу того, что и вся наша Вселенная в первые минуты своего существования

также представляла собой горячую *e-p-i*-плазму [10]. Кроме того, *e-p-i*-плазма является некоторым частным случаем амбиплазмы, т.е. космической квазинейтральной плазмы, содержащей электроны, позитроны, протоны и антипротоны. Понятие об амбиплазме ввел в обиход еще Х. Альфвен [11], а в его книге [12] описано несколько моделей образования амбизвезд (т.е. звезд, состоящих из амбиплазмы) в результате соударений звезд и антизвезд.

В недавней нашей работе [13], в которой была развита нелинейная теория ионно-звуковых волн в *e-p-i*-плазме, был дан краткий обзор работ по теории коллективных явлений в ней. При этом *e-p-i*-плазма, которая рассматривалась в работе [13] и большинстве цитируемых там работ, считалась бесстолкновительной и небольшой плотности и, следовательно, входящие в нее электронный, позитронный и ионный газы рассматривались как классические, подчиняющиеся статистике Максвелла – Больцмана.

Однако в последние два года появился целый ряд статей [14–29], в которых рассматриваются коллективные явления в квантово-вырожденной *e-p-i*-плазме. Так, в работах [14–18, 24, 26–29] изучались элект-

^{*}E-mail: dubinov-ae@yandex.ru

^{**}E-mail: figma@mail.ru

ростатические периодические и ударные волны и солитоны ионно-звукового типа, в [19] — электростатическая электрон-позитронная двухпотоковая неустойчивость в незамагниченной *e-p-i*-плазме, в [20] — электромагнитные дрейфовые, а в [21] электростатические ударные волны и солитоны, в [22] — ионно-звуковые вихри, в [23] — связанные ионно-звуковые и ионно-циклотронные волны, в [25] — связанные ионно-звуковые и дрейфовые волны в магнитоактивной *e-p-i*-плазме.

Практически во всех указанных работах применялся газодинамический подход, основанный на уравнениях динамики вырожденных газов [30–33], в которых вырожденные компоненты плазмы считаются холодными, т. е. они находятся при нулевой температуре и подчиняются одному из следующих уравнений состояния холодных ферми-газов (в зависимости от размерности газа): для трехмерного ферми-газа

$$p = \frac{2}{5} \varepsilon_F n_0 \left(\frac{n}{n_0}\right)^{5/3},\tag{1}$$

для одномерного ферми-газа

$$p = \frac{2}{3} \varepsilon_F n_0 \left(\frac{n}{n_0}\right)^3.$$
 (2)

Здесь *p* — давление, *n* — концентрация, *n*₀ — начальная концентрация, ε_F — энергия Ферми.

Такой «холодный» подход заметно упрощает математические выкладки, но не всегда позволяет адекватно описать волновые процессы в реальной квантовой плазме, например, не может описать влияние температуры на характеристики волны.

Недавно математические трудности, возникающие при разработке нелинейной теории волн в вырожденных плазмах ненулевой температуры, были преодолены с помощью нового метода псевдопотенциала Бернулли [13, 34–37] и точного вычисления интегралов Ферми – Дирака [38, 39], в результате чего была создана нелинейная теория изотермических электронных плазменных волн в вырожденной плазме при произвольной ненулевой температуре [39]. Чуть позднее в работах [40–42] этот подход был продолжен и на другие волновые процессы в квантово-вырожденной плазме (в том числе, и на ионно-звуковые волны в горячей *e-i*-плазме [42]).

Целью данной работы является развитие нелинейной теории ионно-звуковых волн в горячей *e-p-i*-плазме, в которой температуры электронного, позитронного и ионного квантово-вырожденных газов ненулевые и отличаются друг от друга. Фактически данная работа есть продолжение работ [13, 39, 42], здесь используются их основные положения: трехжидкостная газодинамика с безынерционными электронами и позитронами, точная безынтегральная форма уравнений состояния горячих ферми-газов и метод псевдопотенциала Бернулли.

2. ОБОЗНАЧЕНИЯ И ИСХОДНЫЕ УРАВНЕНИЯ

Будем рассматривать квазинейтральную, однородную, бесстолкновительную *e-p-i*-плазму, состоящую из вырожденных газов электронов, позитронов и положительно заряженных ионов, в отсутствие магнитного поля и в нерелятивистском приближении. Считаем, что электроны и позитроны являются безынерционными частицами.

Введем следующие обозначения: масса электрона — m_e , масса позитрона — m_p , масса иона — $m_i = m$, температуры соответственно электронной, позитронной и ионной компонент невозмущенной плазмы — T_{0e} , T_{0p} , T_{0i} , значения химических потенциалов невозмущенной плазмы — μ_{0e} , μ_{0p} , μ_{0i} , заряд электрона — $(-q_e) < 0$, заряд позитрона — $q_p > 0$, заряд иона — $q_i > 0$, равновесная концентрация электронов — n_{0e} , позитронов — n_{0p} , ионов — $n_{0i} = n_0$. Значения, относящиеся к возмущенной плазме, будем записывать без индекса «0».

В силу квазинейтральности плазмы можем записать следующее равенство для невозмущенных значений концентраций:

$$q_e n_{0e} = q_p n_{0p} + q_i n_{0i}.$$

Можно рассматривать *e-p-i*-плазму как симметричную *e-p*-плазму с небольшой примесью тяжелых ионов или как *e-i*-плазму, в которой присутствует небольшая фракция позитронов. Для описания всех возможных случаев введем положительный параметр α , обозначающий, какая часть отрицательного заряда скомпенсирована зарядом ионов: $\alpha = q_i n_0/q_e n_{0e}$. Тогда

$$q_e n_{0e} = q_i n_0 / \alpha, \quad q_p n_{0p} = q_i n_0 (1/\alpha - 1),$$

где $0 < \alpha \leq 1$. Случай $\alpha = 1$ соответствует обычной *e-i*-плазме, а случай $\alpha = 0$, соответствующий *e-p*-плазме, в нашей работе рассматриваться не будет, так как далее мы будем считать массы электронов и позитронов пренебрежимо малыми по сравнению с массой ионов.

