ИНДУЦИРОВАННАЯ ЧЕТЫРЕХФОТОННЫМ ВЗАИМОДЕЙСТВИЕМ ГЕНЕРАЦИЯ КОГЕРЕНТНЫХ ТЕПЛОВЫХ ФОНОНОВ В АМОРФНЫХ ДИЭЛЕКТРИКАХ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ

А. Ф. Бункин^{*}, С. М. Першин

Научный центр волновых исследований Института общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

Поступила в редакцию 7 апреля 2010 г.

Методом четырехфотонной спектроскопии в оптическом стекле K8 при комнатной температуре зарегистрированы резонансные отклики рассеяния Мандельштама–Бриллюэна на продольных и поперечных звуковых волнах на частотах соответственно $\nu_{LS} = \pm 1.15 \text{ сm}^{-1}$, $\nu_{TS} = \pm 0.7 \text{ сm}^{-1}$ и на частоте $\nu_{SS} = \nu_{TS}\sqrt{3} = \pm 0.43 \text{ сm}^{-1}$, который был отнесен нами к индуцированной генерации волны второго звука (когерентных тепловых фононов). Обсуждаются механизм генерации и возможности практического использования обнаруженного явления для экспресс-диагностики качества прозрачных материалов.

Изучение низкочастотных (в области 0–10 см⁻¹) оптических резонансов в твердых аморфных диэлектриках экспериментальными методами является сложной проблемой, поскольку в этом случае уровень излучения паразитного рассеяния на микротрещинах и дефектах может существенно превышать полезный сигнал спонтанного комбинационного рассеяния (КР) или рассеяния Мандельштама-Бриллюэна [1,2]. Интерес к спектроскопии в этой области частот обусловлен необходимостью исследования рассеяния на акустических фононах, а также поиском трансляционных, ориентационных, межмолекулярных колебательных и вращательных мод, которые вызывают резонансное взаимодействие микроволнового излучения с конденсированными средами. Кроме того, в данной спектральной области возможна прямая регистрация собственных оптических и акустических мод, вызванных микронеоднородностями, частоты которых лежат в диапазоне от единиц до десятков см $^{-1}$ [2].

В случае, когда размер исследуемой области сравним с размером локальной неоднородности в твердом теле, регистрируемый спектр должен содержать несколько резонансов рассеяния на акустических фононах, вызванных существованием нескольких скоростей «продольного» и «поперечного» гиперзвука (в области неоднородности и вне ее). Отсюда непосредственно следует прикладной аспект таких спектров для оценки степени однородности и качества материалов для целей нанотехнологии, когда масштаб объекта сравним с длиной волны в оптическом диапазоне.

Другой важной задачей является наблюдение баллистически распространяющихся тепловых фононов в твердом теле, которые были обнаружены в сверхчистых моноизотопных кристаллах (типа NaF) при низких температурах (до 20 К), где их длина пробега варьируется от единиц до нескольких миллиметров [3]. Такие фононы называются «вторым звуком» и отличаются от диффузионного распространения тепла наличием волнового вектора и фазы в соответствии с решением волнового уравнения [3], они впервые наблюдались в твердом гелии [4]. Однако в силу жестких требований [3] к качеству образцов, условиям возбуждения и регистрации баллистических тепловых фононов стандартными способами, широкого применения для диагностики твердых диэлектриков этот вид квазичастиц не получил, хотя процесс их распространения чрезвычайно чувствителен к наличию локальных неоднородностей и может быть использован для диагностики качества материалов: лазерных сред, оптических волокон, нелинейных кристаллов.

^{*}E-mail: abunkin@orc.ru

Эффективным подходом к решению таких задач является спектроскопия четырехфотонного рассеяния лазерного излучения в частотной области от единиц до сотен ГГц [5,6]. Этот метод, во-первых, обеспечивает высокое спектральное и пространственное разрешение регистрируемого сигнала, определяемое размером области пересечения двух сфокусированных лазерных пучков. Во-вторых, он существенно повышает отношение сигнал/шум в низкочастотных спектрах за счет синхронизации фаз элементарных движений, например, когерентных состояний тепловых фононов в макроскопическом объеме среды с помощью двух лазерных волн с частотами ω_1 и ω_2 , разность которых $(\omega_1 - \omega_2)$ сканируется в низкочастотной области. Измеряемым параметром в этом случае является состояние поляризации излучения на частоте $\omega_s = \omega_1 - (\omega_1 - \omega_2)$, нелинейный источник которого [5, 6] определяется соотношением

$$\mathbf{P}_{i}^{(3)} = 6\chi_{ijkl}^{(3)}(\omega_{s};\omega_{1};\omega_{2};-\omega_{1})\mathbf{E}_{j}^{(1)}\cdot\mathbf{E}_{k}^{(2)}\cdot\mathbf{E}_{1}^{(1)*}.$$
 (1)

