
ÆÝÒÔ, 2010, òîì 138, âûï. 1 (7), ñòð. 5�15 

 2010
ON BOUND STATE COMPUTATIONS IN THREE-AND FOUR-ELECTRON ATOMIC SYSTEMSA. M. Frolov *, D. M. WardlawDepartment of Chemistry, University of Western OntarioLondon, Ontario, Canada N6A 5B7Re
eived O
tober 30, 2009A variational approa
h is developed for bound state 
al
ulations in three- and four-ele
tron atomi
 systems.This approa
h 
an be applied to determine, in prin
iple, an arbitrary bound state in three- and four-ele
tronions and atoms. Our variational wave fun
tions are 
onstru
ted from four- and �ve-body Gaussoids that respe
-tively depend on six (r12; r13; r14; r23; r24; r34) and ten (r12; r13; r14; r15; r23; r24; r25; r34; r35 and r45) relative
oordinates. The approa
h allows operating with di�erent numbers of ele
tron spin fun
tions. In parti
ular, thetrial wave fun
tions for the 1S states in four-ele
tron atomi
 systems in
lude the two independent spin fun
tions�1 = ���� + ���� � ���� � ���� and �2 = 2���� + 2���� � ���� � ���� � ���� � ����. Wealso dis
uss the 
onstru
tion of variational wave fun
tions for the ex
ited 23S states in four-ele
tron atomi
systems. 1. INTRODUCTIONWe 
onsider the ele
troni
 stru
ture of three- andfour-ele
tron atoms and ions. In parti
ular, we under-take variational 
omputations of the singlet 1S statesand triplet 3S states in various four-ele
tron atoms andions. Below, by an atomi
 system, we mean a systemthat 
ontains a number of ele
trons and one heavy nu-
leus. In the nonrelativisti
 approximation used in thisstudy, the Hamiltonian of an arbitrary (A�1)-ele
tronatomi
 system takes the form (see, e.g., [1℄)H = �12 "A�1Xi=1 r2i + 1Mr2A#�� A�1Xi=1 QriA + A�2Xi=1 A�1Xj=2(>i) 1rij ; (1)where A is the total number of bodies in the atomi
 sys-tem. In a three-ele
tron atomi
 system, A = 4. In this
ase, the subs
ripts 1, 2, 3 denote three ele
trons, whilethe subs
ript 4 denotes the positively 
harged atomi
nu
leus. For four-ele
tron systems, A = 5 in Eq. (1),and the subs
ripts 1, 2, 3, 4 denote four ele
trons, whilethe subs
ript 5 denotes the positively 
harged nu
leus.The Hamiltonian in Eq. (1) and all equations that fol-*E-mail: afrolov�uwo.
a

low are written in atomi
 units, where ~ = 1, me = 1,and e = 1. Also,ri = � ��xi ; ��yi ; ��zi�is the gradient operator of the ith parti
le (i == 1; 2; : : : ; A). The notation rij is for the relative dis-tan
e/
oordinate between ith and jth parti
les, i.e.,rij = jri� rj j = rji, where ri are the Cartesian 
oordi-nates of the ith parti
le. Also, M denotes the mass ofthe 
entral (heavy) nu
leus, and hen
e M � 1.The main goal of this work is to dis
uss some im-portant details of bound state 
al
ulations of three-and four-ele
tron atoms and ions. In parti
ular, spe-
ial attention is given to the 
orre
t symmetrizationof the four-ele
tron trial wave fun
tions that in
ludemore than one independent (ele
tron) spin fun
tion,something not 
onsidered elsewhere in the modern lit-erature. Formally, our main goal is to determinehighly a

urate solutions of the S
hrödinger equationH	 = E	, where H is the Hamiltonian in Eq. (1).It is 
lear that the permutation symmetry of the totalwave fun
tion 	 must be di�erent for the singlet andtriplet bound states in a four-ele
tron system. Theexpli
it 
onstru
tion of trial wave fun
tions with the
orre
t permutation symmetry between all three or allfour ele
trons is the prin
ipal part of any a