Для описания процессов, происходящих в такой плазме, воспользуемся следующими одномерными газодинамическими уравнениями для компонент: уравнением непрерывности

$$\frac{\partial n_{e,p,i}}{\partial t} + \frac{\partial (n_{e,p,i}V_{e,p,i})}{\partial x} = 0, \tag{3}$$

уравнением динамики позитронов и ионов

$$\frac{\partial V_{p,i}}{\partial t} + V_{p,i} \frac{\partial V_{p,i}}{\partial x} = -\frac{q_{p,i}}{m_{p,i}} \frac{\partial \varphi}{\partial x} - \frac{1}{n_{p,i}m_{p,i}} \frac{\partial P_{p,i}}{\partial x} + \frac{\hbar^2}{4m_{p,i}^2} \frac{\partial}{\partial x} \left\{ \frac{1}{n_{p,i}} \left[\frac{\partial^2 n_{p,i}}{\partial x^2} - \frac{1}{n_{p,i}} \left(\frac{\partial n_{p,i}}{\partial x} \right)^2 \right] \right\}, \quad (4)$$

уравнением динамики электронов

$$\frac{\partial V_e}{\partial t} + V_e \frac{\partial V_e}{\partial x} = \frac{q_e}{m_e} \frac{\partial \varphi}{\partial x} - \frac{1}{n_e m_e} \frac{\partial P_e}{\partial x} + \frac{\hbar^2}{4m_e^2} \frac{\partial}{\partial x} \left\{ \frac{1}{n_e} \left[\frac{\partial^2 n_e}{\partial x^2} - \frac{1}{n_e} \left(\frac{\partial n_e}{\partial x} \right)^2 \right] \right\}, \quad (5)$$

уравнением Пуассона

$$\frac{\partial^2 \varphi}{\partial x^2} = -4\pi (q_i n_i + q_p n_p - q_e n_e). \tag{6}$$

Слагаемые, связанные с градиентом давления в уравнениях (4) и (5), учитывают коллективное квантовое взаимодействие между частицами-фермионами, а также уравнения состояния вырожденного ферми-газа, которые будут записаны ниже.

Последние слагаемые в уравнениях (4) и (5) также обусловлены квантовыми эффектами, а именно квантово-волновой природой частиц. Они следуют из принципа неопределенности Гейзенберга и выводятся из одночастичного уравнения Шредингера (т. е. фактически в приближении Хартри).

Уравнения (4) и (5) могут быть использованы без этих квантовых членов. При этом одновременно выполняются следующие два условия на де-бройлевскую длину волны $\lambda_{dB_{e,p,i}}$: относительно характерного размера рассматриваемой системы, $\lambda_{dB_{e,p,i}} \ll L$, и относительно дебаевских длин (или длины волны ионного звука), $\lambda_{dB_{e,p,i}} \ll \lambda_{D_{e,p,i}}$. Первое условие выполнено, так как мы рассматриваем безграничную плазму. Второе условие означает, что $\hbar\omega_{0e,p,i} \ll kT_{e,p,i}$, где $\omega_{0e,p,i}$ — ленгмюровские частоты компонент плазмы.

Обратим внимание на то, что без этого квантового слагаемого уравнения (4) и (5) не становятся автоматически классическими, так как коллектив частиц остается квантово-вырожденным, подчиняющимся статистике фермионов.

Без учета вторых квантовых слагаемых уравнения движения (4), (5) перепишутся в виде

$$\frac{\partial V_{p,i}}{\partial t} + V_{p,i}\frac{\partial V_{p,i}}{\partial x} = -\frac{q_{p,i}}{m_{p,i}}\frac{\partial\varphi}{\partial x} - \frac{1}{n_{p,i}m_{p,i}}\frac{\partial P_{p,i}}{\partial x}, \quad (7)$$

$$\frac{\partial V_e}{\partial t} + V_e \frac{\partial V_e}{\partial x} = \frac{q_e}{m_e} \frac{\partial \varphi}{\partial x} - \frac{1}{n_e m_e} \frac{\partial P_e}{\partial x}.$$
 (8)

Дополним систему уравнением состояния теплого ферми-газа (газа ионов, электронов и позитронов). Оно имеет вид неявной, параметрически заданной функции и содержит интегралы Ферми–Дирака, которые ранее считались не берущимися. Тем не менее, сейчас, следуя [23], мы можем представить их в безынтегральном виде:

$$n_{e,p,i}(\mu_{e,p,i}, T_{e,p,i}) = -\frac{(m_{e,p,i}kT_{e,p,i})^{3/2}}{2^{1/2}\pi^{3/2}\hbar^3} \times \operatorname{Li}_{3/2}\left(-\exp\frac{\mu_{e,p,i}}{kT_{e,p,i}}\right), \quad (9)$$

$$p_{e,p,i}(\mu_{e,p,i}, T_{e,p,i}) = -\frac{(m_{e,p,i}kT_{e,p,i})^{5/2}}{2^{1/2}\pi^{3/2}m_{e,p,i}\hbar^3} \times \times \operatorname{Li}_{5/2}\left(-\exp\frac{\mu_{e,p,i}}{kT_{e,p,i}}\right), \quad (10)$$

где $\mu_{e,p,i}$ — химический потенциал, $\mathrm{Li}_{\nu}(\dots)$ — полилогарифм [43, 44].

В пределе $T_{e,p,i} \to 0$ уравнения состояния теплых ферми-газов (9), (10) сводятся к явным уравнениям состояния холодных трехмерных ферми-газов:

$$p_{e,p,i} = \frac{(3\pi^2)^{2/3}\hbar^2}{5m_{e,p,i}} n_{e,p,i}^{5/3} = \frac{2}{5} \mu_{0e,p,i} n_{0e,p,i} \left(\frac{n_{e,p,i}}{n_{0e,p,i}}\right)^{5/3}.$$
 (11)

Будем считать, что в волне $T_i = T_{0i} = \text{const},$ $T_p = T_{0p} = \text{const}$ и $T_e = T_{0e} = \text{const}$, т. е. рассматриваемый нами волновой процесс сжатия-разрежения является изотермическим. Для обоснования возможности изотермического процесса в волне, следуя [36], подчеркнем, что вырожденная плазма может быть одновременно бесстолкновительной и идеальной, а также в такой плазме термодинамическое равновесие может устанавливаться за счет некоррелированного кулоновского межчастичного взаимодействия [13, 36].

