ТЕПЛОПРОВОДНОСТЬ ТЕРБИЙ-ГАЛЛИЕВОГО ГРАНАТА ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

А. В. Инюшкин^{*}, А. Н. Талденков

Российский научный центр «Курчатовский институт» 123182, Москва, Россия

Поступила в редакцию 26 марта 2010 г.

Проведены исследования теплопроводности монокристаллов парамагнитного тербий-галлиевого граната $\mathrm{Tb}_3\mathrm{Ga}_5\mathrm{O}_{12}$ (TbGG) при температурах от 0.4 до 300 K в магнитных полях до 3.25 Tл. В температурной зависимости теплопроводности $\kappa(T)$ обнаружен минимум при $T_{min}=0.52$ K. Эта и другие особенности зависимости $\kappa(T)$ связаны с рассеянием фононов на ионах тербия. Теплопроводность при T=5.1 K сильно зависит от направления магнитного поля относительно кристаллографических осей кристалла. Экспериментальные данные обсуждаются в рамках дебаевской теории теплопроводности с учетом резонансного рассеяния фононов на ионах Tb^{3+} . Из анализа температурных и полевых зависимостей теплопроводности с полевые и угловые зависимости) определяется в основном резонансным рассеянием теплопроводности (полевые и угловые зависимости) определяется в основном резонансным рассеянием фононов на первом квазидублете электронного спектра иона Tb^{3+} .

1. ВВЕДЕНИЕ

Несколько лет назад авторы работы [1] сообщили об экспериментальном обнаружении в парамагнитном диэлектрике нового магнитопоперечного теплового эффекта — фононного эффекта Холла. В пластине монокристаллического Tb₃Ga₅O₁₂ (TbGG), в которой устанавливался тепловой поток **q** в поперечном магнитном поле **H**, они наблюдали возникновение градиента температуры в направлении, перпендикулярном q и H, т. е. в геометрии, аналогичной геометрии эффекта Холла. Наличие фононного эффекта Холла было подтверждено в работе [2]. Принципиальной особенностью нового эффекта является то, что он наблюдается в диэлектрике, в котором нет электрически заряженных частиц, передвигающихся по кристаллической решетке и, соответственно, нет эффекта Риги-Ледюка. В теоретических работах [3-6] показано, что фононный эффект Холла возможен в случае сильных электронного спин-орбитального взаимодействия и спин-решеточного взаимодействия для парамагнитного иона. Последнее ответственно за рассеяние фононов на парамагнитном ионе и может привести

к сильному подавлению диагональной компоненты теплопроводности.

Несмотря на обнаружение недиагональной компоненты тензора теплопроводности в TbGG, мало что известно о его диагональной составляющей и, в частности, о роли спин-фононного взаимодействия в теплопроводности этого парамагнетика.

Кристалл TbGG обладает кубической симметрией, его структура описывается пространственной группой Ia3d (O¹⁰_h). Элементарная ячейка состоит из восьми формульных единиц (160 атомов) $\{Tb_3\}[Tb_xGa_{2-x}](Ga_3)O_{12}$. Скобками обозначены три разные катионные позиции с разным кислородным окружением: { ... } - 24 додекаэдрические с-позиции с орторомбической точечной группой симметрии D_2 , занимаемые ионами Tb^{3+} ; [...] — 16 октаэдрических а-позиций (ромбоэдрическая симметрия C_{3i}) ионов Ga^{3+} , часть которых может быть замещена ионами Tb^{3+} ; (...) — 24 тетраэдрические *d*-позиции с ионами Ga^{3+} (симметрия S_4). Додекаэдрические позиции имеют в своем ближайшем окружении 8 атомов кислорода, а-позиции — 6 атомов и *d*-позиции — 4 атома. В элементарной ячейке имеется 6 неэквивалентных додекаэдрических узлов и 2 октаэдрических узла относительно направления кристаллического поля.

^{*}E-mail: inyushkin@imp.kiae.ru

Основное состояние ⁷ F_6 свободного некрамерсовского иона тербия в кристаллическом поле *с*-позиций расщепляется на 13 синглетов. Некоторые синглеты имеют близкие энергии и образуют так называемые квазидублеты. Значения энергий низколежащих уровней иона Tb^{3+} , определенные из оптических спектроскопических [7] и магнитных исследований [8], составляют примерно 3, 49, 62, 72 и 76 К, причем энергия первого уровня определена весьма приблизительно (по порядку величины).

Кристаллы тербиевого граната выращивают двумя способами — низкотемпературным из раствора (flux, кристаллы $\mathrm{Tb}\mathrm{GG}_{fl}$) и высокотемпературным из расплава, например, методом Чохральского (кристаллы TbGG_{Cz}). В первом случае получают довольно высококачественные кристаллы как правило небольших размеров, а во втором — крупные кристаллы, но с нарушенной стехиометрией. Согласно данным работы [9], кристаллы TbGG_{Cz} имеют избыточное содержание тербия, причем примесные ионы Tb³⁺ замещают ионы Ga³⁺ и состав граната оказывается Tb_{3.04}Ga_{4.96}O₁₂. Атомная масса тербия $M_{\rm Tb} = 158.93$ ат. ед. значительно больше массы галлия $M_{\rm Ga}=69.72$ ат.ед., что создает большой дефект массы в замещенной позиции. Вдобавок, за счет большего ионного радиуса ${\rm Tb}^{3+}~(0.923\,{\rm \AA})$ по сравнению с радиусом Ga³⁺ (0.62 Å) возникают статические поля деформации в элементарной ячейке вблизи «примесного» тербия. Кроме того, примесные ионы Tb³⁺ находятся в кристаллическом поле отличном от поля додекаэдрических узлов, поэтому структура их электронных уровней отличается от спектра «регулярного» иона Tb³⁺.

Впервые теплопроводность $\kappa(T)$ трех разных кристаллов TbGG экспериментально исследовалась в работе [9]. Было найдено, что теплопроводность кристаллов TbGG_{Cz} при низких температурах почти на порядок меньше, чем кристаллов TbGG_{fl}. Наличие минимума в зависимости $\kappa(T)$ при $T_{min} \approx 12$ К было обусловлено сильным резонансным рассеянием фононов на парамагнитном ионе Tb³⁺, при котором фонон с энергией, равной разности энергий электронных уровней Tb³⁺, поглощается, а затем излучается в произвольном направлении. Из величины T_{min} была получена оценка энергии возбужденного состояния иона Tb³⁺ в диапазоне 3-12 К. Очевидно, что проявление в $\kappa(T)$ резонансного рассеяния фононов на первом квазидублете следует ожидать при температурах около 0.8 К, при которых энергия доминирующих в теплопроводности фононов (примерно 3.8T) сравнивается с энергией первого уровня (3 К).