Здесь $\chi^{(3)}$ — кубическая восприимчивость среды, пропорциональная корреляционной функции флуктуаций оптической анизотропии, $\mathbf{E}^{(1)}$ и $\mathbf{E}^{(2)}$ — амплитуды взаимодействующих полей, интенсивность регистрируемого сигнала $I_s \propto |\chi^{(3)}|^2 I_1^2 I_2$. Подчеркнем, что лазерное поле, когерентно взаимодействуя с низкочастотными модами, задает их фазу во всем объеме среды, занятом одновременно излучением с частотами ω_1 и ω_2 . Отсюда следует возможность генерации когерентных тепловых фононов в этом объеме диэлектрика за время действия когерентных лазерных полей. Спектральное разрешение в таких экспериментах определяется суммой ширин спектра генерации обоих лазеров с частотами ω_1 и ω_2 , которые лежат в области прозрачности исследуемой среды.

Эксперименты проводились на установке, описанной в работе [7]. Две встречные волны $\mathbf{E}^{(1)}$ и $\mathbf{E}^{(2)}$ с частотами ω_1 и ω_2 распространялись в образцах аморфных диэлектриков, находящихся при комнатной температуре. Волна $\mathbf{E}^{(1)}$ (излучение второй гармоники Nd:YAG-лазера, работающего на одной продольной моде, $\lambda_1 = 532$ нм, ширина спектра излучения $< 0.01 \text{ сm}^{-1}$) имела круговую поляризацию и интенсивность около 60 MBT/см², перестраиваемое по длине волны (500–545 нм) излучение лазера на красителе $\mathbf{E}^{(2)}$ с интенсивностью не более 10 MBT/см² было линейно поляризовано. Частота повторения импульсов генерации лазеров составляла 1 Гц, длительность импульса около 10 нс. При такой поляризации взаимодействующих волн в сигнале, определяемом нелинейностью (1), отсутствует нерезонансный вклад от электронной подсистемы среды [6].

Поскольку орты поляризации волны сигнала $\mathbf{E}_{\mathbf{S}}$ на частоте ω_s и волны $\mathbf{E}^{(2)}$ неколлинеарны, а их направления распространения совпадают, сигнал четырехфотонного рассеяния выделялся призмой Глана. Ширина аппаратной функции спектрометра (около 0.12 см⁻¹) и возможный спектральный диапазон измерений (±10 см⁻¹) определялись выходными характеристиками лазера на красителе, который накачивался излучением третьей гармоники Nd:YAG-лазера и обеспечивал перестройку длины волны излучения $\mathbf{E}^{(2)}$ по программе, задаваемой в компьютере. Для каждого значения частоты ω_s проводилось усреднение сигнала по 10–30 отсчетам, затем частота лазера на красителе перестраивалась автоматически с шагом около 0.119 см⁻¹. Нулевая частотная отстройка привязывалась по резонансам Бриллюэна, дальнейшая перестройка длины волны контролировалась по модам интерферометра Фабри-Перо с базой 7 мм. Ошибка измерения амплитуды сигнала четырехфотонного рассеяния задавалась программно и обычно не превышала 10 %. Точность измерения частот резонансов определялась шириной аппаратной функции спектрометра $(0.12 \text{ cm}^{-1}).$

