ВРЕМЕННАЯ ЗАВИСИМОСТЬ ЭФФЕКТА ХАНЛЕ В ИЗЛУЧЕНИИ ТРИПЛЕТНЫХ СВЯЗАННЫХ ЭКСИТОНОВ В СЕЛЕНИДЕ ГАЛЛИЯ

А. Н. Старухин^{*}, Д. К. Нельсон, Б. С. Разбирин

Физико-технический институт им. А. Ф. Иоффе Российской академии наук 194021, Санкт-Петербург, Россия

Поступила в редакцию 15 января 2010 г.

Методом спектроскопии с временным разрешением впервые исследована динамика магнитоиндуцированной деполяризации циркулярно поляризованного излучения ориентированных по спину триплетных связанных экситонов в одноосных кристаллах (на примере GaSe). Деполяризация излучения (эффект Ханле) обусловлена различным поведением в магнитном поле σ^+ - и σ^- -компонент излучения. Установлено, что зависимости интенсивностей σ^+ - и σ^- -компонент излучения от магнитного поля существенно меняются с течением времени жизни t возбужденных состояний, при этом вид зависимости степени поляризации экситонного излучения от магнитного поля в основных чертах сохраняется при различных t. Предложено теоретическое описание наблюдаемых эффектов.

1. ВВЕДЕНИЕ

Эффекты, вызванные изменением оптических свойств среды под действием магнитного поля, широко применяются для решения фундаментальных и прикладных задач. К числу наиболее известных магнитооптических эффектов следует отнести эффект Ханле [1]. Эффект состоит в уменьшении степени поляризации света, излучаемого объектами, при помещении их во внешнее магнитное поле вследствие зависимости интенсивности излучения (в заданном направлении и в определенной поляризации) от магнитного поля. Это явление принято интерпретировать как результат пересечения и интерференции зеемановских подуровней возбужденного состояния системы в нулевом магнитном поле. Интерес к эффекту Ханле обусловлен его высокой эффективностью в исследовании энергетической структуры и кинетики возбужденных состояний в различных атомных системах, от атомов до кристаллов [2-7].

В полупроводниках исследования эффекта Ханле получили существенный импульс после открытия явлений оптической ориентации электронов и экситонов [3]. Система ориентированных экситонов излучает циркулярно поляризованный свет, состояние которого (σ^+ или σ^-) в случае оптической ориентации определяется состоянием поляризации возбуждающего света. Приложение внешнего магнитного поля **B**, перпендикулярного направлению распространения света, приводит к уменьшению степени циркулярной поляризации экситонного излучения (эффект Ханле):

$$P_{circ}(B) = \frac{I_{\sigma^-}(B) - I_{\sigma^+}(B)}{I_{\sigma^-}(B) + I_{\sigma^+}(B)}.$$
 (1)

Здесь $I_{\sigma^{\mp}}(B)$ — интенсивности компонент излучения, поляризованных соответственно по левому и правому кругу.

Деполяризация излучения ориентированных экситонов внешним магнитным полем связана с различным поведением в поле компонент излучения $I_{\sigma^{\mp}}(B)$. При непрерывном возбуждении зависимости интенсивностей σ^{\mp} -компонент излучения от магнитного поля определяются вкладами в излучение элементарных излучателей, возбужденных в различные моменты времени t, предшествующие моменту регистрации излучения:

$$I_{\sigma^{\mp}}(B) = \operatorname{const} \cdot \int_{0}^{\infty} I_{\sigma^{\mp}}(B, t) \, dt.$$
⁽²⁾

К настоящему времени характер зависимостей $I_{\sigma^{\mp}}(B,t)$ и проявление эффекта Ханле в различные