Теплопроводность монокристаллов TbGG_{Cz} была измерена также в работах [10, 11]. Во всех упомянутых работах измерения выполнены при температурах выше 2.4 К, при которых минимум, обусловленный резонансом на первом квазидублете, не наблюдается. Влияние магнитного поля на теплопроводность изучено весьма ограничено [11]. Кроме того, не проведен теоретический анализ экспериментальных данных.

Целью настоящей работы было определение доминирующих процессов рассеяния тепловых фононов в TbGG при низких температурах около 5 К, при которых был обнаружен фононный эффект Холла. В работе представлены данные измерений теплопроводности монокристаллов TbGG в диапазоне температур от 0.4 до 300 К в магнитных полях до 3.25 Тл. Эти данные обсуждаются в рамках феноменологической теории теплопроводности. Особое внимание уделено выяснению роли резонансного рассеяния фононов в теплопроводности при низких температурах.

2. ЭКСПЕРИМЕНТ

Измерения теплопроводности выполнены для двух монокристаллов TbGG. Один монокристалл был выращен методом Чохральского из расплава [12]. Образцы из этого кристалла были приготовлены в виде прямоугольных пластин. Длинное ребро, вдоль которого направлялся тепловой поток, совпадало с кристаллографическим направлением $\langle 100 \rangle$ (образцы A и B) или $\langle 110 \rangle$ (образец C) в пределах 3°, а нормаль к широкой грани была параллельна направлению $\langle 100 \rangle$ (табл. 1). Поверхность образцов шлифовали абразивным порошком с размерами зерен примерно 14 мкм. Измерения зависимостей $\kappa(T)$ были выполнены на образцах A и B.

Таблица 1. Параметры образцов монокристаллов TbGG (ориентация указана соответственно вдоль самых длинного и короткого ребер образца; l_b длина свободного пробега фононов при рассеянии на границах образца)

Образец	Ориентация	Размеры, мм	l_b , мм
$\mathrm{Tb}\mathrm{GG}_{Cz}$ -A	$\langle 100 \rangle \times \langle 100 \rangle$	$26.0 \times 0.50 \times 3.40$	1.18
$\mathrm{Tb}\mathrm{G}\mathrm{G}_{Cz} ext{-}\mathrm{B}$	$\langle 100 \rangle \times \langle 100 \rangle$	$26.2\times0.50\times3.75$	1.22
$\mathrm{Tb}\mathrm{G}\mathrm{G}_{Cz} ext{-}\mathrm{C}$	$\langle 110 \rangle \times \langle 100 \rangle$	$26.0\times0.50\times3.95$	1.24
TbGG_{fl}	$\langle \bar{3}15 \rangle \times \langle 211 \rangle$	$2.8\times0.56\times1.25$	0.90

Теплопроводность измеряли методом стационарного продольного теплового потока. Использовались два термометра сопротивления, которые закрепляли на образце с помощью медных зажимов, среднее расстояние между которыми составляло примерно 13.5 мм. Электрический нагреватель для создания теплового потока в образце приклеивали к свободному концу образца. Во время измерений теплопроводности разность температур на образце не превышала 3% от средней температуры при T > 4.6 К и 6-7% ниже 4.6 К. При T < 4.6 К использовали термометры Cernox-1070 (Lake Shore Cryotronics, Inc.) и CRT-2 (ВНИИФТРИ), а при более высоких температурах — пару термометров Cernox-1050. Погрешность в определении абсолютной величины теплопроводности, обусловленная главным образом ошибкой при измерении расстояния между термометрами, не превышала 3 %. Случайная погрешность измерений была менее 0.1% при T > 4.6 К и увеличивалась с понижением температуры до 1 % при T < 0.6 K.

Измерения теплопроводности в магнитном поле проводили, используя соленоид с горизонтальным полем. Ориентацию поля относительно образца меняли, поворачивая криогенную вставку с образцом вокруг оси, совпадающей с направлением теплового потока. Погрешность установки направления поля относительно образца была меньше 3°. На основе экспериментальных данных работы [13] по магнитосопротивлению датчиков Cernox-1050 мы оценили, что в магнитном поле 3.25 Тл при температуре около 5 К ошибка в определении температуры составляет примерно 4 мК. Мы не учитывали эту ошибку, поскольку она при определении κ приводит к несущественной погрешности, не превышающей 0.3 %.

Образец монокристалла TbGG_{fl}, выращенного из раствора, имел небольшие размеры (см. табл. 1). Сечение его было параллелограммом с углами примерно 80° и 100°. Перепад температуры вдоль длинного ребра образца при измерениях теплопроводности определяли с помощью хромель-константановой термопары (провода диаметром 12 и 25 мкм), приклеенной к образцу. Расстояние между спаями термопары было около 1.3 мм. Для этого монокристалла выполнены измерения теплопроводности в диапазоне от 4.4 до 300 К в магнитных полях до 3.25 Тл. К показаниям термопары в магнитном поле введена поправка, учитывающая влияние магнитного поля на чувствительность термопары, в соответствии с результатами работы [14] за исключением температур ниже 7.5 К, для которых мы не нашли значительного роста магнитополевого эффекта.