На рис. 1 изображен спектр четырехфотонного рассеяния в плавленом кварце КУ толщиной 20 мм в диапазоне от -1.2 см^{-1} до 1.2 см^{-1} , точки отражают результат эксперимента, сплошная кривая — расчетный спектр. Стрелками разного вида на рис. 1 отмечены пики на частотах ± 1.1 см⁻¹ и ± 0.7 см⁻¹, относящихся к резонансам рассеяния Мандельштама-Бриллюэна на продольных и поперечных звуковых волнах в плавленом кварце [8]. Наблюдаются также дополнительные пики на частотах ± 0.96 см⁻¹ и ± 0.6 см⁻¹, отвечающие резонансам рассеяния Мандельштама-Бриллюэна в кристаллическом кварце. Это означает, что в плавленом кварце существуют локальные неоднородности, имеющие структуру кристаллического кварца. (Размер неоднородностей должен быть порядка или больше длины затухания гиперзвука в кварце, чтобы обеспечить вклад в сигнал четырехфотонного рассеяния на рис. 1.)

Отметим, что центральная часть спектра на рис. 1 (± 0.25 см⁻¹) содержит дополнительные узкие резонансы. Качественно сходная форма спектра ранее наблюдалась в низкочастотном комбинационном рассеянии лазерного излучения в фотонном кристал-

Рис. 1. Спектр четырехфотонного рассеяния в плавленом кварце КУ в диапазоне $\pm 1.2 \text{ см}^{-1}$. Стрелки LSFQ и LSQ обозначают пики рассеяния Мандельштама – Бриллюэна, соответствующие скоростям продольного звука в плавленом и кристаллическом кварце. Стрелки TSFQ и TSQ то же самое для поперечного звука. Узкие пики на частотных отстройках 0.18 см⁻¹ и 0.37 см⁻¹ соответствуют собственным модам ν_{22} и ν_{32} сферических наночастиц из SiO₂ диаметром $D \approx 800$ нм. Пики, обозначенные стрелками SS (на частотах ± 0.43 см⁻¹), вызваны четырехфотонным рассеянием на когерентных тепловых фононах. Точки — эксперимент, сплошная линия — расчет по формуле (2)

ле синтетического опала, состоящего из наночастиц диаметром 200–350 нм, которые определяют структуру этого материала [9]. Известно, что плавленый кварц не является в чистом виде аморфным и имеет ближний порядок упаковки сферических наночастиц как и в кристалле опала [9,11]. Пользуясь результатами решения уравнения на собственные значения сферических мод [12] и частотами резонансов низкочастотных мод плавленого кварца 0.18 см⁻¹ и 0.37 см⁻¹ (соответственно 5.4 и 11.1 ГГц), можно отнести наблюдаемые резонансы к собственным модам ν_{22} и ν_{32} сферических наночастиц из SiO₂ диаметром $D \approx 800$ нм.

Кроме того, на рис. 1 наблюдаются два пика на частотах ± 0.43 см⁻¹, хорошо совпадающих с резонансом Мандельштама-Бриллюэна $\Omega_{ss} =$ $= V_{SS} (2n \sin \varphi/2)/\lambda c$, на баллистических тепловых фононах (втором звуке) [3, 4, 10]. Здесь c — скорость света в вакууме, n — показатель преломления материала, φ — угол рассеяния (в нашем случае около 180°), $\lambda = 532$ нм — длина волны зондирующего излучения, $V_{SS} = V_{ST}/\sqrt{3}$ [10], $V_{ST} = 3740$ м/с — скорость поперечного звука в кварце, $V_{SS} \approx 2160$ м/с — скорость второго звука.

Расчет спектра четырехфотонного рассеяния в плавленом кварце в диапазоне ± 1.2 см⁻¹ проводился по стандартным формулам [5, 6]:

$$\chi^{(3)} = \chi^{NR} + \sum_{n} \chi_{n}^{Bl,Bt} \left(-i + \frac{\Delta \pm \Omega_{n}^{Bl,Bt}}{\Gamma_{ap}} \right)^{-1} + \sum_{n} \chi_{n}^{sph} \left(-i + \frac{\Delta \pm \Omega_{n}}{\Gamma_{ap}} \right)^{-1} + \chi^{SS} \left(-i + \frac{\Delta \pm \Omega_{SS}}{\Gamma_{ap}} \right)^{-1}, \quad I_{S} \propto |\chi^{(3)}|^{2}.$$
(2)