^{*}E-mail: a.starukhin@mail.ioffe.ru

моменты жизни излучающих состояний изучены мало. В данной работе на примере излучения триплетных связанных экситонов в одноосном кристалле GaSe впервые представлены результаты экспериментального исследования временной эволюции поведения σ^{\mp} -компонент излучения, $I_{\sigma^{\mp}}(B,t)$, и поляризации излучения ориентированных экситонов, $P_{circ}(B,t)$, в магнитном поле. Показано, что зависимости интенсивностей компонент излучения от магнитного поля в различные моменты жизни t связанных экситонов существенно отличаются от аналогичных зависимостей, наблюдаемых в условиях стационарного возбуждения, тогда как зависимость степени циркулярной поляризации излучения от магнитного поля в различные моменты времени t сохраняет основные черты, характерные для сигнала Ханле при непрерывном возбуждении кристалла.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Возбуждение экситонной люминесценции кристаллов осуществлялось циркулярно поляризованным (σ^+) излучением импульсного перестраиваемого по длине волны лазера на красителе (родамин 6G) с длительностью импульсов $\tau_p = 20$ нс и частотой повторения 10 кГц. Плотность возбуждения в импульсе составляла около 100 Вт/см². Возбуждающий свет с энергией фотонов $h\nu_{exc} = E_{FE} = 2.108$ эВ (Е_{FE} — энергия образования прямого свободного триплетного экситона в состоянии с n = 1 в кристалле GaSe) падал под малым углом к нормали $(\mathbf{n} \parallel z)$ к поверхности образца. Излучение регистрировалось в направлении нормали, параллельно оптической оси кристалла *с* (геометрия «на отражение»). Спектральная ширина полосы возбуждения составляла около 1 мэВ. Для регистрации спектров использовался дифракционный спектрометр, снабженный устройством счета фотонов с временным разрешением около 30 нс. Интегральный по времени спектр был измерен традиционным методом счета фотонов без временного разрешения с использованием того же импульсного лазера. В каждом случае проверялась линейность отклика системы регистрации на изменение интенсивности излучения, падающего на входную щель спектрометра. Для получения магнитных полей применялся сверхпроводящий соленоид. Во время эксперимента образцы находились в жидком гелии при температуре 2 К.

Спектр излучения кристалла GaSe в области края фундаментального поглощения при непрерыв-

Рис. 1. Спектр излучения кристалла GaSe; T = 2 K. На вставке: схема энергетических уровней триплетного экситона в GaSe в магнитном поле $\mathbf{B} \perp c$ при V = 0 (сплошные линии) и $V \neq 0$ (пунктир) (см. текст)

ном возбуждении светом с энергией фотонов $h\nu_{exc} > E_g$, где E_g — ширина запрещенной зоны, приведен на рис. 1. Наиболее коротковолновая линия спектра (FE) с максимумом вблизи $h\nu = 2.108$ эВ обусловлена излучательной аннигиляцией прямых свободных триплетных экситонов, а линии α и β с максимумами при 2.096 эВ и 2.089 эВ отвечают излучению прямых триплетных экситонов, связанных на ионизованных центрах (или изоэлектронных ловушках) [8].

При возбуждении кристалла светом с $h\nu_{exc} = E_{FE}$ спектр излучения связанных экситонов α и β сохраняет вид, приведенный на рис. 1. При возбуждении кристалла на частоте перехода в основное состояние прямого триплетного свободного экситона распределение триплетных связанных экситонов α и β по различным спиновым состояниям оказывается близким к тому, что возникает при возбуждении светом в кристалле непосредственно связанных экситонов α и β позволяет исследовать эффекты резонансного возбуждении связанных экситонов при резонансном возбуждении светом свободных экситонов при резонансном возбуждении светом свободных экситонов при резонансном возбуждении светом свободных экситонов в состоянии с n = 1.

Рис. 2. Зависимости интенсивностей компонент $\sigma^-(a)$ и $\sigma^+(b)$ излучения триплетного связанного экситона β от магнитного поля в различные моменты времени жизни t экситонов при возбуждении циркулярно поляризованным (σ^+) светом с $h\nu_{exc} = E_{FE}$. Время t указано на рисунке. Точки — экспериментальные данные, сплошные линии — расчетные зависимости; T = 2 К

В условиях стационарного возбуждения кристалла циркулярно поляризованным светом излучение связанных экситонов оказывается также циркулярно поляризованным, что указывает на оптическую ориентацию в системе связанных экситонов. (В соответствии с выражением (2) интегрированное по времени излучение фактически отвечает случаю стационарного возбуждения, что подтверждается экспериментом.) При возбуждении связанных экситонов светом с $h\nu_{exc} = E_{FE}$ степень поляризации излучения в отсутствие внешнего магнитного поля составляет $P_{circ}(0) \approx 0.2$. Отметим, что в этих же условиях степень циркулярной поляризации излучения свободных триплетных экситонов в GaSe близка к единице. Поперечное магнитное поле ($\mathbf{B} \perp c$, $\mathbf{B} \perp \mathbf{k}_{photon}$ — геометрия Фойгта) приводит к деполяризации экситонного излучения, при этом интенсивность σ^- -компоненты в поле монотонно уменьшается, а интенсивность σ^+ -компоненты возрастает.