Для количественного сравнения магнитополевых зависимостей, измеренных в разных направлениях, необходимо учитывать размагничивающее поле, поскольку TbGG имеет достаточно большую намагниченность ($4\pi M \approx 0.44$ Тл в приложенном поле $H_0 = 3$ Тл при 5.1 К), а форма образцов в виде тонкой пластины обусловливает сильную анизотропию размагничивающего фактора. В качестве размагничивающих факторов $\langle N^{(1)} \rangle$ использовали усредненные по объему образцов в области между точками крепления термометров значения факторов, рассчитанные в первом приближении по формулам из работы [15]. В системе координат, в которой ось Х направлена вдоль длинной оси образца, ось Y — вдоль его широкой грани, а ось Z — поперек этой грани, размагничивающие факторы равны $\langle N_{ZZ}^{(1)} \rangle \approx 0.84, 0.86$, а $\langle N_{YY}^{(1)} \rangle \approx 0.16, 0.14$ соответственно для образцов TbGG_{Cz}-A,C. Величины $\langle N_{XX}^{(1)} \rangle$ практически равны нулю (используется нормировка, в которой $0 \leq \langle N^{(1)} \rangle \leq 1$). В приведенных ниже экспериментальных данных для образцов ТbGG_{Cz} введена поправка на размагничивающее поле: $H = H_0 - 4\pi N^{(1)}M$, где H_0 — приложенное поле, а M — экспериментально определенная намагниченность. Зависимость M(H) для нашего кристалла $TbGG_{Cz}$, измеренная при **H** || $\langle 001 \rangle$ и T = 5.1 K, в полях до 3 Тл сильно нелинейна, что хорошо согласуется с результатами работ [16, 17], несмотря на то что при этих температурах TbGG является парамагнетиком. В поправках учитывалась также анизотропия намагничивания TbGG в соответствии с результатами работ [17, 18]. При расчете поправок к угловым зависимостям теплопроводности, $\kappa(\theta)$, зависимость размагничивающего фактора $N^{(1)}(\theta)$ принимали эллиптической и не учитывали угловую зависимость намагниченности в плоскости (100). Было найдено, что вектор внутреннего (истинного) поля \mathbf{H} «опережает» вектор \mathbf{H}_0 примерно на 4.1° вблизи оси [011] при вращении поля в плоскости (100) и на 4.4° , когда вектор магнитной индукции **В** направлен вдоль оси [111] в плоскости (011).

Для образца ${\rm TbGG}_{fl}$ поправки, обусловленные размагничиванием, не вводились, потому что он имел сложную форму и тепловой поток был направлен вдоль оси с низкой симметрией.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 3.1. Температурная зависимость теплопроводности

На рис. 1 представлены результаты измерений $\kappa(T)$ для TbGG, полученные в настоящей работе и

Рис. 1. Экспериментальные температурные зависимости теплопроводности монокристаллов TbGG_{Cz}-B,C (звездочки) и TbGG_{fl} (кружки). Для сравнения представлены данные работ [9] для образцов R156, R165, R160, [10] и [11]

в работах [9–11]. Видно, что данные хорошо согласуются друг с другом: для TbGG_{Cz} отклонение наших данных составляет менее 5 % по сравнению с данными работ [9–11], а для TbGG_{fl} — 10 % по сравнению с результатами работы [9] для образца R165.

Обратим внимание на тот факт, что теплопроводность TbGG_{fl} значительно выше, чем теплопроводность TbGG_{Cz} . При $T \approx 5$ K, например, отношение теплопроводностей равно примерно восьми. Можно предположить, что структурные дефекты в TbGG_{Cz} , обусловленные наличием примесных ионов тербия в *a*-позициях галлия, ответственны за столь сильное подавление их теплопроводности [9].

На зависимости $\kappa(T)$ имеется минимум при $T_{min} = 0.52$ K, а также «прогибы» при температурах около 12 и 170 К. Эти особенности возникают, очевидно, из-за сильного резонансного рассеяния фононов парамагнитными ионами тербия. Самая низкотемпературная особенность связана с переходом из основного состояния на первый возбужденный уровень. Из значения T_{min} можно получить грубую оценку для величины щели в электронном спектре иона Tb³⁺, равную примерно 2 К (ниже эта оценка будет уточнена).

Естественно предположить, что теплота в диэлектрическом TbGG переносится практически исключительно фононами. Поскольку TbGG является парамагнетиком с температурой Нееля $T_N \approx 0.24$ K [8, 19], нет оснований ожидать существенного вклада магнонов в теплопроводность при температурах $T > T_N$. Анализ экспериментальных данных проведем в рамках дебаевской модели теплопроводности, которая применима, когда в рассеянии фононов доминируют резистивные процессы. Фононную теплопроводность можно представить в следующем виде [20]:

$$\kappa(T) = \frac{k_B}{2\pi^2 v_m} \left(\frac{k_B T}{\hbar}\right)^3 \int_0^{T_D/T} \tau(x, T) \times \frac{x^4 e^x}{(e^x - 1)^2} dx, \quad (1)$$

где $\tau^{-1}(x,T)$ — суммарная скорость рассеяния фононов, $x = \hbar \omega / k_B T$ — приведенная частота фонона, v_m — средняя скорость звука, а T_D — температура Дебая. Средняя по углам и поляризациям (j — индекс поляризации) скорость звука в TbGG,

$$v_m = 3^{1/3} \left(\int \sum_j \frac{d\Omega}{4\pi v_j^3} \right)^{-1/3} = 3.72 \cdot 10^5 \text{ cm} \cdot \text{c}^{-1},$$

определена численным интегрированием; скорость в направлении телесного угла Ω находилась из решений уравнений Кристоффеля с использованием экспериментальных данных по упругим постоянным и плотности ($\rho = 7.22 \text{ г}\cdot\text{сm}^{-3}$) из работы [21] при $T \to 0$. Температура Дебая $T_D = 487$ К найдена по формуле

$$T_D = (6\pi^2 N)^{1/3} \hbar / k_B v_m, \qquad (2)$$

где $N = 8.52 \cdot 10^{22}$ см⁻³ — общее число атомов всех сортов в единице объема кристалла. Учтем четыре процесса рассеяния фононов — граничное (со скоростью рассеяния τ_b^{-1}), на точечных дефектах решетки (τ_{pd}^{-1}) , в трехфононных процессах (τ_{3ph}^{-1}) и резонансное (τ_{res}^{-1}) :

$$\tau^{-1} = \tau_b^{-1} + \tau_{pd}^{-1} + \tau_{3ph}^{-1} + \tau_{res}^{-1}.$$
 (3)

Граничное рассеяние. При наинизших температурах ($T < T_D/30$) рассеяние фононов на границах образца может оказаться доминирующим процессом рассеяния фононов. В случае диффузного отражения фононов от границ образца скорость рассеяния имеет вид

$$\tau_b^{-1} = v_m / l_b, \tag{4}$$

где l_b — длина свободного пробега фононов, определяемая поперечными размерами образца. Значения

5 ЖЭТФ, вып. 5 (11)

 l_b для исследованных образцов, рассчитанные по формулам из работы [22], приведены выше в табл. 1. Теоретические расчеты $\kappa(T)$ (смотри ниже) показывают, что в широком диапазоне температур нашего эксперимента вклад граничного рассеяния незначителен, а режим граничного рассеяния в теплопроводности реализуется при температурах ниже 0.3 К. В силу этого параметр l_b не варьировали при аппроксимации экспериментальной зависимости $\kappa(T)$.