urate vari-ational 
al
ulation of su
h atomi
 systems.5
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omputations of three-,four- and many-ele
tron atomi
 systems with the use ofa number of di�erent spin fun
tions (whi
h, however,
orrespond to the same value of the total (ele
tron) spinSe and its z-proje
tion (Se)z) are signi�
antly more
ompli
ated than analogous 
al
ulations for two-ele
t-ron helium-like atoms and ions. On the other hand,there is an obvious similarity in 
al
ulations of three-and four-ele
tron atomi
 systems. Indeed, two di�erentspin fun
tions must be used for the ground (doublet)12S states in three-ele
tron atoms and ions. The samenumber of spin fun
tions is needed for a

urate 
ompu-tations of the 1S states in four-ele
tron atomi
 systems.We note that in any four-ele
tron atom and/or ion,all bound states are separated into two series of states:singlet states with the total ele
tron spin Se = 0, andtriplet states with the total ele
tron spin Se = 1. Inall previous works, only the ground singlet 11S statewas 
onsidered. A

urate 
omputations of the tripletstates in four-ele
tron atomi
 systems have been per-formed for a very few ions/atoms [2; 3℄. Moreover, inalmost all previous 
omputations of the singlet state infour-ele
tron (beryllium-like) atoms and ions, only onespin fun
tion�1 = ���� + ���� � ���� � ����was used. Here and everywhere below in this study,� and � are the spin-up and spin-down single-ele
tronfun
tions, i.e., �̂z� = �=2 and �̂z� = ��=2. The se-
ond independent spin fun
tion�2 = 2����+2������������������������has been ignored in almost all modern a

urate 
om-putations of the singlet states in four-ele
tron atomi
systems. Bearing this in mind, we want to develop amethod that 
an be used to perform bound state 
om-putations for the 1S (singlet) and 3S (triplet) boundstates in arbitrary four-ele
tron atoms and ions. Ourmethod is not restri
ted with respe
t to the number ofspin fun
tions in
luded. It works equally well in the
ases where one, two, three, and even more indepen-dent spin fun
tions are used.2. VARIATIONAL WAVE FUNCTIONSA 
entral feature of any variational method is the
onstru
tion of trial wave fun
tions 	 with the 
orre
tpermutation symmetry. In general, su
h a trial wavefun
tion must in
lude all ele
tron and nu
leus 
oordi-nates. A

urate wave fun
tions expli
itly depend onall s
alar interparti
le 
oordinates rij = jri � rj j in

the atomi
 system. The use of a large number of re-lative 
oordinates 
ompli
ates the expli
it symmetriza-tion of trial wave fun
tions. Another 
ompli
ation fol-lows from the presen
e of di�erent (independent) termsin the spin part of the total wave fun
tion. For in-stan
e, we dis
uss the 
ase of the singlet 1S state infour-ele
tron atomi
 systems. To 
ompute this state inthis study, we use the two independent spin fun
tions�1 = ���� + ���� � ���� � ����;�2 = 2����+2������������������������:These two fun
tions obey the relationsS2�k = 0; (Sz)�k = 0; h�ij�ki = DkÆik; (2)where k = 1; 2, Dk are normalization fa
tors of the spinfun
tions, and S = s1+s2+s3+s4 is the total ele
tronspin of the four-ele
tron system.The total wave fun
tion of the 1S(L = 0) state ofthe four-ele
tron beryllium-like atom/ion is written inthe form (see, e.g., [4; 5℄ and the referen
es therein)	L=0 =  L=0(A;�rij	)�1 + �L=0(B;�rij	)�2; (3)where  L=0(A;�rij	) and �L=0(B;�rij	) are thetwo independent radial parts (spatial parts) of thetotal wave fun
tion. For the wave fun
tion inEq. (3), S2	 = 0 and Sz	 = 0. The radial parts L=0(A;�rij	) and �L=0(B;�rij	) of the total wavefun
tion (3) are represented in the form [6℄ L=0(A;�rij	) == P1 NAXk=1Ck exp0��Xij �(k)ij r2ij1A ; (4)�L=0(B;�rij	) == P2 NBXk=1 Ck exp0��Xij �(k)ij r2ij1A ; (5)where NA and NB are the numbers of basis fun
tionsused, Ck and Ck are the linear parameters of varia-tional expansions, and �rij	 is the set of relative 
o-ordinates that are needed for 
omplete des
ription of�ve-body systems. The �(k)ij and �(k)ij denote the non-linear parameters asso
iated with the rij relative 
oor-dinate in the kth basis fun
tion. For all beryllium-likeions and atoms 
onsidered in this paper, the notation�rij	 stands for ten relative 
oordinates r12, r13, r14,r15, r23, r24, r25, r34, r35, and r45. The radial basis6



ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010 On bound state 
omputations : : :fun
tions in Eqs. (4) and (5) are 
alled the �ve-bodyGaussoids of ten relative 
oordinates. This name wasused in [6℄, where these basis fun
tions were inventedfor nu
lear few-body systems.The main advantage of the radial fun
tions de�nedin Eqs. (4) and (5) follows from the fa
t that the for-mulas for all matrix elements do not depend expli
-itly on the total number of parti
les in the system. Inother words, these formulas are essentially the samefor three-, four-, �ve- and many-body systems, and aredis
ussed in the next se
tion.The symbols A and B in Eqs. (4) and (5) meanthat there are two di�erent sets of nonlinear param-eters: ea
h of the basis fun
tions in Eqs. (4) and (5)
ontains ten nonlinear parameters, whi
h are optimizedindependently. The summation over (ij) = (ji) in theexponents of Eqs. (4) and (5) is taken over all possibledi�erent pairs of parti
les. In general, the radial basisfun
tions are not orthogonal to ea
h other. The pro-je
tors P1 and P2 produ
e trial wave fun
tions withthe 
orre
t permutation symmetry between all ele
-trons (see below). The symbol L in Eq. (4) is used forthe total angular momentum of the 
onsidered system.For the ground state of any beryllium-like system, wealways have L = 0 and the total ele
tron spin of su
hstates is equal to zero. Furthermore, the parity of thesestates in the four-ele
tron systems is even. These statesare therefore often denoted as 1Se, or 11Se states.For the triplet 3S states in four-ele
tron atomi
 sys-tems, there also exist two independent spin fun
tions,�1 = ���������; �2 = 2��������������:We note that there are, in fa
t, two independent tripletsof the spin fun
tions, and hen
e the total number ofele
tron spin fun
tions is 2 � 3 = 6. The above fun
-tions �1 and �2 
orrespond to the values Se = 1 and(Se)z = 1. Using the expli
it form of these two spinfun
tions, we 
an 
onstru
t the four remaining spinfun
tions with Se = 1 and (Se)z = 0 (two fun
tions),and Se = 1 and (Se)z = �1 (two fun
tions). In a
tual
al
ulations of the internal atomi
 stru
ture, we 
an re-stri
t ourselves to the use of the two spin fun
tions �1and �2 only. All the six spin fun
tions are needed onlyin some spe
ial 
ases, e.g., if an external magneti
 �eldis present.It is interesting to �nd that the total variationalwave fun
tion 	 of three-ele
tron atoms and ions is alsorepresented in form (3). In this 
ase, �1 = ���� ���and �2 = 2��� � ��� � ���, while the two indepen-dent radial parts depend on the six relative 
oordinatesr12; r13; r23; r14; r24, and r34 (here, the indi
es 1, 2, 3refer to three ele
trons, and 4 to the nu
leus). The