Поскольку характер магнитооптических эффек-

тов на линиях α и β аналогичен, в дальнейшем при описании временных зависимостей этих эффектов ограничимся рассмотрением поведения линии β .

$2.1. \sigma^-$ -компонента излучения

На рис. 2*a* представлены зависимости интенсивности линии излучения β в σ^- -поляризации от магнитного поля в различные моменты времени *t* после окончания возбуждающего импульса, $I_{\sigma^-}(B,t)$. Интервал времени, в течение которого проводилась регистрация (ширина импульса ворот), составлял $\Delta t = 30$ нс.

При $t \approx 0$ интенсивность σ^- -компоненты в поле монотонно убывает примерно на 15% с ростом магнитного поля от 0 до 0.2 Тл и при дальнейшем увеличении поля практически не меняется (рис. 2а). С увеличением t поведение интенсивности σ^- -компоненты в поле меняется: она вначале уменьшается, достигает минимума, а затем вновь растет (рис. 2a, t = 0.1 мкс). При дальнейшем увеличении времени задержки относительная глубина минимума быстро уменьшается, а сам он смещается в сторону меньших полей (рис. 2a, t = 0.3 мкс), так что уже при t = 0.4 мкс во всей области полей наблюдается монотонный рост величины $I_{\sigma^{-}}(B,t)$. При t > 0.5 мкс увеличение $I_{\sigma^-}(B,t)$ в области В > 0.2 Тл сменяется спадом и в зависимости $I_{\sigma^{-}}(B,t)$ формируется широкий пик, максимум которого смещается в сторону малых полей с увеличением t. Ширина пика при этом уменьшается (рис. 2a, t = 1.5 мкс).

2.2. σ^+ -компонента излучения

При $t \approx 0$ интенсивность σ^+ -компоненты в поле монотонно увеличивается примерно на 25 % с ростом магнитного поля от 0 до 0.2 Тл и при дальнейшем увеличении поля почти не меняется (рис. 26). С увеличением t область монотонного роста $I_{\sigma^+}(B,t)$ увеличивается (рис. 26, t = 0.1, 0.3 мкс). При t > 0.5 мкс поведение компоненты излучения $I_{\sigma^+}(B,t)$ в магнитном поле почти не отличается от поведения компоненты $I_{\sigma^-}(B,t)$: в зависимости $I_{\sigma^+}(B,t)$ формируется пик, максимум которого смещается в сторону малых полей с увеличением t (рис. 26, t = 1.5 мкс).

2.3. Поляризация излучения

В условиях поляризованной накачки излучение связанных экситонов оказывается также циркуляр-

Рис. 3. Зависимость степени циркулярной поляризации излучения триплетного связанного экситона β от времени задержки t при возбуждении циркулярно поляризованным светом с $h\nu_{exc} = E_{FE}$; B = 0. Точки — экспериментальные данные, сплошные линии — расчетные зависимости; T = 2 K

но поляризованным. В отсутствие магнитного поля степень циркулярной поляризации излучения $P_{circ}(B,t)$ уменьшается со временем от $P_{circ}(0,t) \approx$ ≈ 0.2 при t = 0 до $P_{circ}(0,t) \approx 0$ при t = 1.5 мкс (рис. 3). Скорость изменения степени поляризации минимальна при малых (t < 0.3 мкс) и больших (t > 0.9 мкс) временах задержки и максимальна в интервале 0.4 мкс < t < 0.7 мкс. Приложение поперечного магнитного поля при фиксированном t также приводит к деполяризации излучения (эффект Ханле) (рис. 4). Несмотря на нетривиальное поведение в поле компонент излучения $I_{\sigma^{-}}(B,t)$ и $I_{\sigma^{+}}(B,t)$ (см. рис. 2), экспериментальная зависимость степени поляризации от магнитного поля, $P_{circ}(B,t)$ при фиксированном t характеризуется монотонным спадом степени поляризации во всем интервале полей (рис. 4). Основные черты этой зависимости (в пределах точности эксперимента) сохраняются при различных t.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для объяснения наблюдаемой временной эволюции зависимостей $I_{\sigma^{\mp}}(B,t)$ и $P_{circ}(B,t)$ рассмотрим структуру энергетических уровней триплетных связанных экситонов в GaSe. В кристаллах GaSe орбитально-невырожденное состояние экситона, связанного на ионизованном центре (или изоэлектронной ловушке), как и основное состояние прямого свободного экситона, при учете обменного взаимодействия