Здесь I_S — регистрируемый сигнал, $\chi_n^{Bl,Bt},~\chi_n^{sph},~\chi^{SS},~\chi^{NR}$ — нелинейные восприимчивости третьего порядка исследуемой среды, относящиеся соответственно к резонансам рассеяния МБ на продольном и поперечном звуке, сферическим гармоникам наносфер, тепловых фононов [3, 4] и нерезонансной электронной восприимчивости [5,6]. Частоты $\Omega_n^{Bl,Bt}$ в выражении (2) равны 1.1 см⁻¹, 0.96 см⁻¹ и 0.7 см^{-1} , 0.6 см^{-1} — для МБ-резонансов продольного и поперечного звука соответственно в плавленом и кристаллическом кварце. Здесь мы предполагали (в соответствии с данными эксперимента), что в плавленом кварце содержатся неоднородности в виде областей кристаллического кварца. Как отмечалось выше, $\Omega_{ss} = 0.43 \text{ см}^{-1}$ — частота резонанса Мандельштама-Бриллюэна при рассеянии на тепловых фононах $[3, 4], \Delta = \omega_1 - \omega_2 - частотная от$ стройка. Спектральное разрешение в наших экспериментах составляло 0.12 см^{-1} , поэтому в выражении (2) $\Gamma_{ap} = 0.06 \text{ см}^{-1}$. Спектр на рис. 1 в области ± 0.3 см⁻¹ содержит несколько узких пиков, которые по аналогии с [9] можно отнести к собственным гармоникам наносфер, наблюдаемым также в низкочастотных спектрах комбинационного рассеяния в синтетических опалах. В формуле (2) Ω_n — собственные частоты соответствующих сферических гармоник.

Рисунок 2 демонстрирует экспериментальный (точки) и расчетный (сплошная линия) спектры четырехфотонного рассеяния в образце стекла K8 толщиной 50 мм. Стрелками отмечены пики, соответствующие резонансам Мандельштама-Бриллюэна продольного и поперечного звука в стекле K8: $\Omega_{LS} = V_{LS}(2n\sin\varphi/2)/\lambda c, V_{LS} = 5660 \text{ м/с},$ $\Omega_{LS} = 1.15 \text{ см}^{-1}; \ \Omega_{TS} = V_{TS}(2n\sin\varphi/2)/\lambda c,$ $V_{TS} = 3420 \text{ м/с}, \ \Omega_{TS} = 0.7 \text{ см}^{-1}.$ Стрелкой (R) отмечен максимум, соответствующий рассеянию на флуктуациях энтропии $\Omega_R = 0$, стрелками (SS),

Рис. 2. Спектр четырехфотонного рассеяния в стекле K8 в диапазоне ± 1.25 см⁻¹. Точки — эксперимент, сплошная линия — расчет по формуле (2). Стрелки LS и TS обозначают резонансы Мандельштама – Бриллюэна, соответствующие скоростям продольного и поперечного звука в стекле K8. Стрелкой (R) отмечен максимум, соответствующий рассеянию на флуктуациях энтропии $\Omega_R = 0$, стрелками (SS), ($\Omega_{ss} = V_{SS}(2n\sin\varphi/2)/\lambda c$, $V_{SS} = 2160$ м/с, $\Omega_{ss} = \pm 0.43$ см⁻¹) — четырехфотонное рассеяние на тепловых фононах в стекле K8

отмечены резонансы ($\Omega_{ss} = V_{SS} (2n \sin \varphi/2)/\lambda c$, $V_{SS} = 2160 \text{ м/c}$, $\Omega_{ss} = \pm 0.43 \text{ см}^{-1}$) четырехфотонного рассеяния на тепловых фононах в стекле K8. Тепловые фононы индуцируются тепловой решеткой, вызванной взаимодействием волн накачки и бегущей по образцу со скоростью второго звука. На рис. 3 изображена центральная часть спектра четырехфотонного рассеяния лазерного излучения в стекле K8.