Рассеяние точечными дефектами. Скорость рассеяния фононов точечными дефектами в дебаевском приближении можно представить в виде (см., например, [23])

$$\tau_{pd}^{-1} = \frac{V_0}{4\pi v_m^3} g_2 \,\omega^4 \equiv A_{pd} \,x^4 T^4, \tag{5}$$

где V_0 — объем элементарной ячейки, приходящийся на формульную единицу, $V_0 = 235.4$ Å³ для TbGG (постоянная решетки a = 12.3486 Å при 25 °C [24]). Примесные атомы тербия в галлиевых позициях дают вклад в упругое рассеяние фононов, обусловленное как дефектом массы, так и изменением объема элементарной ячейки. Этот вклад пропорционален

$$g_2^{imp} = f_{\rm Tb} \left(\frac{M_{\rm Tb} - M_{\rm Ga}}{M_{\rm TbGG}} + 2\gamma\beta \right)^2, \qquad (6)$$

где f_{Tb} — концентрация избыточного тербия, β относительное изменение объема ячейки при внедрении тербия вместо галлия, а γ — постоянная Грюнайзена [23]. Воспользовавшись данными для параметров решетки и концентрации избыточного тербия из работ [9, 24], можно оценить, что $\beta \approx 0.06$. За отсутствием данных о постоянной Грюнайзена для TbGG, примем $\gamma \approx 2 -$ среднее значение для многих материалов. Формула (6) тогда дает $g_2^{imp} = 4.3 \cdot 10^{-3}$, причем вклад из-за изменения объема оказывается почти на порядок больше, чем из-за дефекта массы. Оценки скорости изотопического рассеяния фононов с использованием формул из работ [25, 26] показали, что атомы тербия в позициях галлия в тысячу раз сильнее рассеивают фононы, чем примесные изотопы (в основном изотопы тербия). Из выражения (5) получаем, что $A_{pd} \approx 460 \text{ c}^{-1} \cdot \text{K}^{-4}$.

Фонон-фононное рассеяние. Фонон-фононное рассеяние, обусловленное ангармонизмом динамики решетки, в значительной мере определяет теплопроводность при температурах выше температуры максимума на зависимости $\kappa(T)$. Для скорости рассеяния фононов в трехфононных процессах с перебросом при относительно низких температурах используем выражение, предложенное в работе [27] и основанное на теории Лейбфрида – Шлеманна [28],

$$\tau_U^{-1} = b_U \gamma^2 \frac{\hbar}{M_{av} v_m^2 T_D} \omega^2 T \exp\left(-\frac{T_D}{3T}\right) \equiv \\ \equiv A_U x^2 T^3 \exp\left(-\frac{T_D}{3T}\right), \quad (7)$$

где M_{av} — средняя атомная масса (50.869 ат. ед. для TbGG), $b_U \sim 1$. Мы предположили, что $b_U = 2$, для того чтобы иметь высокотемпературный предел этой формулы равным оценке Клеменса [29]. Величина $A_U \approx 2.5 \cdot 10^4 \text{ c}^{-1} \cdot \text{K}^{-3}$ не варьировалась.

Резонансное рассеяние. Для скорости упругого резонансного рассеяния фононов парамагнитными ионами тербия воспользуемся выражением, полученным в работах [30-32] для произвольной относительной концентрации f парамагнитных ионов с двухуровневым спектром в изотропном дебаевском приближении:

$$\tau_{res}^{-1} = \frac{3\pi f \epsilon^4 \omega_0^4 \omega^4}{2\omega_D^3 (\omega^2 - \omega_0^2)^2} F(\omega_0, T), \tag{8}$$

где ω_0 — резонансная частота, равная разности частот уровней, ω_D — дебаевская частота, ϵ — безразмерный параметр, характеризующий спин-фононную связь, а $F(\omega_0, T)$ — температурный множитель. Величина ϵ порядка $10^{-2}-10^{-1}$ в случае слабой спин-фононной связи и порядка 10 для сильной связи [31]. Для некрамерсовского иона, каким является Tb^{3+} , $\epsilon \propto \omega_0^{-1/2}$, а для крамерсовского иона $\epsilon \propto \omega_0^{1/2}$ (см., например, [33]). Множитель $F(\omega_0, T)$ возникает из-за интерференции между амплитудами рассеяния от разных ионов и в случае двухуровневого парамагнитного иона равен

$$F(\omega_0, T) = 1 - f(p_0 - p_1)^2, \qquad (9)$$

где p_0 и p_1 — заселенности нижнего и верхнего уровней. Во взаимодействующей спин-фононной системе из-за этой интерференции возникают связанные спин-фононные моды. Поскольку в интересующем нас интервале температур энергии тепловых фононов сравнимы с энергиями многих электронных уровней иона Tb^{3+} , скорость резонансного рассеяния фононов этими ионами представим в виде суммы выражений типа (8) с f = 1, отвечающих переходам между основным состоянием и возбужденными, а также между возбужденными состояниями. В последнем случае частота ω_0 представляет собой разность частот $\omega_m - \omega_n$ уровней m и n, а температурный множитель $F(\omega_0, T) = (p_m - p_n)^2$. Для обозначения параметров процесса рассеяния фононов, связанного с переходами между уровнями m и n, используем пару индексов $\{mn\}$.

Для фононов с частотами ω достаточно близкими к ω_0 суммарная скорость рассеяния оказывается столь большой (за счет обращения в нуль знаменателя в формуле (8)), что длина пробега фонона формально становится меньше его длины волны λ . Для того чтобы исключить такую нефизическую картину, длина пробега фононов ограничивалась снизу величиной $l_{min}(\omega)$, равной половине длины волны [34],

$$l_{min}(\omega) = \lambda(\omega)/2 = \pi v_m/\omega.$$

Мы подогнали описанную теоретическую модель к экспериментальным данным по $\kappa(T)$ для кристаллов TbGG, используя итерационную методику. Для нулевой итерации использовали экспериментальные данные по $\kappa(T)$ для кристалла TbGG_{fl}, предполагая, что он не содержит примесных парамагнитных ионов. При подгонке методом наименьших квадратов в качестве варьируемых параметров использовали величины A_{pd} и ϵ_{mn} , описывающие спин-фононную связь для регулярных ионов тербия. Хорошее согласие между моделью и экспериментальными данными удалось достигнуть при учете резонансных рассеяний {01}, {23} и {67}. При этом энергии уровней 2 и 3 (49 и 62 К) были взяты из работы [7], а энергия первого уровня (1.3 К) найдена из подгонки теории к данным для образца TbGG_{Cz}-B, поскольку для него имеются низкотемпературные данные по $\kappa(T)$. Энергии уровней 6 и 7 (220 и 380 К) были подобраны нами для аппроксимации прогиба кривой $\kappa(T)$ при $T \approx 170$ К (индексы 6 и 7 приписаны уровням условно, так как нет надежных экспериментальных данных об энергиях уровней с индексами больше 5).