Рис. 4. Зависимости степени циркулярной поляризации излучения триплетного связанного экситона β от магнитного поля в различные моменты времени жизни t экситонов, а также степень поляризации интегрированного по времени излучения при возбуждении циркулярно поляризованным светом с $h\nu_{exc} = E_{FE}$. Время t указано на рисунке. Пунктирные линии — экспериментальные данные, сплошные линии — расчетные зависимости; T = 2 K

расщепляется на два состояния — синглетное и триплетное [9, 10]. Синглетные экситоны оптически активны в поляризации света $\mathbf{E} \parallel c$ и в условиях нашего эксперимента ($\mathbf{E} \perp c$) не проявляются. Триплетные экситоны характеризуются полным спином S = 1 и проекциями спина на ось $c \parallel z$: $S_z = 0, \pm 1$. При распространении света вдоль оптической оси кристалла переходы из состояний с $S_z = \pm 1$ разрешены в свете круговой поляризации σ^{\pm} , состояние с $S_z = 0$ оптически неактивно [10]. В силу анизотропии кристалла состояние с $S_z = 0$ отщеплено от состояний с $S_z = \pm 1$ на величину Δ [8, 10] (см. вставку на рис. 1).

Поперечное магнитное поле смешивает состояния $|\pm 1\rangle$ и $|0\rangle$. Магнитоиндуцированное смешивание состояний $|\pm 1\rangle$ и $|0\rangle$ приводит к «возгоранию» оптически неактивного состояния $|0\rangle$. В результате линия излучения (поглощения) экситона расщепляется в триплет. Энергии состояний триплетного экситона в поперечном магнитном поле **В** || $x \perp c$ определяются выражениями [11]

$$E_{1,2} = E_0 - 0.5 \left(\Delta \mp \sqrt{\Delta^2 + \Omega^2} \right), \quad E_3 = E_0, \quad (3)$$

где E_0 — энергия состояний $|\pm 1\rangle$ при B = 0,

Временная зависимость эффекта Ханле ...

 $\Omega = g_{\perp}\mu_0 B, g_{\perp} \equiv g_{xx} = g_{yy}$ — поперечная компонента *g*-фактора экситона, μ_0 — магнетон Бора. Оптические переходы из состояний 1 и 2 разрешены в поляризации света **E** || **B**, из состояния 3 — в поляризации **E** \perp **B**. Схема расщепления уровней энергии триплетного экситона в поперечном магнитном поле, описываемая соотношениями (3), показана на рис. 1 (вставка) сплошными линиями.

Рассмотренная модель поведения триплетного экситона в магнитном поле полностью подтверждается характером эффекта Зеемана на линиях α и β , наблюдаемого в полях B > 2 Тл [8]. Однако анализ экспериментальных данных показывает, что в области более слабых полей этой модели недостаточно и в эффективный гамильтониан триплетных экситонов в магнитном поле следует включить дополнительные слагаемые, описывающие локальное понижение симметрии системы под влиянием внутренних полей [12]. На наличие статического возмущения V, смешивающего различные спиновые состояния связанных экситонов, указывают наблюдение эффекта антипересечения спиновых подуровней триплетных связанных экситонов в магнитном поле [13–15], а также эксперименты по магнитному резонансу [16-19]. Возмущение спиновой структуры триплетного связанного экситона при B = 0 может быть обусловлено сверхтонким взаимодействием экситонного спина со спином ядер кристаллической решетки в области дефекта [13, 16–19]. В упрощенной форме это взаимодействие может быть учтено добавлением к гамильтониану триплетного экситона в магнитном поле [10] слагаемого

$$\hat{V} = \frac{1}{2} \left(\Omega'_x \hat{S}_x + \Omega'_y \hat{S}_y + \Omega'_z \hat{S}_z \right), \tag{4}$$

где \hat{S}_i — компоненты оператора экситонного спина $\hat{\mathbf{S}}$ (с S = 1), величины Ω'_i (i = x, y, z) характеризуют возмущение энергетического спектра триплетного экситона в локальном эффективном магнитном поле [12]. Например, Ω'_z есть величина расщепления состояний экситона $|\pm 1\rangle$ в нулевом внешнем поле при $\Omega'_x = \Omega'_y = 0$. Среднее значение локального эффективного магнитного поля в системе связанных экситонов (среднее по ансамблю) естественно принять равным нулю, поскольку макроскопический магнитный момент кристалла при B = 0 отсутствует.