radial basis fun
tions 
an also be 
hosen in form (4)and (5). In this 
ase, ea
h of the radial basis fun
tions
ontains six nonlinear parameters. We also note thatfor ea
h of the spin fun
tions, we have S2�i = (3=4)�iand (S)z�i = (1=2)�i (with i = 1, 2). Expli
it 
on-stru
tions of the variational wave fun
tions for three-and four-ele
tron atomi
 systems are dis
ussed below.3. MATRIX ELEMENTSA
tual 
omputation of matrix elements with thefour- and �ve-body Gaussoids is Eqs. (4) and (5)is based on analyti
 formulas derived elsewhere (see,e.g., [6; 7℄). It was mentioned already in [6℄ that theexpli
it expressions for all matrix elements needed forthe solution of the S
hrödinger equation depend on thetotal number of parti
lesA in the system as a numeri
alparameter. In other words, the expressions for matrixelements in three-ele
tron systems 
oin
ide with the
orresponding formulas for matrix elements obtainedfor four- and �ve- and many-ele
tron systems. More-over, in some few-body systems, one of the ele
trons
an be repla
ed by another parti
le, e.g., by ��, butsu
h a repla
ement does not 
hange the expli
it formu-las for matrix elements. Below, the symbol A denotesthe total number of parti
les (i.e., bodies) in the sys-tem. An A-parti
le atomi
 system in
ludes the (A�1)-ele
tron subsystem plus one heavy nu
leus. The A-parti
le muoni
 atom/ion 
ontains the (A�2)-ele
tronsubsystem, one negatively 
harged muon ��, and oneheavy nu
leus.The expli
it formulas for all matrix elements neededin 
omputations of A-parti
le atomi
 systems 
an bepresented in a very brief form with the use of the 
om-pa
t notationh�j = h�(k)j = exp0�� AXi>j=1�kijr2ij1A ;j�i = j�(`)i = exp0�� AXi>j=1�ìjr2ij1A : (6)In this notation, the symbols j�i and j�i (or h�j andh�j) denote the radial basis fun
tions, di�erently fromthe meaning of � and � used in other se
tions of thispaper, where they denote spin-up and spin-down fun
-tions.In the notation de�ned in Eq. (6), the overlap ma-trix element h�j�i is written in the formh�j�i = h�(k)j�(`)i = �3(A�1)=2D�3=2; (7)7



A. M. Frolov, D. M. Wardlaw ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010where D is the determinant of the (A � 1) � (A � 1)matrix B̂ with the matrix elementsbii = AXj 6=i(�kij + �ìj); i 6= j = 1; 2; : : : ; A� 1;bij = �(�kij + �ìj); i 6= j = 1; 2; : : : ; A� 1: (8)In parti
ular, the expli
it expression for the (k; `) ma-trix element of the overlap matrix Ŝ for A = 5 is the4 � 4 matrix B̂ with matrix elements bij de�ned inEq. (8). Analyti
 and/or numeri
al 
omputations ofthe determinant of this matrix and all its �rst-orderderivatives are straightforward.The formula for the appropriate matrix elements ofthe potential energy 
an be written asX(ij)h�jV (rij )j�i = 4p� h�j�iXij 1Z0 V  xrDijD !�� exp(�x2)x2dx; (9)where Dij = �D��ij = �D��ij ;with (ij) = (ji) = (12), (13), (23), (14), (24), (34) forA = 4 and (ij) = (ji) = (12), (13), (14), (15), : : : ,(35), (45) for A = 5. The expli
it expressions for var-ious interparti
le potentials often used in bound state
al
ulations 
an be found in [6℄. The integral in thelast formula is 
omputed analyti
ally in many a
tual
ases, in
luding the 
ase of Coulomb, Yukawa-type, ex-ponential, and os
illator potentials. The kineti
 energymatrix elements take the formh�jT j�i = 32D �� 24 AXijk=1 �ik�jkmk (Dik +Djk �Dij)35 h�j�i; (10)where mi (i = 1; 2; : : : ; A) are the masses of the par-ti
les and i 6= j 6= k. The expli
it formulas for ma-trix elements of other operators written in the basis ofmany-dimensional Gaussoids 
an be found elsewhere(see, e.g., [6; 7℄).If all formulas needed for matrix elements of thepotential and kineti
 energies are known, then the so-lution of the in
ident S
hrödinger equation is redu
edto the generalized eigenvalue problemNX�=1�H�;� �ES�;��C� = 0 (11)