Предположение о безынерционности электронов и позитронов позволяет без особых проблем проинтегрировать уравнения движения этих компонент. В результате получим связь между концентрацией частиц и электростатическим потенциалом. Для максвелловского распределения в предположении, что волновой процесс является изотермическим, эта связь записывается в виде экспоненциального распределения Больцмана. По внешнему виду и смыслу она аналогична барометрической формуле для классического идеального газа в однородном силовом поле. Поэтому для краткости будем называть интеграл движения безынерционного газа, подчиняющегося любому другому уравнению состояния, барометрической формулой.

Подробный вывод барометрической формулы для вырожденного газа приведен в работах [42, 45]. Поэтому не будем останавливаться на нем, а запишем лишь конечный результат.

Для позитронов имеем

$$n_{p} = n_{0p} \frac{\text{Li}_{3/2} \left(-\exp \frac{\mu_{0p} - q_{p}\varphi}{kT_{0p}} \right)}{\text{Li}_{3/2} \left(-\exp \frac{\mu_{0p}}{kT_{0p}} \right)} = \frac{q_{i}}{q_{p}} n_{0} \left(\frac{1}{\alpha} - 1 \right) \frac{\text{Li}_{3/2} \left(-\exp \frac{\mu_{0p} - q_{p}\varphi}{kT_{0p}} \right)}{\text{Li}_{3/2} \left(-\exp \frac{\mu_{0p}}{kT_{0p}} \right)}, \quad (12)$$

для электронов —

$$n_e = n_{0e} \frac{\operatorname{Li}_{3/2} \left(-\exp \frac{\mu_{0e} + q_e \varphi}{kT_{0e}} \right)}{\operatorname{Li}_{3/2} \left(-\exp \frac{\mu_{0e}}{kT_{0e}} \right)} = \frac{q_i}{q_e} \frac{n_0}{\alpha} \frac{\operatorname{Li}_{3/2} \left(-\exp \frac{\mu_{0e} + q_e \varphi}{kT_{0e}} \right)}{\operatorname{Li}_{3/2} \left(-\exp \frac{\mu_{0e}}{kT_{0e}} \right)}.$$
 (13)

Формулы (12) и (13) в дальнейшем мы будем использовать при описании позитронного и электронного ферми-газов в ионно-звуковой волне так же, как используют больцмановскую экспоненту для классической плазмы.

В работе [42] выведены формулы для длин Дебая электронного и ионного ферми-газов. Приведем их без вывода. Также нам понадобится формула длины Дебая позитронного ферми-газа. Квадрат ионной длины Дебая равен

$$\lambda_{Di}^{2} = \frac{\text{Li}_{3/2}\left(-\exp\frac{\mu_{0i}}{kT_{0i}}\right)}{\text{Li}_{1/2}\left(-\exp\frac{\mu_{0i}}{kT_{0i}}\right)} \frac{kT_{0i}}{4\pi q_{i}^{2}n_{0}},\qquad(14)$$

982

квадрат электронной длины Дебая —

$$\lambda_{De}^{2} = \frac{\text{Li}_{3/2} \left(-\exp \frac{\mu_{0e}}{kT_{0e}}\right)}{\text{Li}_{1/2} \left(-\exp \frac{\mu_{0e}}{kT_{0e}}\right)} \frac{kT_{0e}}{4\pi q_{e}^{2} n_{0e}} = \\ = \frac{\text{Li}_{3/2} \left(-\exp \frac{\mu_{0e}}{kT_{0e}}\right)}{\text{Li}_{1/2} \left(-\exp \frac{\mu_{0e}}{kT_{0e}}\right)} \frac{kT_{0e}}{4\pi q_{e}^{2} \frac{q_{i}}{q_{e}} \frac{n_{0}}{\alpha}}, \quad (15)$$

квадрат позитронной длины Дебая —

$$\lambda_{Dp}^{2} = \frac{\text{Li}_{3/2} \left(-\exp \frac{\mu_{0p}}{kT_{0p}}\right)}{\text{Li}_{1/2} \left(-\exp \frac{\mu_{0p}}{kT_{0p}}\right)} \frac{kT_{0p}}{4\pi q_{p}^{2} n_{0p}} = \frac{\text{Li}_{3/2} \left(-\exp \frac{\mu_{0p}}{kT_{0p}}\right)}{\text{Li}_{1/2} \left(-\exp \frac{\mu_{0p}}{kT_{0p}}\right)} \frac{kT_{0p}}{4\pi q_{p}^{2} \frac{q_{i}}{q_{p}} n_{0} \left(\frac{1}{\alpha}-1\right)}.$$
 (16)

3. ЛИНЕЙНАЯ ТЕОРИЯ ИОННО-ЗВУКОВЫХ ВОЛН

Выведем дисперсионное уравнение ионно-звуковых волн для данной модели плазмы. Это уравнение позволит отыскать области существования периодических волн и ионно-звуковых солитонов. Удобнее всего анализ проводить на плоскости $\omega - \kappa$, построив на ней график дисперсионной зависимости.

Придадим зависимым переменным уравнений ионной динамики (3), (6), (7) и (8) небольшое волновое гармоническое возмущение относительно невозмущенных значений переменных:

$$n_i = n_{0i} + \tilde{n}_i \exp\left[j(\kappa x - \omega t)\right],\tag{17}$$

$$v_i = \tilde{n}_i \exp\left[j(\kappa x - \omega t)\right],\tag{18}$$

$$\varphi = \tilde{\varphi} \exp\left[j(\kappa x - \omega t)\right],\tag{19}$$

$$\mu_i = \mu_{0i} + \tilde{\mu}_i \exp\left[j\left(\kappa x - \omega t\right)\right],\tag{20}$$