Проведем простые оценки амплитуды dT локального нагрева образца стекла K8 под действием лазерного излучения в наших экспериментах. Будем считать, что в адиабатическом приближении за время лазерного импульса (10 нс) диссипации тепла не происходит. Учтем также, что в силу прозрачности стекла на длине волны 532 нм, соответствующей волнам накачки ω_1 и ω_2 в наших экспериментах, механизмом образования тепловой решетки является электрокалорический эффект [12]. Количество тепла ΔQ , выделяемого в диэлектрике в результате электрокалорического нагрева, составляет

Рис. 3. Центральная часть спектра четырехфотонного рассеяния лазерного излучения в стекле К8

$$\Delta Q = \frac{T}{2} \left(\frac{\partial(\eta V)}{\partial T} \right)_p E^2, \tag{3}$$

где E — напряженность внешнего электрического поля, V — объем диэлектрика, в котором происходит четырехфотонное взаимодействие. В наших экспериментах это цилиндр длиной примерно 5 мм и диаметром примерно 0.2 мм, при температуре образца T = 295 К и факторе коррекции на внутреннее поле $\eta = (\varepsilon + 2)/3$. Используя $\Delta Q = C_v m \, dT$, где $C_v = 0.67 \, \text{Дж} \cdot \text{г}^1 \cdot \text{K}^{-1}$ — теплоемкость стекла K8, m — масса объема диэлектрика, в котором происходит взаимодействие волн накачки, получаем

$$dT = \frac{1}{8\pi} (U_1 U_2)^{1/2} \frac{T\beta(\varepsilon + 2)}{\varepsilon \rho C_v V} \,. \tag{4}$$

Здесь $U_1 = 2 \cdot 10^{-2}$ Дж и $U_2 = 10^{-3}$ Дж, импульсная энергия волн накачки с частотами ω_1 и ω_2 , $\beta = 2 \cdot 10^{-5}$ K⁻¹ — коэффициент теплового расширения, $\varepsilon = 3.8$ — диэлектрическая проницаемость стекла K8 [8]. Из соотношения (4) следует $dT = 1.5 \cdot 10^{-2}$ K, что много больше амплитуды статистических флуктуаций температуры $\langle \Delta T^2 \rangle^{1/2} \approx 0.5 \cdot 10^{-9}$ K при T = 300 K [13].

Волновое уравнение для тепловых фононов, возникающих под действием внешнего лазерного поля в прозрачном аморфном диэлектрике, вытекает из законов сохранения энергии и импульса для тепловых фононов [3, 14]:

$$C_v \dot{T} + \nabla q = \Delta Q \exp\left[i\left((\omega_1 - \omega_2)t - (k_1 - k_2)Z\right)\right],$$

$$\frac{\partial q}{\partial t} + \frac{1}{\tau}q + \frac{C_v V_{TS}^2}{3}\nabla T = 0.$$
(5)

Здесь ΔQ определено в формуле (3), $T = T_0 + \delta T$, T_0 — температура термостата, δT — изменение температуры, q — импульс теплового фонона, V_{TS} — скорость поперечного звука в среде, C_v — теплоемкость диэлектрика при постоянном объеме, τ — время жизни теплового фонона. Дифференцируя первое уравнение (5) по времени, а второе по координате, исключая из уравнений q, приходим к волновому уравнению с вынуждающей силой в правой части:

$$\ddot{T} + \frac{1}{\tau} \dot{T} - \frac{V_{TS}^2}{3} \nabla^2 T = \frac{\Delta Q}{C_v} \left(i(\omega_1 - \omega_2) + \frac{1}{\tau} \right) \times \exp\left[i \left((\omega_1 - \omega_2) t - (k_1 - k_2) Z \right) \right].$$
(6)

Отсюда получаем

$$\delta T = \frac{\Delta Q}{C_v} \left(i(\omega_1 - \omega_2) + \frac{1}{\tau} \right) \times \\ \times \left((k_1 - k_2)^2 \frac{V_{TS}^2}{3} - (\omega_1 - \omega_2)^2 + \frac{i}{\tau} (\omega_1 - \omega_2) \right)^{-1}.$$
(7)

Из уравнения (7) видно, что при распространении тепловой решетки со скоростью $V_{TS}/\sqrt{3}$ происходит резонансное возрастание δT (плотности тепловых фононов), т. е. имеет место синхронная перекачка энергии лазерного поля в энергию тепловых фононов.

Экспериментальный спектр четырехфотонного рассеяния в стекле K8 (точки) и смоделированный по формулам (2), изображены на рис. 3 в диапазоне ± 0.5 см⁻¹. На спектрах ясно видны пик (R) на нулевой частоте (рассеяние на флуктуациях энтропии, стоячая тепловая решетка), и два пика (SS) на частотах ± 0.43 см⁻¹, соответствующие рассеянию на тепловых фононах, порождаемых движущейся со скоростью второго звука в стекле K8 тепловой решеткой.