for � = 1; : : : ; N , where N is the total number of basisfun
tions used. Here,H�;� = T�;� + V�;� = h�jT j�i+ h�jV j�iis the Hamiltonian matrix, T�;� = h�jT j�i and V�;� == h�jV j�i are respe
tively the matri
es of the kineti
and potential energies. The S�;� = h�j�i matrix inEq. (11) is the overlap matrix (7). For nonorthogonalbasis sets, the overlap matrix is a typi
al dense matrix,i.e., all of its elements di�er from zero in general. More-over, it 
an be shown that the overlap matrix h�j�i isa symmetri
, positive de�nite matrix. This means thatall eigenvalues of the overlap matrix are positive.4. ANTISYMMETRIZATION OF THE TRIALWAVE FUNCTIONSWe 
onsider the antisymmetrization of the trialwave fun
tions and the related antisymmetrization ofthe 
orresponding matrix elements derived in the pre-vious se
tion. As mentioned above, the 
orre
t anti-symmetrization is a 
entral part of the 
onstru
tion ofexpli
itly 
orrelated, trial wave fun
tions. In general,su
h a wave fun
tion depends on all ele
tron�nu
leusand ele
tron�ele
tron 
oordinates. In two-ele
tronatoms and ions, the antisymmetrization of the totalwave fun
tion is a trivial problem, sin
e the wave fun
-tion of the two-ele
tron system is always representedas a produ
t of a radial and a two-ele
tron spin fun
-tions. Moreover, only singlet and triplet spin fun
tionsare possible in any two-ele
tron atom and/or ion. Thesinglet states have the spin fun
tion �1 = �����, andthe triplet states have three spin fun
tions �(1)2 = ��,�(2)2 = �� + ��, and �(3)2 = ��. For the singlet spinfun
tion, S2�1 = 0 and Sz�1 = 0, and for the tripletspin fun
tions, S2�(i)2 = 2�(i)2 and Sz�(i)2 = �i�(i)2 ,where �1 = 1, �2 = 0, and �3 = �1.We note that the singlet spin fun
tion �1 is antisym-metri
 with respe
t to the ele
tron variables. There-fore, its produ
t with a symmetri
 radial fun
tion pro-du
es a fun
tion that is totally antisymmetri
 with re-spe
t to all ele
tron variables. It is 
lear that su
h afun
tion 
an be regarded as a total wave fun
tion withthe 
orre
t permutation symmetry between two ele
-trons. For triplet states, the 
orresponding radial fun
-tion must be antisymmetri
 with respe
t to all ele
tron(spatial) 
oordinates.In 
ontrast with two-ele
tron systems, the antisym-metrization of three-ele
tron wave fun
tions is a sig-ni�
antly more 
omplex pro
ess be
ause not one buta number of di�erent independent spin fun
tions exist8
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omputations : : :for the same spin state. This statement is true evenfor the doublet states with S = 1=2 and Sz = �1=2in any three-ele
tron atomi
 system. In a
tual 
om-putations, su
h spin fun
tions are usually 
hosen tobe orthogonal to ea
h other. For instan
e, any vari-ational expansion written for the doublet 2S statesin a three-ele
tron atomi
 system must in
lude thetwo independent spin fun
tions �1 = ��� � ��� and�2 = 2��� � ��� � ���. The total wave fun
tionfor the ground doublet 12S(L = 0) state of the three-ele
tron atomi
 system is written as (see, e.g., [8; 9℄)	L=0 =  L=0(A;�rij	)(��� � ���) ++ �L=0(B;�rij	)(2��� � ��� � ���); (12)where  L=0(A;�rij	) and �L=0(B;�rij	) are the twoindependent spatial parts. The symbols A and B indi-
ate that the two sets of nonlinear parameters asso
i-ated with  and � are optimized independently.We note that ea
h of these two spin fun
tions �1and �2 satis�es the equationsS2�k = S(S + 1)�k = 34�k; (S)z�k = 12�k; (13)where k = 1, 2, S = s1 + s2 + s3 is the total ele
-tron spin of the three-ele
tron system, and Sz is itsz-proje
tion. Equations (13) indi
ate 
learly that thetwo spin fun
tions �1 and �2 are equally important inthis variational method. Therefore, we 
annot negle
tany of these spin fun
tions a priori. This means thatin any of our 
al
ulations for a three-ele
tron atomi
system, we have to appropriately use the two di�er-ent radial fun
tions and two spin 
on�gurations �1 and�2. The expli
it 
onstru
tion of the trial wave fun
tionsfor three-ele
tron atomi
 systems with two independentspin fun
tions is more 
ompli
ated than in the 
ase ofone spin fun
tion, and the solution to this problem isbased on the method of proje
tion operators dis
ussedbelow.4.1. Three-ele
tron atomi
 systems. DoubletstatesWe suppose that our trial wave fun
tion for a three-ele
tron atomi
 system is written in form (12). In realappli
ations, however, only the trial fun
tions that havethe 
orre
t permutation symmetry between all identi-
al parti
les, i.e., ele
trons, are a