где знак «» над величинами относится к малым возмущениям, κ и ω — волновое число и частота возмущения и $j^2 = -1$. Такая запись переменных означает, что гармоническое возмущение бежит вдоль оси x с фазовой скоростью $V = \omega/\kappa$. Еще раз напомним, что невозмущенные значения n_0 и μ_{0i} связаны формулой (9). При малом возмущении формулы (9), (12) и (13) примут вид

$$n_{i} = n_{0} - \frac{(mkT_{0i})^{3/2}}{2^{1/2}\pi^{3/2}m\hbar^{3}} \operatorname{Li}_{1/2}\left(-\exp\frac{\mu_{0i}}{kT_{0i}}\right) \times \\ \times \frac{\tilde{\mu}_{i}}{kT_{0i}} \exp\left[i(\kappa x - \omega t)\right], \quad (21)$$

$$n_{e} = n_{0e} \left\{ 1 + \frac{\operatorname{Li}_{1/2} \left(-\exp \frac{\mu_{0e}}{kT_{0e}} \right)}{\operatorname{Li}_{3/2} \left(-\exp \frac{\mu_{0e}}{kT_{0e}} \right)} \times \frac{q_{e}\tilde{\varphi}}{kT_{0e}} \exp \left[i \left(\kappa x - \omega t \right) \right] \right\}, \quad (22)$$

$$n_{p} = n_{0p} \left\{ 1 - \frac{\operatorname{Li}_{1/2} \left(-\exp \frac{\mu_{0p}}{kT_{0p}} \right)}{\operatorname{Li}_{3/2} \left(-\exp \frac{\mu_{0p}}{kT_{0p}} \right)} \times \frac{q_{p}\tilde{\varphi}}{kT_{0p}} \exp \left[i(\kappa x - \omega t) \right] \right\}. \quad (23)$$

Сравнивая формулы (21) и (17), получаем

$$\tilde{\mu}_{i} = \frac{2^{1/2} \pi^{3/2} m \hbar^{3}}{(m k T_{0i})^{3/2}} k T_{0i} n_{0} \times \times \operatorname{Li}_{1/2} \left(-\exp \frac{\mu_{0i}}{k T_{0i}} \right) \frac{\tilde{n}_{i}}{n_{0}}.$$
 (24)

Подставляя формулы (17)–(20) в исходные уравнения задачи и учитывая (24), в результате стандартной процедуры линеаризации получим следующее дисперсионное уравнение:

$$1 = \frac{\omega_{0i}^2/\kappa^2}{(\omega/\kappa)^2 - V_{FDi}^2} - \frac{1}{\lambda_{Dp}^2} \frac{1}{\kappa^2} - \frac{1}{\lambda_{De}^2} \frac{1}{\kappa^2}, \qquad (25)$$

где $\omega_{0i}^2 = 4\pi q_i^2 n_0/m$ — квадрат ионной плазменной частоты,

$$V_{FDi}^{2} = \omega_{0i}^{2} \lambda_{Di}^{2} = \frac{kT_{0i}}{m} \frac{\text{Li}_{1/2} \left(-\exp\frac{\mu_{0i}}{kT_{0i}}\right)}{\text{Li}_{3/2} \left(-\exp\frac{\mu_{0i}}{kT_{0i}}\right)}$$

 — квадрат ионной тепловой скорости газа Ферми – Дирака. Заметим, что зависимость от параметра α заключена в значениях длин Дебая позитронов

Рис. 1. График дисперсионной кривой (1 — ионнозвуковые волны, 2 — ионные плазменные колебания, 3 — сильнозатухающие волны)

и электронов. Так, при $\alpha = 1$ длина Дебая позитронов равна нулю и мы получим то же дисперсионное уравнение, что и в работе [42]. Из формулы (25) получим явную зависимость $\omega(\kappa)$:

$$\omega = \left\{ V_{FDi}^2 \kappa^2 + \frac{\omega_{0i}^2}{1 + \left(\frac{1}{\lambda_{Dp}^2} + \frac{1}{\lambda_{De}^2}\right) \frac{1}{\kappa^2}} \right\}^{1/2}.$$
 (26)

График зависимости (26) приведен на рис. 1. Он имеет типичный для ионного звука вид и состоит из трех участков. Длинноволновый участок соответствует линейной ионно-звуковой волне, распространяющейся практически без дисперсии с линейной скоростью ионно-звуковых волн

$$V_{s} = \left. \frac{d\omega}{d\kappa} \right|_{\kappa=0} = \sqrt{V_{i}^{2} + \frac{\omega_{0i}^{2}\lambda_{Dp}^{2}\lambda_{De}^{2}}{\lambda_{Dp}^{2} + \lambda_{De}^{2}}} = \omega_{i}\sqrt{\lambda_{Di}^{2} + \frac{\lambda_{Dp}^{2}\lambda_{De}^{2}}{\lambda_{Dp}^{2} + \lambda_{De}^{2}}}, \quad (27)$$

средневолновый участок соответствует ионно-плазменным колебаниям с групповой скоростью, которая существенно меньше V_s , далее идет коротковолновый участок. И последний, тепловой участок не имеет практического значения, так как волна там быстро затухает по механизму затухания Ландау.

График лежит целиком в области, ограниченной лучами $\omega = V_s \kappa$ и $\omega = V_{FDi} \kappa$. Именно в диапазоне скоростей от V_{FDi} до V_s следует искать решения в виде периодических ионно-звуковых волн. А стационарные солитоны со скоростями из этого диапазона существовать не могут по причине их возможного

Рис.2. График зависимости скорости звука от параметра α (светлой точкой показано недопустимое значение α , закрашенные области — допустимые значения скорости периодических волн)

синхронизма и энергетического взаимодействия с периодической волной. Поэтому решение в виде солитонов следует искать либо выше луча $\omega = V_s \kappa$, либо ниже $\omega = V_F D_i \kappa$ (закрашенные секторы на рис. 1).

На рис. 2 представлен график нормированной зависимости скорости звука от параметра α по формуле (27). Он имеет вид возрастающей функции и при $\alpha = 1$ стремится к максимальному значению, равному скорости звука для вырожденной *e-i*-плазмы $V_{s(e-i)}$. При уменьшении концентрации ионов скорость звука убывает и стремится к тепловой скорости газа Ферми–Дирака V_{FDi} . Уменьшение скорости звука при увеличении концентрации позитронов объясняется тем, что позитроны начинают экранировать все больший отрицательный заряд электронов, что уменьшает возвращающую силу, действующую на ионы.