В отсутствие внешних полей возмущение V формирует в кристалле вместо состояний $|\pm 1\rangle$ и $|0\rangle$ новые состояния a, b и c, представляющие собой суперпозицию исходных состояний. Степень смешивания исходных состояний зависит от матричных элементов $V_{mn} = \langle m | V | n \rangle$, $m, n = |+1\rangle, |-1\rangle, 0$. Волновые функции $\Psi_{a,b,c}$ состояний a, b и c в магнитном поле могут быть записаны в виде

$$\Psi_{k} = C_{1k}(B)|-1\rangle + C_{2k}(B)|+1\rangle + C_{3k}(B)|0\rangle,$$

(5)
$$k = a, b, c.$$

Энергии состояний a, b и c во внешнем магнитном поле (рис. 1, вставка), а также значения коэффициентов $C_{ik}(B)$ могут быть вычислены методом теории возмущений. Доли оптически активных состояний $|\pm 1\rangle$ в волновых функциях (5) определяют оптическую активность состояний a, b и c в свете σ^{\pm} -поляризаций, а также излучательные $\tau_{ir}(B) = [C_{1i}^2(B) + C_{2i}^2(B)]^{-1}\tau_r$ и полные $\tau_i(B) = [\tau_{ir}^{-1}(B) + \tau_0^{-1}]^{-1}$ времена жизни экситонов в этих состояниях (здесь $i = a, b, c, \tau_r$ — излучательное время жизни состояний $|\pm 1\rangle$, τ_0 — безызлучательное время жизни экситонов).

Строго говоря, в условиях резонансного возбуждения светом возбуждается когерентная суперпозиция состояний a, b и c и величины $I_{\sigma^{\mp}}(B, t)$ определяются суммой сигналов пересечения и антипересечения соответствующих подуровней [2]. Сигнал пересечения, который может быть вызван интерференцией состояний а, b, c, максимален в области наибольшего сближения соответствующих уровней, определяемого в рассматриваемом случае расщеплением уровней а и b в нулевом магнитном поле, $E_a - E_b \equiv \hbar \omega_{ab} > 0.001$ мэВ [12] (с увеличением поля расщепление уровней а, b, c только увеличивается (см. вставку на рис. 1)). При ширине импульса ворот $\Delta t~pprox~30$ нс величина $\omega_{ab}\Delta t \gg 1$. Таким образом, за время Δt когерентность состояний a, b, c успевает практически распасться $(\Delta t < \tau_a(B), \tau_b(B), \tau_c(B)$ [12]), так что вкладом эффекта пересечения уровней в интенсивность $I_{\sigma^{\mp}}(B,t)$ можно пренебречь. В этом случае рассматриваемые магнитооптические эффекты можно описать в модели антипересечения уровней *a*, *b*, *c* (в нулевом магнитном поле), не прибегая к формализму матрицы плотности. (Статическим возмущением, препятствующим вырождению (пересечению) зеемановских подуровней связанных экситонов в нулевом внешнем поле, является в данном случае локальное поле V, см. вставку на рис. 1.)

При резонансном возбуждении экситонов циркулярно поляризованным светом (σ^+) вероятность рождения экситонов в состояниях a, b, c равна $C_{1i}^2(B)\tau_r^{-1}$ (i = a, b, c). В нашем эксперименте связанные экситоны α и β образуются в результате захвата ионизованными центрами рожденных светом свободных триплетных экситонов, спиновое состояние которых в значительной степени сохраняется в процессе захвата [8]. Мы рассмотрим более общий случай, предполагая, что при захвате свободного триплетного экситона, находящегося в определенном зеемановском состоянии, он с вероятностью γ переходит в идентичное зеемановское состояние связанного экситона и с вероятностью $(1 - \gamma)/2$ в два других. При возбуждении экситонов короткими импульсами света ($\tau_p \ll \tau_{a,b,c}$), поляризованного по правому кругу, интенсивности излучения связанных экситонов в *i*-м зеемановском состоянии (i = a, b, c) в пренебрежении спиновой релаксацией экситонов можно записать в виде

$$I_{\sigma^{+}}^{i}(B,t) \propto n_{0i}(B)C_{1i}^{2}(B)\tau_{r}^{-1}\exp\left[-t/\tau_{i}(B)\right],$$

$$I_{\sigma^{+}}^{i}(B,t) \propto n_{0i}(B)C_{2i}^{2}(B)\tau_{r}^{-1}\exp\left[-t/\tau_{i}(B)\right],$$
(6)