epted. This meansthat the two terms in the right-hand side of Eq. (12)must be 
ompletely antisymmetri
 with respe
t to spinand spatial 
oordinates of the three ele
trons, i.e., withrespe
t to the indi
es 1, 2, and 3 in our notation. In

other words, we must have Âe	 = �	, where 	 isgiven by Eq. (12) and Âe is the three-parti
le antisym-metrizer [10; 11℄Âe = 16(ê� P̂12 � P̂13 � P̂23 + P̂123 + P̂132): (14)Here, ê is the identity permutation and P̂ij is the per-mutation of the ith and jth parti
les. Analogously, theoperator P̂ijk is the permutation of the ith, jth andkth parti
les. The same notation is used everywhere inwhat follows.By using the three-parti
le antisymmetrizer inEq. (14), we 
an 
onstru
t a trial wave fun
tion withthe 
orre
t permutation symmetry. In reality, weneed not the wave fun
tion itself but the matrix el-ements with the 
orre
t permutation symmetry. Wedes
ribe the approa
h that allows obtaining properlysymmetrized matrix elements. First, we note that theexpe
tation value of an arbitrary totally symmetri
 op-erator W is written in the formhÂeX i(Ai;�rij	)�ijW jÂe ��X j(Aj ;�rij	)�ji; (15)where �i are the spin fun
tions (i = 1; : : : ; Ns). Thespin fun
tions �1 and �2 are assumed to be orthog-onal to ea
h other, i.e., h�ij�ji = Æij . The notation i(Ai;�rij	) is for the 
orresponding radial fun
tionsthat depend on all relative 
oordinates �rij	 and non-linear parameters Ai. These radial fun
tions 
an bearbitrary, and are not ne
essarily orthogonal to ea
hother. The operatorW is a di�erential operator writtenin the relative 
oordinates. It is assumed to be totallysymmetri
 with respe
t to all inter-ele
tron permuta-tions.Next, we note that the totally symmetri
 operatorW 
ommutes with the Âe operator in Eq. (14). More-over, the operator Âe is an orthogonal proje
tor [12℄,i.e., (Âe)2 = Âe and (Âe)� = Âe, where B� is theoperator 
onjugate to B. If the operator W is inde-pendent of spin variables, then these properties of Âeallow redu
ing Eq. (15) to the formXi Xj h i(Ai;�rij	)jW jÂe j(Aj ;�rij	)i �� h�ijÂej�ji: (16)This expe
tation value 
an be rewritten in another formwith the use of the matrix notation[�(W )℄ij = h�ijÂej�ji[W Âe℄ij ; (17)9
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or-responding matrix. The matrix elements of �(W ) 
om-puted on any basis set of spatial three-ele
tron wavefun
tions have the 
orre
t permutation symmetry be-tween all identi
al parti
les. The size of the [�(W )℄ijmatrix is equal to the number of spin fun
tions used in
al
ulations.First, we 
ompute the matrix elements of the Âe op-erator. Based on Eq. (17), this operator 
an be writtenin the form �(ê), where ê is the unit operator. We notethat Âe 
an be written asÂe =Xab
 sab
P̂ab
; (18)where sab
 are integers and P̂ab
 are the interparti
lepermutations in the system of three identi
al parti
les.The sum in Eq. (18) is 
omputed over all interparti-
le permutations possible in three-body systems, as inEq. (14). The (ij) matrix element of Âe in our basis is[Âe℄ij =Xab
 sab
h�ijP̂ab
j�jiP̂ab
: (19)In the 
ase of the (ij) matrix element of the �(W )operator, we �nd[�(W )℄ij =Xab
 sab
h�ijP̂ab
j�jiWP̂ab
 ==W hXab
 sab
h�ijP̂ab
j�jiP̂ab
i: (20)We note that both the expe
tation value h�ijP̂ab
j�jiand sab
 are integers for all ab
, while the operatorPab
 is a proje
tor that a
ts on the spatial 
oordinatesof the three ele
trons (a! b! 
). In other words, theÂe operator is represented as a �nite sum of all spatialpermutations P̂ab
 with integer 
oe�
ients equal to theprodu
ts of the sab
 in Eq. (18), and the h�ijP̂ab
j�jiexpe
tation values. The 
omputation of all expe
tationvalues h�ijP̂ab
j�ji = h�ijP̂ab
�ji
an be regarded as the integration over ele
tron spin
oordinates.Based on Eq. (20), we 
an introdu
e the operatorP = DXab
 sab
h�ijP̂ab
j�jiP̂ab
; (21)where D is a normalization 
onstant. The numeri
alvalue of D is determined by the idempoten
y of P ,P2 = P . The expli
it use of this operator substantiallysimpli�es the formulas in what follows. For instan
e,