4. НЕЛИНЕЙНАЯ ТЕОРИЯ

4.1. Получение точного решения

Будем искать решение в виде стационарной волны, которая распространяется в положительном направлении оси x с фазовой скоростью V. Уравнения, описывающие волну, остаются прежними — (3), (6), (7), их дополнят параметрически заданные уравнения состояния (9), (10) и барометрические формулы (12), (13).

Введем автомодельную переменную

$$\xi = x - Vt, \quad \frac{\partial}{\partial t} = -V \frac{d}{d\xi}, \quad \frac{\partial}{\partial x} = \frac{d}{d\xi}.$$
 (28)

Это означает переход из лабораторной системы отсчета в новую систему, связанную с волной. В новой системе отсчета решение будет иметь вид стационарной волны, профиль которой определяется только одной переменной ξ .

Также в уравнениях (1) и (2) необходимо преобразовать скорость ионов в соответствии с правилом

$$u_i = v_i - V, \tag{29}$$

где v_i — скорость ионов в исходной лабораторной системе отсчета, в которой невозмущенная плазма покоится, u_i — скорость ионов в системе отсчета, связанной с волной, в которой невозмущенная плазма движется со скоростью (-V). В стационарной волне скорость ионов меньше скорости самой волны, поэтому $u_i < 0$. После введения новой переменной и преобразования скорости исходные уравнения принимают вид

$$\frac{d(n_i u_i)}{d\xi} = 0, (30)$$

$$u_i \frac{du_i}{d\xi} = -\frac{q_i}{m} \frac{d\varphi}{d\xi} - \frac{1}{mn_i} \frac{dP_i}{d\xi}, \qquad (31)$$

$$\frac{d^2\varphi}{d\xi^2} = -4\pi (q_i n_i + q_p n_p - q_e n_e). \tag{32}$$

Преобразуем в выражении (31) слагаемое, связанное с градиентом давления. Воспользуемся правилом дифференцирования сложной функции:

$$\frac{dP_i(\mu_i, T_i)}{d\xi} = \frac{\partial p_i}{\partial \mu_i} \frac{d\mu_i}{d\xi} + \frac{\partial p_i}{\partial T_i} \frac{dT_i}{d\xi}.$$
 (33)

Частные производные $\partial p_i / \partial \mu_i$ и $\partial p_i / \partial T_i$ можно найти из формулы (10). Это дает

$$\frac{1}{n_i}\frac{\partial P_i}{\partial x} = \frac{d\mu_i}{d\xi} - \frac{\mu_i}{kT_i}\frac{d(kT_i)}{d\xi}.$$
(34)

В изотермических процессах температура постоянна и, следовательно, второе слагаемое в правой части (34) равно нулю. Теперь уравнение (31) перепишется в виде

$$u_i \frac{du_i}{d\xi} = -\frac{q_i}{m} \frac{d\varphi}{d\xi} - \frac{1}{m} \frac{d\mu_i}{d\xi}.$$
 (35)

Проинтегрируем уравнение непрерывности и уравнение движения при

$$\lim_{u_i \to -V} n_i = n_0, \quad \lim_{u_i \to -V} \varphi = 0, \quad \lim_{u_i \to -V} \mu_i = \mu_{0i},$$

получим

$$\varphi = \frac{mV^2}{2q_i} \left[\left(\frac{n_{0i}}{n_i} \right)^2 - 1 \right] - \frac{\mu_i - \mu_{0i}}{q_i}.$$
 (36)

Рис. 3. Графики зависимости $\varphi(\mu_i)$ при $V_{FDi} > V$ (a), $V_{FDi} < V$ (б)

Далее в (36) подставим (7) и получим зависимость $\varphi(\mu_i)$:

$$\varphi = \frac{mV^2}{2q_i} \left[\left(\frac{\operatorname{Li}_{3/2} \left(-\exp \frac{\mu_{0i}}{kT_{0i}} \right)}{\operatorname{Li}_{3/2} \left(-\exp \frac{\mu_i}{kT_{0i}} \right)} \right)^2 - 1 \right] - \frac{\mu_i - \mu_{0i}}{q_i}.$$
 (37)

Эта очень важная зависимость содержит в себе закон сохранения энергии и закон сохранения числа ионов в волновом потоке. На рис. 3 представлены графики нормированной зависимости $\varphi(\mu_i)$. Функция имеет максимум, а также в двух точках пересекает ось абсцисс. Одна из этих точек μ_{0i}/kT_{0i} соответствует квазинейтральности невозмущенного состояния плазмы. Для случая $V_{FDi} > V$ через точку квазинейтральности проходит правая ветвь функции (рис. 3a), а для случая $V_{FDi} < V$ — левая (рис. 3δ). Вторые пересечения лишены физического смысла и на рисунке показаны штриховыми линиями.

На рис. 36 видно, что при возрастании химического потенциала электрический потенциал становится положительным, одновременно с этим, согласно (9), растет концентрация ионов. В результате на ионы будет возрастать электрическая сила, стремящаяся вернуть их в положение равновесия. Такой же процесс происходит и при уменьшении химического потенциала. Таким образом, для скоростей $V_{FDi} < V$ возникает возвращающая сила. Для случая рис. 3a возвращающая сила не возникает, следовательно, волн при скоростях $V_{FDi} > V$ не существует.

Запишем первую производную от функци
и $\varphi(\mu_i)$ по $\mu_i:$

$$\frac{d\varphi}{d\mu_i} = f(\mu_i) = -\frac{1}{q_i} + \frac{1}{q_i} \frac{mV^2}{kT_{0i}} \left[\operatorname{Li}_{3/2} \left(-\exp \frac{\mu_{0i}}{kT_{0i}} \right) \right]^2 \times \frac{\operatorname{Li}_{1/2} \left(-\exp \frac{\mu_i}{kT_{0i}} \right)}{\left[\operatorname{Li}_{3/2} \left(-\exp \frac{\mu_i}{kT_{0i}} \right) \right]^3}. \quad (38)$$

