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ANALYSIS OF THE LOGARITHMIC SLOPE OF F2FROM THE REGGE GLUON DENSITY BEHAVIOR AT SMALL xG. R. Boroun *Physis Department, Razi University67149, Kermanshah, IranReeived November 8, 2009We study the auray of the Regge behavior of the gluon distribution funtion for an approximate relationthat is frequently used to extrat the logarithmi slopes of the struture funtion from the gluon distributionat small x. We show that the Regge behavior analysis results are omparable with HERA data and are alsobetter than other methods that expand the gluon density at distint points of expansion. We also show that forQ2 = 22:4 GeV2, the x dependene of the data is well desribed by gluon shadowing orretions to the GLRMQequation. The resulting analyti expression allows us to predit the logarithmi derivative �F2(x;Q2)=� lnQ2and to ompare the results with the H1 data and a QCD analysis �t with the MRST parameterization input.Several methods of relating the F2 saling violationsto the gluon density at low x have been suggested pre-viously [1�3℄. All the methods rely on an approximaterelation based on the assumption that quark densitiesan be negleted and the nonsinglet ontribution FNs2an safely be ignored. To investigate this, we have usedthe DGLAP evolution equations [4℄ for four �avors,dF2d lnQ2 = 5�s9� 1Zx dz G�xz ;Q2�Pqg(z); (1)where Pqg(z) = (1� z)2 + z2:In the LO (leading order), an approximate relation be-tween the gluon density at the point 2x and the loga-rithmi slopes F2 at the point x was given in [1℄ in theform dF2d lnQ2 = 5�s9� 23G(2x;Q2): (2)A similar relation based on the expansion of the gluondistribution around z = 0 was found in [2℄,dF2d lnQ2 = 5�s9� 34G�43x;Q2� : (3)*E-mail: grboroun�gmail.om

In [3℄, this expansion was derived at an arbitrary pointof expansion. In the limit x!0, the equation beomesdF2d lnQ2 = 5�s9� 23G� x1� a �32 � a� ; Q2� : (4)The better hoie a = 0:75 was suggested in [3℄, withthe result dF2d lnQ2 = 5�s9� 23G(3x;Q2): (5)All relations (2), (3), and (5) estimate the logarith-mi slopes F2 with respet to the gluon distributionfuntion at the points 2x, 4x=3 and 3x. In this paper,we extend the method using the Regge tehnique. We�rst introdue the Regge behavior of the gluon distri-bution, whih an be expressed asG(x; t) = Agx��g(t); (6)where Ag is a onstant and �g is the interept(t = ln(Q2=�2)). Using this behavior, after integratingand somewhat rearranging, we �nd an approximate re-lation between dF2(x;Q2)=d lnQ2 and G(x;Q2) at thesame point x:dF2d lnQ2 = 5�s9� T (�g)G(x;Q2); (7)where T (�g) = 1Zx dz z�g (1� 2z + 2z2):642



ÆÝÒÔ, òîì 138, âûï. 4 (10), 2010 Analysis of the logarithmi slope of F2 : : :Relation (7) [5℄ helps estimate the logarithmislopes F2 in the leading logarithmi approximation.We also note that if we wish to evolve shadowingorretions to the gluon density, we an simply showthese reombinations using the Gribov�Levin�Ryskin�Mueller�Qiu (GLRMQ) equations [6; 7℄. These nonlin-ear terms redue the growth of the gluon distribution inthe kinemati region where �s is still small but the den-sity of partons beomes large. Aording to the fusionof two-gluon orretions, the evolution of the shadowingstruture funtion with respet to lnQ2 orresponds tothe modi�ed DGLAP evolution equation. We thereforehave [8℄�F s2 (x;Q2)� lnQ2 = 5�s9� T (�g)Gs � 518 27�2s160R2Q2 [Gs℄2; (8)where R is the size of the target populated by the glu-ons. The value of R depends on how the gluon laddersouple to the proton, or on how the gluons are dis-tributed within the proton. The value of R is of theorder of the proton radius (R � 5 GeV�1) if the glu-ons are spread throughout the entire nuleon, or muhsmaller (R � 2 GeV�1) if gluons are onentrated inhot spots [9℄ within the proton. We show a plot of�F2(x;Q2)=� lnQ2 in the Figure for a set of values ofx at Q2 onstant at a hot spot point R = 2 GeV�1,ompared to the values measured by the H1 ollabo-ration [10℄ and a �t to the ZEUS data inspired by theFroissart bound [11℄ based on the MRST input param-eterization [12℄.In Figure, our results for dF2=d lnQ2 obtained fromthe Regge behavior of the gluon density are omparedwith other models based on the expansion of the gluondensity. For these results, the input gluon was takenfrom MRST parameterizations. It is lear that ourresults based on this behavior are the lowest amongall the models. It also follows from Figure that theGLRMQ equation results in a tame behavior with re-spet to gluon saturation as x dereases. This shadow-ing orretion suppresses the rate of growth in ompar-ison with the DGLAP approah.To onlude, the reombination of gluons beomesdominant at high density, and must be inluded in thealulations. When the shadowing term is ombinedwith the DGLAP evolution in the double leading log-arithmi approximation, we obtain the GLRMQ equa-tion for the integrated gluon. We have therefore solvedthe DGLAP equation with the nonlinear shadowingterm inluded in order to determine the behavior ofthe gluon distribution G(x;Q2) of the proton at verysmall x. In this way, we were able to study the inter-play of the singular behavior generated by the linear
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A plot of the derivative of the struture funtion withrespet to lnQ2 vs. x for Q2 = 22:4 GeV2 with theMRST parameterization [12℄, ompared to the datafrom H1 Collaboration [10℄ (irles) with total error,and also a QCD �t [11℄ and other models [1�3℄ (dot-ted urves). Solid urves are our results with and with-out the shadowing orretion with respet to the Reggebehavior of the gluon densityterm in the equation with the taming of this behaviorby the nonlinear shadowing term. With dereasing x,we �nd that an � x��g behavior of the gluon fun-tion emerges from the GLRMQ equation. Based onour present alulations, we onlude that the behaviorof �F2(x;Q2)=� lnQ2 as measured by HERA is tamedbased on the gluon saturation at low x. Our resultsshow that the data an be desribed in PQCD takingshadowing orretions into aount.REFERENCES1. K. Prytz, Phys. Lett. B 311, 286 (1993); Phys. Lett.B 332, 393 (1994).2. K. Bora and D. K. Choudhury, Phys. Lett. B 354, 151(1995).3. M. B. Gay Duati and P. B. Gonalves, Phys. Lett.B 390, 401 (1997).4. Yu. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977);G. Altarelli and G. Parisi, Nul. Phys. B 126, 298(1977); V. N. Gribov and L. N. Lipatov, Sov. J. Nul.Phys. 15, 438 (1972).643 4*
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