the (�; �) matrix element of any arbitrary totally sym-metri
 operator W 
an be written ashP�jW jP�i = h�jPWPj�i == h�jWPj�i = h�jW jP�i; (22)where � and � are nonsymmetri
 basis fun
tions. Thismatrix element has the 
orre
t permutation symmetrybetween all ele
trons. This is the main advantage of
onstru
ting the orthogonal spatial proje
tor P in ex-pli
it form.In a
tual 
omputations of the doublet 2S states inthree-ele
tron atomi
 systems after the integration overele
tron spin 
oordinates, we �nd the four spatial pro-je
torsP  = 12p3�2ê+2P̂12�P̂13�P̂23�P̂123�P̂132�; (23)P � = 12�P̂13 � P̂23 � P̂123 + P̂132�; (24)P� = 12�P̂13 � P̂23 � P̂123 + P̂132�; (25)P�� = 12p3�2ê�2P̂12+P̂13+P̂23�P̂123�P̂132�; (26)where the indi
es  and � 
orrespond to the notationfor radial fun
tions used in Eq. (12). Ea
h of theseproje
tors produ
es matrix elements between the tworadial basis fun
tions from Eq. (12) with the 
orre
tpermutation symmetry. We note that the two proje
-tors P � and P� 
oin
ide with ea
h other. It 
an alsobe shown that the three proje
tors P  , P �, and P��are orthogonal to ea
h other. In a
tual 
omputations,only the upper triangles of the Hamiltonian and overlapmatri
es are used. Therefore, only the three proje
torsP  , P �, and P�� are important in 
omputations ofthe bound doublet 2S states in all three-ele
tron atomi
systems.The approa
h des
ribed above allows 
onstru
tingthe spatial parts of the total variational wave fun
tionswith the 
orre
t permutation symmetry between allidenti
al parti
les in a three-ele
tron atomi
 system. Inour previous work, we have also found (see [2; 5℄) thatthe same approa
h works perfe
tly for all four-, �ve-and many-ele
tron systems. Moreover, the symmetryof the ele
tron spin fun
tions 
an also be di�erent, e.g.,for the singlet and triplet states in four-ele
tron sys-tems. Below, the variational wave fun
tions for thesinglet and triplet states in four-ele
tron atomi
 sys-tems are 
onstru
ted expli
itly. The expli
it formulasfor the spatial parts of trial wave fun
tions are derivedwith the use of the 
orresponding spatial proje
tors.10
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omputations : : :4.2. Four-ele
tron atomi
 systems. SingletstatesNumeri
al 
omputations of bound states in four-ele
tron atomi
 systems in
lude the nontrivial step ofantisymmetrization of all ele
tron variables, i.e., vari-ables 1, 2, 3, and 4 in the trial wave fun
tion 	. Thevariational wave fun