Из уравнения

$$f(\mu_i) = 0 \tag{39}$$

находим точку экстремума функции $\varphi(\mu_i)$: $\mu_i = \mu_{i \, max} \ (\mu_i = \mu_{i \, min})$ при $V_{FDi} < V \ (V_{FDi} > V)$. Как следует из анализа графиков на рис. 3, в волне химический потенциал может принимать значения из интервала $-\infty < \mu_i < \mu_{i \, max}$ для $V_{FDi} < V \ (\mu_{i \, min} < < \mu_i < \infty$ для $V_{FDi} > V)$. Далее обозначим

$$\frac{d^2\varphi}{d\mu_i^2} = \frac{df(\mu_i)}{d\mu_i} \,. \tag{40}$$

Воспользовавшись правилом дифференцирования сложной функции в уравнении Пуассона (32)

$$\frac{d^2\varphi}{d\xi^2} = \frac{d\varphi}{d\mu_i} \frac{d^2\mu_i}{d\xi^2} + \frac{d^2\varphi}{d\mu_i^2} \left(\frac{d\mu_i}{d\xi}\right)^2, \qquad (41)$$

а также учитывая формулы (12), (13), (37), (38) и (39), получим следующее уравнение:

$$f(\mu_i)\frac{d^2\mu_i}{d\xi^2} + \frac{d^2f(\mu_i)}{d\mu_i^2} \left(\frac{d\mu_i}{d\xi}\right)^2 = \rho_i(\mu_i) + \rho_p(\mu_i) + \rho_e(\mu_i), \quad (42)$$

где введены обозначения

$$\rho_i(\mu_i) = -4\pi q_i \frac{(mkT_{0i})^{3/2}}{2^{1/2}\pi^{3/2}\hbar^3} \operatorname{Li}_{3/2}\left(-\exp\frac{\mu_i}{kT_{0i}}\right), \quad (43)$$

$$\rho_{e}(\mu_{i}) = -4\pi q_{i}n_{0}\frac{1}{\alpha} \times \\ \times \operatorname{Li}_{3/2} \left\{ -\exp\left[\frac{\mu_{0e}}{kT_{0e}} + \frac{q_{e}}{2q_{i}}\frac{mV^{2}}{kT_{0e}} \times \right. \\ \left. \left. \left(\frac{\operatorname{Li}_{3/2}^{2}\left(-\exp\frac{\mu_{0i}}{kT_{0i}}\right)}{\operatorname{Li}_{3/2}^{2}\left(-\exp\frac{\mu_{i}}{kT_{0i}}\right)} - 1\right) - \frac{q_{e}}{q_{i}}\frac{\mu_{i} - \mu_{0i}}{kT_{0e}} \right] \right\} \times \\ \left. \times \operatorname{Li}_{3/2}^{-1}\left(-\exp\frac{\mu_{0e}}{kT_{0e}}\right), \quad (44)$$

$$\rho_{p}(\mu_{i}) = -4\pi q_{i} n_{0} \left(\frac{1}{\alpha} - 1\right) \times \\
\times \operatorname{Li}_{3/2} \left\{ -\exp\left[\frac{\mu_{0p}}{kT_{0p}} - \frac{q_{p}}{2q_{i}} \frac{mV^{2}}{kT_{0p}} \times \right. \\
\times \left(\frac{\operatorname{Li}_{3/2}^{2}\left(-\exp\frac{\mu_{0i}}{kT_{0i}}\right)}{\operatorname{Li}_{3/2}^{2}\left(-\exp\frac{\mu_{i}}{kT_{0i}}\right)} - 1\right) + \frac{q_{p}}{q_{i}} \frac{\mu_{i} - \mu_{0i}}{kT_{0p}}\right] \right\} \times \\
\times \operatorname{Li}_{3/2}^{-1}\left(-\exp\frac{\mu_{0p}}{kT_{0p}}\right). \quad (45)$$

Уравнение (42) представляет собой автономное дифференциальное уравнение второго порядка, допускающее понижение порядка с помощью замены $z(\mu_i) = d\mu_i/d\xi$. После такой замены поделим уравнение на $zf(\mu_i)$ и получим дифференциальное уравнение Бернулли [46]:

$$\frac{dz}{d\mu_i} + \frac{1}{f(\mu_i)} \frac{df(\mu_i)}{d\mu_i} z = = \frac{\rho_i(\mu_i) + \rho_p(\mu_i) - \rho_e(\mu_i)}{f(\mu_i)} \frac{1}{z}.$$
 (46)

После деления мы могли бы потерять особые решения в виде z = 0 и $f(\mu_i) = 0$. Однако первое из них дает невозмущенное решение $\mu_i = \mu_{0i}$, а решения второго уравнения не являются решениями (42).

Общее решение уравнения (42) имеет вид

$$z^{2} = \exp \Theta \left(C_{1} + 2 \int \exp(-\Theta) \times \frac{\rho_{i}(\mu_{i}) + \rho_{p}(\mu_{i}) + \rho_{e}(\mu_{i})}{f(\mu_{i})} d\mu_{i} \right), \quad (47)$$

где

$$\Theta = -2 \int \frac{1}{f(\mu_i)} \frac{df(\mu_i)}{d\mu_i} d\mu_i = -2\ln(f(\mu_i)).$$

 C_i — постоянные интегрирования. После упрощений получаем

$$z^{2} = \frac{1}{f^{2}(\mu_{i})} \times \left\{ C_{1} + 2 \int f(\mu_{i}) \left[\rho_{i}(\mu_{i}) + \rho_{p}(\mu_{i}) + \rho_{e}(\mu_{i}) \right] d\mu_{i} \right\}.$$
 (48)

Из (48) можно получить точное выражение для $\mu_i(\xi)$ в квадратурах:

$$\xi + C_2 = \int \frac{d\mu_i}{z(\mu_i)},\tag{49}$$

которое совместно с (48) будет являться общим точным решением задачи о профиле ионно-звуковой волны в вырожденной плазме, состоящей из электронов, позитронов и положительно заряженных ионов.

4.2. Анализ решения методом псевдопотенциала

Анализ точного решения (48) в силу его громоздкости затруднен. Поэтому для дальнейшего исследования полученного решения воспользуемся методом механической аналогии. Наиболее известен метод псевдопотенциала Сагдеева, описанный в работах [47, 48]. В нем закон сохранения псевдоэнергии записывается через обобщенную координату φ и обобщенный импульс $d\varphi/d\xi$:

$$-\frac{1}{2}\left[\frac{d\varphi}{d\xi}\right]^2 = U_S(\varphi),\tag{50}$$

а для его применения необходимо разрешить уравнение (37) относительно $\mu_i = \mu_i(\varphi)$.