Далее, используя полученные значения ϵ_{mn} , мы провели подгонку модели к данным для кристалла TbGG_{Cz} (образцы В и С). При этом мы полагали, что уменьшенная теплопроводность этого кристалла обусловлена дополнительными резонансными процессами рассеяния фононов примесными ионами тербия, относительная концентрация которых равна примерно 1.3 ат. %, как было определено в работе [9]. Меняя спектр примесных ионов и сравнивая результаты расчетов $\kappa(T)$ с разными экспериментальными данными, мы нашли, что удовлетворительное согласие можно достигнуть, если учесть резонансные рассеяния типа {01} и {23} и как минимум два сорта примесных ионов Tb³⁺ с несколько различными электронными спектрами. Энергии низколежащих уровней для половины примесных

Рис.2. Теплопроводность TbGG как функция температуры. Символы — экспериментальные данные работы [9] для разных кристаллов; сплошные линии — результаты подгонки теоретической моделью (см. текст). Кривые 5 и 6 — наилучшие аппроксимации данных для образцов TbGG_{fl} и TbGG_{Cz}-C

ионов (группа X) составили 0, 4, 23, 39 К, а для оставшихся (группа Y) — 0, 13, 23, 39 К. Константы спин-фононной связи ϵ_{mn}^{imp} были определены из наилучшей подгонки. Затем итерационная процедура повторялась, но при этом допускалось, что даже в «чистом» кристалле TbGG_{fl} имеется небольшое количество примесных ионов тербия, концентрация которых значительно меньше, чем в TbGG_{Cz}. Для концентрации примесных ионов Tb³⁺ в TbGG_{fl} получена оценка 0.13 ат. %.

В результате, как видно из рис. 2, удалось вполне удовлетворительно аппроксимировать измеренные зависимости $\kappa(T)$ для обоих кристаллов в широком интервале температур. Для образца TbGG_{fl} на рисунке приведены расчетные зависимости $\kappa(T)$ при последовательном «включении» процессов рассеяния. Самая высоколежащая кривая 1 соответствует гипотетической ситуации, когда нет резонансных процессов рассеяния фононов, а имеется только рассеяние границами кристалла, точечными дефектами и в трехфононных процессах. Кривая 2 получена с учетом резонансного рассеяния фононов только основным (первым) квазидублетом регулярных ионов тербия. Ниже расположены кривые 3, 4 и 5, рассчитанные при последовательном добавлении резонансного рассеяния на втором квазидублете {23}, на высокочастотном квазидублете {67} и на примес-

Таблица 2. Параметры спин-фононной связи, дающие наилучшее соответствие результатов теоретической модели и экспериментальных данных по температурной зависимости теплопроводности кристаллов TbGG

ϵ_{01}	ϵ_{23}	ϵ_{67}	$\epsilon_{01,\mathrm{X}}^{imp}$	$\epsilon^{imp}_{01,\rm Y}$	ϵ_{23}^{imp}
9.00	17.3	4.42	10.0	7.10	28.1

ных ионах тербия. Видно, что при гелиевых температурах, при которых был обнаружен фононный эффект Холла, доминирует резонансное рассеяние на основном квазидублете регулярных ионов и на квазидублетах примесных ионов Tb³⁺. Рассеяние на квазидублете {67} проявляется при температурах выше примерно 40 К, а рассеяние на квазидублете {23} заметно в широком интервале от 8 до 200 К. В то же время для образца TbGG_{Cz} теплопроводность при гелиевых температурах определяется почти полностью резонансным рассеянием на примесных ионах, это рассеяние оказывается существенным при температурах от долей кельвина до почти 100 К. По-видимому, систематическое отклонение модельной кривой 6 от экспериментальных точек связано с весьма упрощенной схемой уровней примесных ионов Tb³⁺, которую мы использовали. Заниженные расчетные значения $\kappa(T)$ при T > 80 K могут свидетельствовать о переоценке теорией скорости резонансного рассеяния фононов при температурах, значительно превышающих энергетическую щель дублета.

При температуре 5.13 К, при которой проведены исследования фононного эффекта Холла для кристаллов TbGG_{Cz} в работе [2], длина свободного пробега фононов с частотами вблизи резонансных частот переходов {01}, {23} для регулярных ионов и частот переходов {01}, {23} для примесных ионов Tb³⁺ оказалась порядка длины волны фонона. Например, для фононов с приведенной частотой $x \approx 2.54$, испытывающих сильное резонансное рассеяние на квазидублетах {23} и {01}^{imp}_Y, длина пробега составляет примерно 7 нм. Доминирующие в теплопроводности фононы с $x \approx 1.4$ имеют длину пробега примерно 20 мкм и 5 мкм соответственно в кристаллах TbGG_{fl} и TbGG_{Cz}.

Значения подгоночных параметров спин-фононной связи приведены в табл. 2; для рассеяния точечными дефектами найдено, что $A_{pd} = 170 \text{ c}^{-1} \cdot \text{K}^{-4}$ и $A_{pd} = 492 \text{ c}^{-1} \cdot \text{K}^{-4}$ соответственно для образцов ЖЭТФ, том **138**, вып. 5 (11), 2010

 ${
m TbGG}_{fl}$ и ${
m TbGG}_{Cz}$ -С. Все параметры ϵ_{ij} имеют значения порядка 10, что свидетельствует о сильной спин-фононной связи как для регулярных, так и для примесных ионов ${
m Tb}^{3+}$.

Добавление к резонансным процессам рассеяния на регулярных ионах Tb³⁺ других процессов, связанных с переходами между низколежащими уровнями, типа {02}, {12}, {03} и {13} позволяет получить примерно такую же по качеству подгонку модели к эксперименту, но полностью не исключает примесного резонансного рассеяния даже в случае кристалла TbGG_{fl} (теоретическая кривая $\kappa(T)$ при T < 5 К оказывается существенно выше как наших экспериментальных данных, так и данных работы [9]). Кроме того, если добавить в нашу модель так называемые прямые (орбаховские) процессы рассеяния фононов, которые могут быть существенными при сильной спин-спиновой связи, то качество подгонки опять-таки не улучшается и имеется упомянутое превышение теоретических результатов по сравнению с экспериментальными. Таким образом, полученные оценки концентрации примесных ионов Tb³⁺ и величины спин-фононной связи для них являются, по-видимому, корректными по порядку величины.