Таким образом, получены спектры четырехфотонного рассеяния лазерного излучения в таких прозрачных аморфных диэлектриках как плавленый кварц и оптическое стекло К8 в спектральном интервале ± 1.2 см⁻¹. В плавленом кварце обнаружены (рис. 1) резонансы рассеяния Мандельштама – Бриллюэна на фононах продольного и поперечного звука плавленого и кристаллического кварца. В том же материале обнаружены резонансы, относящиеся к собственным модам сферических наночастиц диаметром $D \approx 800$ нм.

С помощью четырехфотонного взаимодействия в прозрачных аморфных диэлектриках при комнатной температуре обнаружено возбуждение когерентных тепловых фононов, распространяющихся в среде со скоростью второго звука. Принципиальное отличие данного способа возбуждения и регистрации тепловых фононов в диэлектриках от ранее известных [3, 4] состоит в том, что источник тепла (решетка взаимодействующих лазерных волн) перемещается в среде со скоростью тепловых фононов. Такой механизм существенно снижает требования к оптическому качеству среды и температуре образца для возбуждения фононов, поскольку для регистрации факта взаимодействия теплового фонона с лазерным полем фонон не должен распространяться на макроскопические расстояния.

Прикладной аспект регистрации когерентных тепловых фононов при комнатной температуре вытекает из физики взаимодействия этих фононов с материалом при их распространении [3]. Высокая чувствительность фононов к любым примесям, в том числе изотопам, а также нарушению гомогенности среды позволяет в четырехфотонном процессе неразрушающим способом диагностировать образцы по параметру затухания — ширине резонансного пика на частоте второго звука, а также по его амплитуде. Существенным отличием представленного подхода является возможность проведения такой диагностики не в ограниченном объеме криостата при криогенной температуре (до 20 К), а при комнатной температуре в прозрачных образцах любых размеров. Очевидно, что для достижения предельных параметров устройств на основе оптических материалов, необходимо использование особо чистых и совершенных образцов.

Таким образом, этот вид четырехфотонного рассеяния может рассматриваться как эффективный метод локального экспресс-контроля оптического качества материалов твердотельной квантовой электроники и нелинейной оптики.

Работа выполнена при частичной финансовой поддержке РФФИ (гранты №№ 09-02-01173, 08-02-00008) и в рамках программы поддержки научных школ РФ (грант № Ш-8108.2006.2).

ЛИТЕРАТУРА

- H. Poulet and J.-P. Mathieu, Vibration Spectra and Crystal's Symmetry, Gordon and Breach, Paris-London-New York (1970).
- А. Е. Чмель, А. Н. Смирнов, В. С. Шашкин, ФТТ 43, 804 (2001).
- H. E. Jackson and C. T. Walker, Phys. Rev. B 3, 1428 (1971).

- C. C. Ackerman, B. Bertman, H. A. Fairbank, and R. A. Guer, Phys. Rev. Lett. 16, 789 (1966).
- 5. Y. R. Shen, *The Principles of Nonlinear Optics*, Willey, New York (1984).
- 6. С. А. Ахманов, Н. И. Коротеев, Методы нелинейной оптики в спектроскопии рассеяния света, Наука, Москва (1981).
- A. F. Bunkin and A. A. Nurmatov, Laser Physics 13, 328 (2003).
- Физические величины, под ред. И. С. Григорьева, Е. З. Мейлихова, Энергоатомиздат, Москва (1991).
- M. H. Kuok, H. S. Lim, S. C. Ng, N. N. Liu, and Z. K. Wang, Phys. Rev. Lett. 90, 255502 (2003).

- T. Ruggeri, A. Muracchini, and L. Seccia, Phys. Rev. B 54, 332 (1996).
- N. Nishiguchi and T. Sakuma, Sol. St. Commun. 38, 1073 (1981).
- 12. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, Москва (1959), с. 79.
- 13. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Наука, Москва (1964), с. 412.
- 14. D. W. Pohl and V. Irniger, Phys. Rev. Lett. 36, 480 (1976).