В нашей задаче получить функцию $\mu_i = \mu_i(\varphi)$ невозможно, поэтому метод Сагдеева здесь не применим. Но мы можем воспользоваться методом псевдопотенциала Бернулли [34–37]. Для этого в уравнении (50) сделаем преобразование обобщенных координат:

Рис. 4. Графики псевдопотенциала при $V/V_{FDi} = 0.5$ (a), 2.5 (b), 10.5 (c), 25.5 (c), 50.5 (d), 120 (c)

$$\begin{cases} \varphi = \frac{mV^2}{2q_i} \left(\frac{\operatorname{Li}_{3/2}^2 \left(-\exp \frac{\mu_{0i}}{kT_{0i}} \right)}{\operatorname{Li}_{3/2}^2 \left(-\exp \frac{\mu_i}{kT_{0i}} \right)} - 1 \right) - \\ -\frac{\mu_i - \mu_{0i}}{q_i}, \end{cases}$$
(51)
$$\frac{d\varphi}{d\xi} = f(\mu_i) \frac{d\mu_i}{d\xi}.$$

Следует отметить, что преобразование (51) не является каноническим, новые обобщенные переменные μ_i и $d\mu_i/d\xi$ также не канонические, что легко доказывается с помощью скобок Пуассона. Поэто-

му запись закона сохранения псевдоэнергии в новых обобщенных координатах не будет иметь канонический вид:

$$-\frac{1}{2}\left[f(\mu_{i})\frac{d\mu_{i}}{d\xi}\right]^{2} = -\int f(\mu_{i})\rho(\mu_{i}) d\mu_{i} + C = U_{B}(\mu_{i}). \quad (52)$$

Назовем $U_B(\mu_i)$ псевдопотенциалом Бернулли, поскольку его выражение можно получить из точного решения (48) уравнения Бернулли (46):

$$-\frac{1}{2}\left(f(\mu_{i})\frac{d\mu_{i}}{d\xi}\right)^{2} = U_{B}(\mu_{i}) =$$
$$= -\int f(\mu_{i})\left[\rho_{i}(\mu_{i}) + \rho_{p}(\mu_{i}) + \rho_{e}(\mu_{i})\right] d\mu_{i}.$$
 (53)

Постоянная интегрирования в выражении (53) выбрана таким образом, чтобы $U_B(\mu_{0i}) = 0$.

На рис. 4 приведены графики псевдопотенциала при различных значениях α и скорости волны (пунктирными линиями нарисованы ветви псевдопотенциала, которые не имеют физического смысла). Для случая $V/V_{FDi} = 0.5$ (рис. 4*a*) видим, что ни уединенные, ни периодические волны существовать не могут. Этот же результат нами был уже получен как в линейной теории, так и при анализе функции (37). Для случая $V/V_{FDi} = 1.5$ (рис. 46), который соответствует сектору, где лежит дисперсионная кривая на рис. 1, на графике псевдопотенциала существует потенциальная яма вблизи положения равновесия μ_{0i}/kT_{0i} . Стенки ямы несимметричны, что говорит о негармоническом характере движения псевдоосциллятора в ней. Правый склон отвечает фазе сжатия ионной компоненты плазмы, а левый — фазе разрежения. Вблизи положения равновесия яма имеет практически параболический вид, а следовательно, колебания с малой амплитудой будут слабо отличаться от гармонических. Колебания псевдоосциллятора в такой яме соответствуют периодической волне. При $V/V_{FDi} = 3.5$ (рис. 4*6*) для значения $\alpha = 0.01$ точка равновесия является локальным максимумом, а справа от нее имеем потенциальную яму. Движение по замкнутой сепаратрисе ямы в сторону возрастания химического потенциала описывает уединенную ионно-звуковую волну — солитон. Значение максимальной скорости солитона V_{cr} можно определить из условия

$$U_B(\mu_{i\,max}) = 0. \tag{54}$$

График зависимости максимальной скорости солитона V_{cr} от параметра α при различных значениях температур компонент плазмы представлен на рис. 5.

Для значений $\alpha = 0.1$ и $\alpha = 0.5$ потенциальная яма по-прежнему описывает периодические волны (рис. 4*6*).

Для $V/V_{FDi} = 6.5$ (рис 4г) при $\alpha = 0.01$ никакие волны не существуют. При $\alpha = 0.1$ существуют уединенные ионно-звуковые волны — солитоны, а при $\alpha = 0.5$ имеем периодические волны.

Для $V/V_{FDi} = 8.5$ (рис. 4*d*) при $\alpha = 0.01$ и $\alpha = 0.1$ никакие волны не существуют, а для $\alpha = 0.5$ существуют уединенные волны.

Рис. 5. График зависимости критической скорости солитонов от параметра α (светлой точкой показано недопустимое значение α)

Для $V/V_{FDi} = 10.5$ (рис. 4*e*) при всех значениях α никакие волны не существуют.

4.3. Численный пример

Проиллюстрируем полученные решения численными примерами. На рис. 6 изображены партитуры стационарных ионно-звуковых периодических и уединенных волн. Они построены следующим образом: сначала вычислялся профиль химического потенциала из уравнения (42), далее по формуле (9) профиль концентрации ионов, по формуле (10) профиль давления, по формуле (37) — профиль электростатического потенциала, по формуле (12) профиль позитронов, по формуле (13) — профиль электронов. Как и предполагалось, профиль волны имеет асимметричный вид.

5. ЗАКЛЮЧЕНИЕ

В работе развита нелинейная теория ионно-звуковых волн в вырожденной *e-p-i*-плазме в рамках квантовой гидродинамической модели. В качестве уравнения состояния выбраны точные уравнения ферми-газа в параметрической форме. Волна рассматривалась как изотермический процесс. Построению нелинейной теории предшествовал анализ линейного дисперсионного уравнения.

Получено и проанализировано точное решение исходных уравнений. Анализ проводился с помощью метода псевдопотенциала Бернулли. Результа-

Рис.б. Партитуры стационарной ионно-звуковой волны: *a* — периодическая ионно-звуковая волна, *б* — уединенная волна — солитон

ты анализа нелинейной задачи совпали с предсказаниями линейной теории.