где $n_{0i}(B)$ — начальная заселенность *i*-го состояния (при t = 0), зависящая от интенсивности накачки. Поскольку оптические переходы из состояний *a*, *b* и *c* при B < 1 Тл спектрально не разрешаются, экспериментально наблюдается суммарное излучение

$$I_{\sigma^{-}}(B,t) = \sum_{i} I_{\sigma^{-}}^{i}(B,t),$$

$$I_{\sigma^{+}}(B,t) = \sum_{i} I_{\sigma^{+}}^{i}(B,t), \quad i = a, b, c.$$
(7)

Расчетные зависимости $I_{\sigma^{-}}(B,t), I_{\sigma^{+}}(B,t)$ и $P_{circ}(B,t)$ в различные моменты времени t изображены на рис. 2-4 сплошными линиями. Теоретические кривые на рис. 2-4 получены при значениях параметров $g_{\perp} = 3.7$ [8], $\tau_r = 0.1$ мкс [12, 15], $\tau_0 =$ = 7 мкс [12,15], Δ = 0.038 мэВ [15], $|V_{-1-1}|$ = $|V_{+1+1}| = 0.0005$ M9B, $|V_{0-1}| = |V_{0+1}| =$ = = 0.0027 мэВ [12,15], $|V_{+1-1}| = 0$, $\gamma = 0.48$. С учетом конечной ширины $\Delta t \approx 30$ нс импульса ворот для более корректного сравнения с экспериментальными данными на рис. 2-4 приведены средние значения величин $I_{\sigma^{\pm}}(B,t)$ за промежуток времени от t до $t + \Delta t$. Сравнение теоретических и экспериментальных зависимостей показывает, что предложенная модель дает хорошее качественное и достаточно хорошее количественное описание поведения величин $I_{\sigma^{\pm}}(B,t)$ и $P_{circ}(B,t)$ в различные моменты жизни экситонов. Как отмечалось выше, расчет теоретических зависимостей выполнен в предположении, что возмущение V обусловлено локальным магнитным полем (ассоциируемым с эффективным сверхтонким магнитным полем \mathbf{B}_N), при этом полученные результаты усреднены в соответствии с условием, что среднее по ансамблю связанных экситонов значение V_{mn} равно нулю (т. е. среднее значение \mathbf{B}_N для системы связанных экситонов, $\langle \mathbf{B}_N \rangle = 0$). Влияние возмущения V на энергии зеемановских подуровней связанных экситонов в магнитном поле показано пунктирными линиями на рис. 1 (вставка). Расчет показывает, что смещения подуровней вследствие возмущения V заметно превышают естественную ширину соответствующих спектральных линий, но гораздо меньше их неоднородной ширины. Тем не менее в рамках модели это влияние существенно, поскольку снимает вырождение экситонных состояний при B = 0 (см. вставку на рис. 1).

Заметная анизотропия матричных элементов |V_{ik}| в случае сверхтонкого взаимодействия экситонного спина со спином ядер кристаллической решетки в области дефекта ранее наблюдалась для триплетных связанных экситонов в фосфиде галлия [19]. Авторы работы [19] связывают это явление с особенностями взаимодействия ядер дефекта со связанным экситоном с большой энергией связи в низкосимметричном центре. Хотя энергия связи экситона β на дефекте относительно велика (близка к энергии связи свободного экситона в GaSe, равной 20 мэВ), для понимания причин полученной в нашем случае анизотропии $|V_{ik}|$ требуется более детальная информация о структуре дефекта. Отметим также, что смешивание состояний $|\pm 1\rangle$ и $|0\rangle$, приводящее к расщеплению различных спиновых состояний триплетных связанных экситонов при В = 0 (подобно показанному на рис. 1 пунктирной линией) может индуцироваться и локальным электрическим полем [12].

Возможность смешивания различных спиновых состояний триплетных связанных экситонов локальным электрическим полем связана с его действием на координатные части волновых функций $|\pm 1\rangle$ и 0, которые различны. Это различие наглядно проявляется, в частности, в различии правил отбора для оптических переходов из состояний $|\pm 1\rangle$ и $|0\rangle$. Однако возмущение исходной спиновой структуры триплетного связанного экситона только локальным электрическим полем не позволяет объяснить в рамках используемой модели существование циркулярной поляризации экситонного излучения (в условиях циркулярно поляризованной накачки) при B = 0. Формально это связано с тем, что состояния $|+1\rangle$ и |-1) входят в формируемые электрическим полем состояния a, b, c с равными весами. Это не так при выборе V в форме (4), причем наиболее существенным в этом отношении является наличие в выражении (4) последнего слагаемого $\Omega'_z \hat{S}_z$ (определяющего величины $|V_{-1-1}|$, $|V_{+1+1}|)^{1}$. Однако модель не исключает вклад локального электрического поля в смешивание состояний $|\pm 1\rangle$ и $|0\rangle$. Возможно именно локальное электрическое поле наряду с анизотропным сверхтонким взаимодействием ответственно за анизотропный характер V, проявляющийся в различии величин $|V_{0\pm 1}|$ и $|V_{\pm 1\pm 1}|$.