3.2. Зависимость теплопроводности от величины и ориентации магнитного поля

Поскольку магнитное поле оказывает сильное влияние на спектр иона тербия, представлялось интересным исследование теплопроводности в магнитном поле.

Экспериментальные данные по влиянию магнитного поля на теплопроводность кристалла TbGG_{fl} представлены на рис. 3, 4 и 5. Рисунок 3 показывает зависимости $\kappa(T)$ в нулевом поле и в поле $H_0 = 3$ Tл, приложенном под углом $\theta = 75^{\circ}$ к нормали широкой грани образца, которая примерно совпадает с плоскостью (211) (вдоль этого направления магнитополевой эффект максимален при T = 16.15 K, но минимален при T = 5.1 K). На вставке к рис. 3 показана температурная зависимость приведенной теплопроводности

$$\widetilde{\kappa}(T, H_0 = 3 \text{ Tm}) = \frac{\kappa(T, H_0 = 3 \text{ Tm})}{\kappa(T, H_0 = 0)}$$

Видно, что магнитополевой эффект очень слабый при T > 110 К и кривая $\kappa(T, H_0 = 3$ Тл) быстро приближается к $\kappa(T, H_0 = 0)$ с уменьшением температуры ниже 7 К.

Рис. 3. Теплопроводность кристалла TbGG_{fl} как функция температуры в поле $H_0 = 0$ (кружки) и $H_0 = 3$ Tл (треугольники), приложенном под углом $\theta = 75^\circ$ к оси [211], нормальной к широкой грани образца, и перпендикулярно тепловому потоку. На вставке показана зависимость $\tilde{\kappa}(T, H_0 = 3$ Tл)

Рис. 4. Полевые зависимости теплопроводности кристалла ${
m TbGG}_{fl}$ для разных ориентаций поля ${
m H}_0$ при T=5.1 К. Ромбами показаны данные, полученные при T=16.15 К

Из полевых зависимостей $\tilde{\kappa}(H_0)$ (рис. 4) видно, что теплопроводность монотонно уменьшается с ростом приложенного поля за исключением случая $\theta = 75^{\circ}$, T = 5.1 К. Угловые зависимости теплопроводности, представленные на рис. 5, демонстрируют симметрию оси второго порядка, что обусловлено не формой образца, а ориентацией теплового потока, не совпадающей с высокосимметричным кристаллографическим направлением. Интересно, что зависимости $\tilde{\kappa}(\theta)$, измеренные при T = 5.1 К и T = 16.15 К, оказались «противофазными», т.е. сдвинутыми относительно друг друга на угол примерно 45° так, что минимумы на одной зависимости примерно совпадают с максимумами другой и наоборот. На кри-

Рис.5. Угловые зависимости теплопроводности кристалла TbGG_{fl} в поле $H_0 = 3$ Тл при T = 5.1 К (кружки) и T = 16.15 К (ромбы). Штриховые линии — данные, полученные сдвигом экспериментальных значений на 180°

Рис.6. Зависимость приведенной теплопроводности ${\rm TbGG}_{Cz}$ -С от внутреннего магнитного поля H при $T=5.1~{\rm K}$ для ориентаций H вдоль направлений $\langle 001 \rangle, \, \langle 011 \rangle$ и $\langle 111 \rangle.$ Во всех случаях вектор H перпендикулярен тепловому потоку q. Экспериментальные данные показаны символами, а теоретические — жирными линиями

вой $\tilde{\kappa}(\theta)$ при T = 5.1 К наблюдается ряд достаточно резких особенностей, а при T = 16.15 К кривая выглядит существенно более гладкой.

В отличие от образца TbGG_{fl}, образцы TbGG_{Cz} были изготовлены в форме почти идеальных прямоугольных параллелепипедов с ребрами, ориентированными вдоль высокосимметричных кристаллографических осей. Для этих образцов введены поправ-

Рис.7. Угловые зависимости $\tilde{\kappa}$ для образцов А (квадраты) и С (кружки) при T = 5.1 К. Штриховая линия для образца С воспроизводит данные, измеренные для углов вблизи $\theta \approx 54^\circ$, после операции инверсии относительно направления $\theta = 90^\circ$. Символы — экспериментальные данные, толстые линии — теоретические зависимости

ки на размагничивающее поле и магнитополевые зависимости представлены как функция внутреннего магнитного поля **H**. На рис. 6 представлена зависимость $\tilde{\kappa}(H)$ для образца TbGG_{Cz}-C при T = 5.1 K для разных ориентаций поля **H**. В случаях **H** || $\langle 001 \rangle$ и **H** || $\langle 110 \rangle$ теплопроводность в магнитном поле оказывается ниже, а в достаточно сильных полях (больше 1.5 Тл) при **H** || $\langle 111 \rangle$ выше, чем в нулевом поле. В полях до 1 Тл кривые $\tilde{\kappa}(H)$ для симметричных направлений **H** оказываются очень близкими друг к другу и имеют локальный минимум при $H \approx 0.7$ Тл. Относительные величины магнитополевого эффекта близки к таковым для кристалла TbGG_{fl}, что достаточно неожиданно, поскольку в этом кристалле вклад дефектов в рассеяние фононов явно меньше.

Экспериментальные данные для приведенной теплопроводности $\tilde{\kappa}$ от угла θ между **H** и осью [001] в поле H = 3 Тл и T = 5.1 К показаны на рис. 7. Для образца A поле **H** вращалось от оси [001] к оси [010] в плоскости (001), а для образца C — от [001] к [011] в плоскости (011) (геометрия эксперимента показана на рис. 6). Отметим ряд особенностей полученных угловых зависимостей. Для образца A в пределах экспериментальной погрешности зависимость $\tilde{\kappa}(\theta)$ показывает симметрию оси четвертого порядка, что можно было ожидать из ориентаций теплового потока и магнитного поля относительно кристаллографических осей. Минимумы на кривой $\tilde{\kappa}(\theta)$ имеются при ориентации **H** вдоль направления $\langle 001 \rangle$, а максимумы — вдоль $\langle 011 \rangle$. Для образца С угловая зависимость $\tilde{\kappa}(\theta)$ показывает симметрию оси второго порядка; локальные минимумы имеются при ориентации **H** вдоль $\langle 001 \rangle$ и $\langle 011 \rangle$, а максимумы — при **H** || $\langle 111 \rangle$.