Определены область существования периодических ионно-звуковых волн и область, в которой существуют уединенные ионно-звуковые волны солитоны. Показано, что эти области не пересекаются. Таким образом, доказано, что скорость уединенной волны не может быть меньше скорости звука. Построены профили физических величин в дозвуковом и сверхзвуковом режимах.

М. А. Сазонкин выражает признательность фонду «Династия».

ЛИТЕРАТУРА

- W. H. Lee, E. Ramirez-Ruiz, and D. Page, Astrophys. J. 632, 421 (2005).
- 2. В. С. Бескин, Осесимметричные стационарные течения в астрофизике, Физматлит, Москва (2006).
- В. М. Липунов, Астрофизика нейтронных звезд, Наука, Москва (1987).
- 4. F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).
- M. C. Begelman, R. D. Blandford, and M. J. Rees, Rev. Mod. Phys. 56, 255 (1984).

- B. Kozlovsky, R. J. Murphy, and G. H. Share, Astrophys. J. 604, 892 (2004).
- В. В. Железняков, С. А. Корягин, Письма в Астрон. ж. 28, 809 (2002).
- В. В. Железняков, С. А. Корягин, Письма в Астрон. ж. **31**, 819 (2005).
- Е. В. Деришев, В. В. Кочаровский, Вл. В. Кочаровский, В. Ю. Мартьянов, в сб.: Нелинейные волны'2006, ИПФ РАН, Н. Новгород (2007), с. 268.
- Я. Б. Зельдович, И. Д. Новиков, Релятивистская астрофизика, Наука, Москва (1967).
- 11. H. Alfven, Rev. Mod. Phys. 37, 652 (1965).
- **12**. Х. Альвен, *Космическая плазма*, Мир, Москва (1983).
- **13**. А. Е. Дубинов, М. А. Сазонкин, Физика плазмы **35**, 18 (2009).
- 14. A. Mushtaq and S. A. Khan, Phys. Plasmas 14, 052307 (2007).
- S. Ali, W. M. Muslem, P. K. Shukla, and R. Schlickeiser, Phys. Plasmas 14, 082307 (2007).
- W. Masood, A. M. Mirza, and M. Hanif, Phys. Plasmas 15, 072106 (2008).
- 17. S. A. Khan and Q. Haque, Chinese Phys. Lett. 25, 4329 (2008).
- 18. S. A. Khan, S. Mahmood, and A. M. Mirza, Chinese Phys. Lett. 26, 045203 (2009).
- 19. A. Mushtaq and S. A. Khan, Phys. Scripta 78, 015501 (2008).
- 20. H. Ren, Z. Wu, J. Cao, and P. K. Chu, J. Phys. A.: Math. Theor. 41, 115501 (2008).
- R. Sabry, W. M. Muslem, F. Haas et al., Phys. Plasmas 15, 122308 (2008).
- 22. W. Masood, A. M. Mirza, Sh. Nargis, and M. Ayub, Phys. Plasmas 16, 042308 (2009).
- N. Jehan, M. Salahuddin, S. Mahmood, and A. M. Mirza, Phys. Plasmas 16, 042313 (2009).
- 24. A. P. Misra, C. Bhowmik, and P. K. Shukla, Phys. Plasmas 16, 072116 (2009).
- 25. W. Masood, S. Karim, H. A. Shah, and M. Siddiq, Phys. Plasmas 16, 112302 (2009).
- 26. P. Chatterjee, K. Roy, G. Mondal, S. V. Muniandy, S. L. Yap, and C. S. Wong, Phys. Plasmas 16, 122112 (2009).

- 27. R. Sabry, W. M. Moslem, and P. K. Shukla, Europ. Phys. J. D 51, 233 (2009).
- 28. E. F. El-Shamy, W. M. Moslem, and P. K. Shukla, Phys. Lett. A 374, 290 (2009).
- 29. S. K. El-Labany, E. F. El-Shamy, W. F. El-Taibany, and P. K. Shukla, Phys. Lett. A 374, 960 (2010).
- **30**. М. В. Кузелев, А. А. Рухадзе, УФН **169**, 687 (1999).
- 31. А. Л. Санин, Квантовая гидродинамика, Нестор, Санкт-Петербург (2000).
- 32. G. Manfredi and F. Haas, Phys. Rev. B 64, 075316 (2001).
- **33**. П. К. Шукла, Б. Элиассон, УФН **180**, 55 (2010).
- 34. А. Е. Дубинов, Прикл. мех. тех. физ. 48, 3 (2007).
- **35**. А. Е. Дубинов, А. А. Дубинова, Физика плазмы **33**, 935 (2007).
- **36**. А. Е. Дубинов, Физика плазмы **33**, 239 (2007).
- **37**. А. Е. Дубинов, М. А. Сазонкин, ЖТФ **78**, 29 (2008).
- 38. B. M. Mladek, G. Kahl, and M. Neumann, J. Chem. Phys. 124, 064503 (2006).
- 39. А. Е. Дубинов, А. А. Дубинова, Физика плазмы 34, 442 (2008).
- 40. F. Haas and M. Lazar, Phys. Rev. E 77, 046404 (2008).
- 41. B. Eliasson and P. K. Shukla, Phys. Scripta 78, 025503 (2008).
- **42.** А. Е. Дубинов, А. А. Дубинова, М. А. Сазонкин, Радиотехн. и электрон. **55**, 968 (2010).
- 43. Г. Н. Пыхтеев, И. Н. Мелешко, Полилогарифмы, их свойства и методы вычисления, Изд-во БГУ, Минск (1976).
- L. Lewin, Polylogarithms and Associated Functions, North Holland, New York-Oxford (1981).
- **45**. А. А. Дубинова, ЖТФ **79**, 48 (2009).
- 46. В. Ф. Зайцев, А. Д. Полянин, Справочник по обыкновенным дифференциальным уравнениям, Физматлит, Москва (2001).
- **47**. А. А. Веденов, Е. П. Велихов, Р. З. Сагдеев, Ядерный синтез **1**, 82 (1961).
- 48. Р. З. Сагдеев, в сб. *Вопросы теории плазмы*, Атомиздат, Москва (1964), вып. 4, с. 20.