Интенсивности σ^{-} - и σ^{+} -компонент излучения, наблюдаемых в условиях непрерывного возбуждения люминесценции, определяются соотношением (2). На рис. 4 приведены результаты экспериментального измерения зависимости степени циркулярной поляризации интегрального (по времени) излучения связанных экситонов при резонансном возбуждении светом σ^{+} -поляризации от магнитного поля, $P_{circ}(B)$, и ее аппроксимация соотношением (1) с учетом (7) и (2). Как видно из рис. 4, и в этом случае наблюдается хорошее согласие теории и эксперимента.

Экспериментально наблюдаемые особенности поведения поляризованной магнитолюминесценции связанных экситонов допускают в рамках рассмотренной модели простое качественное объяснение. При B = 0 одно из состояний, a или b, является почти «чистым» состоянием $|-1\rangle$, другое — состоянием $|+1\rangle$; состояние с практически совпадает с безызлучательным состоянием $|0\rangle$, вклад состояний |±1) в волновую функцию этого состояния при В = 0 мал. В силу оптических правил отбора для экситонных переходов возбуждение кристалла циркулярно поляризованным светом приводит к преимущественному заселению состояния с наибольшей долей состояния $|-1\rangle$ или $|+1\rangle$ (в зависимости от знака поляризации), например а, вследствие чего в системе связанных экситонов возникает отличный от нуля макроскопический момент («оптическая ориентация экситонов»). Вследствие доминирующего вклада наиболее заселенного состояния а в люминесценцию связанных экситонов, их излучение будет также преимущественно циркулярно поляризовано, что и наблюдается в эксперименте.

Как показано выше, степень циркулярной поляризации экситонного излучения при B = 0, $P_{circ}(0,t)$, падает с течением времени. Этот эффект в значительной степени связан с различными временами жизни излучающих состояний a, b, c. Состоя-

¹⁾ Отметим, что впервые предположение о наличии продольной составляющей локального эффективного магнитного поля, действующего на связанные экситоны α и β , было выдвинуто в работе [8] с целью объяснить отсутствие при B = 0эффекта оптического выстраивания экситонов α и β при их возбуждении линейно поляризованным светом.

ния *a* и *b*, основной вклад в формирование которых при B = 0 вносят оптически активные состояния $|\pm 1\rangle$, характеризуются существенно меньшими временами жизни, чем состояние *c*: $\tau_{a,b}(0) \ll \tau_c(0)$ (напомним, что $\tau_r \ll \tau_0$). Поэтому с течением времени в излучении связанных экситонов начинает доминировать вклад наиболее долгоживущего (хотя оптически и наименее активного) состояния *c*, в волновой функции которого состояния $|-1\rangle$ и $|+1\rangle$ представлены практически с равным весом.

Таким образом, уменьшение $P_{circ}(0,t)$ с увеличением t объясняется увеличением относительного вклада в $I_{\sigma^{\pm}}(B,t)$ излучения из состояния c, которое происходит с практически равной вероятностью в обеих поляризациях, σ^- и σ^+ . Теоретическая зависимость $P_{circ}(0,t)$ приведена выше на рис. 4. Как видно из рисунка, она находится в хорошем качественном согласии с экспериментом. Отметим, что в рамках используемой модели деполяризация экситонного излучения в нулевом магнитном поле происходит даже без участия процессов спин-решеточной релаксации в системе экситонов и фактически вызвана локальным полем V.