Обратим внимание на то, что зависимость $\tilde{\kappa}(\theta)$ для образцов A и C почти не меняется с углом в пределах ±5° вблизи направлений (001) и (011): для углов, совпадающих с этими направлениями, теплопроводность немного (не более 1 %) выше, чем для углов, отклоняющихся на 5° от этих направлений. Кроме того, кривая $\tilde{\kappa}(\theta)$ для образца C имеет относительно острый пик вблизи направления (111).

В рамках предложенной модели полевые эффекты в теплопроводности обусловлены влиянием приложенного магнитного поля на электронный спектр ионов Tb^{3+} . Как известно, расщепление энергетических уровней Tb³⁺ зависит от величины и ориентации магнитного поля, оно различно для неэквивалентных позиций в решетке TbGG и для разных квазидублетов [35]. Выберем локальные системы координат в этих неэквивалентных позициях так, чтобы их оси совпадали с поворотными осями второго порядка, причем оси z ориентированы вдоль кристаллографических направлений (001), а оси x и y вдоль (110). В приближении изолированного квазидублета, которое хорошо выполняется в полях до 2 Тл, расщепление первого квазидублета определяется выражением

$$\omega_0^{(1)}(H) = \sqrt{\left(\omega_0^{(1)}(0)\right)^2 + \left(\mu_B g_z^{(1)} H_z\right)^2}, \qquad (10)$$

где $\omega_0^{(1)}(0)$ — расщепление в нулевом поле, $g_z^{(1)}$ и H_z — *z*-компоненты *g*-тензора и магнитного поля в локальной системе координат (верхний индекс в скобках обозначает номер квазидублета). Компоненты $g_x^{(1)}$ и $g_y^{(1)}$ равны нулю, что обусловлено изинговским поведением иона тербия в гранате. Согласно результатам низкотемпературных оптических исследований эффекта Зеемана [18], $\omega_0^{(1)}(0) = 2.6 \pm 0.6$ K, а $g_z^{(1)} = 14.7 \pm 0.4$. Большая величина *g*-тензора свидетельствует о сильном влиянии магнитного поля на расщепление уровней; так, в поле 3 Тл, ориентированном вдоль (100), щель достигает почти 30 К.

Для второго квазидублета отличной от нуля является *x*-компонента *g*-тензора [16]. Соответственно, энергетический зазор $\omega_0^{(2)}(H)$ между уровнями этого квазидублета увеличивается с магнитным полем

при наличии ненулевой локальной компоненты H_x . Будем полагать, что для $\omega_0^{(2)}(H)$ справедлива формула, аналогичная (10), где вместо $g_z^{(1)}$ и H_z используются соответственно $g_x^{(2)}$ и H_x , причем $g_x^{(2)} = 18$, а $g_y^{(2)} = g_z^{(2)} = 0$ [16].

Теплопроводность в магнитном поле была рассчитана в предположении, что спектр регулярных ионов Tb³⁺ изменяется в поле в соответствии с приведенной выше картиной, а спектр примесных ионов Tb³⁺ не подвержен влиянию магнитного поля. Последнее было принято произвольно, поскольку нам не известны работы, посвященные электронной структуре ионов тербия, находящихся в галлиевых позициях TbGG. При этом учитывалось, что параметры спин-фононной связи зависят от магнитного поля в соответствии с теорией [33]: $\epsilon_{01} \propto \omega_0^{-1/2}(H)$. Рассчитанная таким образом зависимость $\kappa(T)$ в поле H = 3 Тл ($\theta = 75^{\circ}$) для образца TbGG_{fl} оказалась почти на порядок величины меньше экспериментальной. Такое подавление теплопроводности в поле обусловлено сильным ростом скорости резонансного рассеяния, поскольку $au_{res}^{-1} \propto \epsilon^4 \omega_0^4 \propto \omega_0^2$ (см. выражение (8)), а ω_0 как для первого, так и для второго квазидублета растет почти линейно с полем в достаточно сильных полях.

Для кристаллов с большим содержанием примесных ионов Tb³⁺ теоретические данные гораздо лучше совпадают с измеренными в магнитном поле. Расчетные зависимости $\tilde{\kappa}(H)$ показаны сплошными линиями на рис. 6. Как видно из рисунка, расчетные зависимости воспроизводят локальные минимумы в слабых полях и анизотропию $\tilde{\kappa}(H)$. Наличие минимумов обусловлено ростом разности энергий $\omega_{0}^{(1)}(H)$ уровней первого квазидублета с магнитным полем, что приводит к немонотонному изменению скорости резонансного рассеяния (8). Полевая зависимость уровней второго квазидублета практически не проявляется в теплопроводности: разность значений $\widetilde{\kappa}(H)$ с учетом и без учета соответствующего эффекта Зеемана для $\omega_0^{(2)}(H)$ составляет менее 1 % в полях до 4 Тл. Удивительно, что учет эффекта Зеемана только для регулярных ионов тербия позволяет в рамках предложенной модели приблизительно воспроизвести основные особенности полевых зависимостей теплопроводности. Возможно, что лучшее согласие теории с экспериментом для кристалла TbGG_{fl} связано с меньшим вкладом регулярных ионов тербия в рассеяние на относительно большом фоне от примесных ионов тербия. Имеющееся количественное несовпадение модели с экспериментом может быть обусловлено, в частности, тем обстоя-

Рис.8. Зависимость приведенной теплопроводности $\widetilde{\kappa}$ от направления внутреннего поля H для кристаллов ${\rm TbGG}_{Cz}$ при $T=5.1~{\rm K}$

тельством, что модель не учитывает влияния поля на спектр примесных ионов тербия.

На рис. 7 сплошными линиями показаны угловые зависимости теплопроводности от направления вектора **H** (H = 3 Tл): верхняя кривая соответствует случаю вращения поля в плоскости (110), а нижняя — (001). Как видно, имеется удовлетворительное согласие теоретических данных с экспериментальными. Например, теоретические зависимости правильно показывают угловое положение глобальных минимумов и максимумов и их ширину, за исключением минимума при **H**|| $\langle 001 \rangle$ для образца A, а также наличие небольшого пика вдоль направлений, эквивалентных $\theta = 45^{\circ}$ (образец A). Однако расчетная кривая не имеет острого пика в направлении $\langle 111 \rangle$.