В свою очередь, деполяризация излучения ориентированных связанных экситонов в магнитном поле при фиксированном t обусловлена дополнительным (по отношению к локальному полю V) магнитоиндуцированным смешиванием исходных состояний $|\pm 1\rangle$ и $|0\rangle$. По мере увеличения *B* относительные вклады состояний $|-1\rangle$ и $|+1\rangle$ в волновые функции состояний *а* и *b* сравниваются (для состояния *с* эти вклады практически одинаковы во всем интервале изменений магнитного поля), так что при больших В излучение из всех трех состояний с равной вероятностью происходит в свете σ^- - и σ^+ -поляризаций²⁾. Магнитоиндуцированное смешивание состояний $|\pm 1\rangle$ и $|0\rangle$ приводит также к возгоранию долгоживущего состояния с и, как следствие, к увеличению в магнитном поле полной интенсивности I_{Σ} излучения связанных экситонов, $I_{\Sigma} = I_{\sigma^{-}}(B, t) + I_{\sigma^{+}}(B, t)$ (см., например, рис. 2, t = 0.3 мкс).

4. ЗАКЛЮЧЕНИЕ

Таким образом, исследование эффекта деполяризации экситонного излучения кристалла GaSe в поперечном поле в условиях резонансного возбуждения циркулярно поляризованным светом

показало, что зависимости интенсивностей σ^-- и σ^+ -компонент излучения от магнитного поля в различные моменты жизни возбужденного состояния, $I_{\sigma^{\pm}}(B,t)$, различны и отличаются от аналогичных зависимостей, полученных в условиях, соответствующих стационарному возбуждению. Установлено, что, несмотря на значительную эволюцию вида исследованных зависимостей $I_{\sigma^{\pm}}(B,t)$ с течением времени, зависимости степени циркулярной поляризации излучения ориентированных экситонов от магнитного поля, $P_{circ}(B,t)$, качественно подобны для различных t. Предложено теоретическое описание исследованных магнитооптических эффектов, в том числе, эффекта деполяризации излучения ориентированных экситонов в магнитном поле (эффекта Ханле) в модели антипересечения спиновых подуровней связанных экситонов в нулевом магнитном поле.

Работа выполнена при поддержке РФФИ (грант № 07-02-01375).

ЛИТЕРАТУРА

- **1**. Л. Н. Новиков, Г. В. Скроцкий, Г. И. Соломахо, УФН **113**, 597 (1974).
- Е. Б. Александров, Г. И. Хвостенко, М. П. Чайка, Интерференция атомных состояний, Наука, Москва (1991).
- 3. R. Planel, Sol. St. Electron. 21, 1437 (1978).
- 4. Excitons, ed. by E. I. Rashba and M. D. Sturge, North-Holland, Amsterdam (1982).
- 5. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, Springer-Verlag (1995).
- Y. Masumoto, S. Oguchi, B. Pal, and M. Ikezawa, Phys. Rev. B 74, 205332 (2006).
- S. V. Andreev, B. R. Namozov, A. V. Koudinov et al., Phys. Rev. B 80, 113301 (2009).
- Е. М. Гамарц, Е. Л. Ивченко, Г. Е. Пикус и др., ФТТ 24, 2325 (1982).
- E. Mooser and M. Schlüter, Nuovo Cim. B 18, 164 (1973).
- **10**. Е. Л. Ивченко, Г. Е. Пикус, Б. С. Разбирин, А. Н. Старухин, ЖЭТФ **72**, 2230 (1977).
- 11. Е. М. Гамарц, Е. Л. Ивченко, Г. Е. Пикус и др., ФТТ
 22, 3620 (1980).

²⁾ В сильных полях собственными поляризациями среды являются поляризации света $\mathbf{E} \parallel \mathbf{B}$ и $\mathbf{E} \perp \mathbf{B}$ (см. вставку на рис. 1).

- A. N. Starukhin, D. K. Nelson, B. S. Razbirin, and E. L. Ivchenko, Phys. Rev. B 72, 045206 (2005).
- W. M. Chen, M. Godlewski, B. Monemar, and J. P. Bergman, Phys. Rev. B 41, 5746 (1990).
- 14. Mt. Wagner, I. A. Buyanova, N. Q. Thinh et al., Phys. Rev. B 62, 16572 (2000).
- 15. A. N. Starukhin, D. K. Nelson, and B. S. Razbirin, Phys. Rev. B 65, 193204 (2002).
- 16. E. Sorman, W. M. Chen, A. Henry et al., Phys. Rev. B 51, 2132 (1995).
- 17. A. M. Frens, M. T. Bennebroek, J. Schmidt et al., Phys. Rev. B 46, 12316 (1992).
- 18. W. M. Chen and B. Monemar, Phys. Rev. B 40, 1365 (1989).
- 19. W. M. Chen, B. Monemar, and M. Godlewski, Phys. Rev. B 37, 2564 (1988).