На рис. 8 представлена трехмерная картина зависимости приведенной теплопроводности кристаллов TbGG_{Cz} от направления вектора $\mathbf{H} = 3$ Tл в системе координат, определяемой главными кристаллографическими осями, при температуре 5.1 К. При ориентациях поля вблизи симметричных плоскостей {100} имеет место подавление теплопроводности, а в других направлениях — рост теплопроводности в поле. Теплопроводность достигает максимума при $\mathbf{H} \parallel \langle 111 \rangle$. Такое поведение обусловлено тем обстоятельством, что в случае, когда **H** находится вблизи плоскостей {100}, как минимум в двух позициях ионов Tb^{3+} из неэквивалентных шести расщепление первого квазидублета остается достаточно малым в поле 3 Тл. Однако когда поле направлено примерно вдоль (111), расщепление во всех шести позициях оказывается много большим (примерно 20 K), чем энергия доминирующих в теплопроводности фононов, и скорость резонансного рассеяния уменьшается.

4. ЗАКЛЮЧЕНИЕ

Проведены измерения температурных, магнитополевых и угловых зависимостей теплопроводности монокристаллов TbGG, выращенных методами Чохральского и из раствора. Значительно более низкая теплопроводность кристаллов TbGG, выращенных методом Чохральского, обусловлена сильным рассеянием фононов избыточными ионами тербия, которые содержатся в них.

Сравнение экспериментальных данных с данными теоретической модели теплопроводности свидетельствует о наличии сильного спин-фононного взаимодействия для ионов Tb³⁺ в TbGG, что (согласно теории) является необходимым условием наблюдения фононного эффекта Холла. Доминирующим процессом рассеяния фононов при низких температурах является резонансное рассеяние ионами Tb³⁺, причем при гелиевых температурах и в магнитных полях до 4 Тл, при которых был обнаружен фононный эффект Холла, главную роль играет рассеяние на первом квазидублете электронного спектра Tb³⁺. Расщепление уровней этого квазидублета в нулевом поле составляет примерно 1.3 К. Основные особенности поведения теплопроводности кристаллов TbGG_{Cz} в магнитном поле обусловлены, видимо, эффектом Зеемана в электронном спектре ионов тербия. Формула (8) дает довольно грубое описание скорости резонансного рассеяния фононов в случае TbGG, в частности его зависимость от магнитного поля и частотную зависимость при $T \gg \omega_0$.

Авторы благодарят И. А. Иванова и Б. В. Миля за предоставленные монокристаллы TbGG, А. А. Буша за проведение рентгенодифракционных измерений и А. С. Лагутина за полезные обсуждения. Работа выполнена при частичной финансовой поддержке РФФИ (грант № 09-02-00759).

ЛИТЕРАТУРА

 C. Strohm, G. L. J. A. Rikken, and P. Wyder, Phys. Rev. Lett. 95, 155901 (2005).

- А. В. Инюшкин, А. Н. Талденков, Письма в ЖЭТФ 86, 436 (2007).
- L. Sheng, D. N. Sheng, and C. S. Ting, Rev. Lett. 96, 155901 (2006).
- Yu. Kagan and L. A. Maksimov, Phys. Rev. Lett. 100, 145902 (2008).
- **5**. Ю. Каган, Л. А. Максимов, ЖЭТФ **134**, 740 (2008).
- J.-S. Wang and L. Zhang, Phys. Rev. B 80, 012301 (2009).
- J. A. Koningstein and C. J. Kane-Maguire, Can. J. Chem. 52, 3445 (1974).
- J. Hammann and P. Manneville, J. de Phys. 34, 615 (1973).
- 9. G. A. Slack and D. W. Oliver, Phys. Rev. B 4, 592 (1971).
- 10. П. А. Попов, Дисс. ... канд. физ.-мат. наук, Московский педагогический государственный университет, Москва (1993).
- C. Strohm, PhD Thesis, University of Konstanz, Konstanz (2003).
- I. A. Ivanov, A. M. Bulkanov, E. A. Khazanov et al., in *Proc. Int. Conf. on High Power Laser Beams*, Nizhny Novgorod (2006), p. 3.
- B. L. Brandt, D. W. Liu, and L. G. Rubin, Rev. Sci. Instr. 70, 104 (1999).
- A. V. Inyushkin, K. Leicht, and P. Esquinazi, Cryogenics 38, 299 (1998).
- R. I. Joseph and L. Schlömann, J. Appl. Phys. 36, 1579 (1965).
- M. Guillot, A. Marchand, V. Nekvasil, and F. Tcheou, J. Phys. C 18, 3547 (1985).
- 17. N. P. Kolmakova, R. Z. Levitin, A. I. Popov et al., Phys. Rev. B 41, 6170 (1990).
- 18. Н. П. Колмакова, С. В. Копциг, Г. С. Кринчик и др., ФТТ 32, 1406 (1990).
- 19. J. Hammann and M. Ocio, J. de Phys. 38, 463 (1977).
- R. Berman, Thermal Conduction in Solids, Clarendon Press, Oxford (1976).
- K. Araki, T. Goto, and Y. Nemoto et al., Eur. Phys. J. B 61, 257 (2008).
- 22. A. K. McCurdy, H. J. Maris, and C. Elbaum, Phys. Rev. B 2, 4077 (1970).

- 23. L. A. Turk and P. G. Klemens, Phys. Rev. B 9, 4422 (1974).
- 24. C. D. Brandle and R. L. Barns, J. Cryst. Growth 26, 169 (1974).
- 25. S. Tamura, Phys. Rev. B 30, 849 (1984).
- 26. S. Tamura, Phys. Rev. B 27, 858 (1983).
- 27. G. A. Slack and S. Galginaitis, Phys. Rev. 133, A253 (1964).
- 28. G. Leibfried and E. Schlömann, Nach Ges. Wissenschaften Goettingen Mathematik und Physik, K1, IIa, 71 (1954).
- 29. P. G. Klemens, in *Thermal Conductivity*, Vol. 1, ed. by R. P. Tye, Acad. Press, London (1969), p. 1.

- 30. F. W. Sheard and G. A. Toombs, Sol. St. Comm. 12, 713 (1973).
- 31. G. A. Toombs and F. W. Sheard, J. Phys. C 6, 1467 (1973).
- 32. F. W. Sheard, in Proc. Second Int. Conf. on Phonon Scattering in Solids, University of Nottingham, August 27-30, 1975, ed. by L. J. Challis, V. W. Rampton, and A. F. G. Wyatt, Plenum Press, New York (1976), p. 154.
- 33. R. J. Elliott and J. B. Parkinson, Proc. Phys. Soc. London 92, 1024 (1967).
- 34. D. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B 46, 6131 (1992).
- 35. А. К. Звездин, В. М. Матвеев, А. А. Мухин, А. И. Попов, Редкоземельные ионы в магнитоупорядоченных кристаллах, Наука, Москва (1985).