tion 	 of any singlet 1S(L = 0)state in a four-ele
tron atomi
 system is represented inthe form	L=0 =  L=0(A;�rij	)�� (���� + ���� � ���� � ����) ++ �L=0(B;�rij	)(2���� + 2������ ���� � ���� � ���� � ����); (27)where  L=0(A;�rij	) and �L=0(B;�rij	) are the twoindependent spatial parts of the total four-ele
tronwave fun
tion. The symbols A and B indi
ate that thetwo sets of nonlinear parameters asso
iated with  and� are optimized independently. Su
h a trial wave fun
-tion must be antisymmetri
 with respe
t to all ele
tronvariables, i.e., Âe	 = �	, whereÂe = ê� P̂12� P̂13� P̂23� P̂14� P̂24� P̂34+ P̂123++ P̂132 + P̂124 + P̂142 + P̂134 + P̂143 + P̂234 ++ P̂243 � P̂1234 � P̂1243 � P̂1324 � P̂1342 � P̂1423 �� P̂1432 + P̂12P̂34 + P̂13P̂24 + P̂14P̂23 (28)is the total four-parti
le antisymmetrizer. In additionto the notation explained above, P̂ijkl is the permuta-tion of the parti
les i; j; k; l.Using the pro
edure des
ribed in the previous se
-tion, we 
an �nd expli
it formulas for the 
orrespondingspatial proje
tors. In fa
t, using the expli
it form [27℄of the trial wave fun
tion 	 
onstru
ted for singletstates in four-ele
tron systems and integrating overele
tron spin 
oordinates, we �nd the four spatial pro-je
torsP  = 14p3�2ê+2P̂12�P̂13�P̂23�P̂14�P̂24+2P̂34++ 2P̂12P̂34 + 2P̂13P̂24 + 2P̂14P̂23 � P̂123 � P̂132 ��P̂124�P̂142�P̂134�P̂143�P̂234�P̂243�P̂1234�P̂1243++ 2P̂1324 � P̂1342 � P̂1432 + 2P̂1423�; (29)P � = 14�P̂13�P̂23�P̂14+P̂24+P̂123�P̂132�P̂124++ P̂142 + P̂134 � P̂143 � P̂234 + P̂243 ++ P̂1234 � P̂1243 � P̂1342 + P̂1432�; (30)

P� = P �; (31)P�� = 14p3�2ê� 2P̂12 + P̂13 + P̂23 + P̂14 + P̂24 �� 2P̂34 + 2P̂12P̂34 + 2P̂13P̂24 + 2P̂14P̂23 �� P̂123 � P̂132 � P̂124 � P̂142 � P̂134 � P̂143 �� P̂234 � P̂243 + P̂1234 + P̂1243 �� 2P̂1324 + P̂1342 + P̂1432 � 2P̂1423�: (32)In reality, be
ause P � = P� , we need to use onlythree su
h operators P  , P �, and P��. The use ofthese three proje
tors for matrix elements allows pro-du
ing matrix elements with the 
orre
t permutationstru
ture among all four identi
al parti
les. We notethat all su
h matrix elements are 
omputed only be-tween the 
orresponding spatial basis fun
tions anddo not in
lude any spin fun
tion. The expli
it for-mulas for the 
omplete set of singlet spatial proje
torsfor four-ele
tron atomi
 systems, Eqs. (29)�(32), havenot been presented in previous publi
ations. The �rstbound state 
omputations of four-ele
tron atomi
 sys-tems with the use of 
ompletely 
orrelated wave fun
-tions were performed in [13℄. Sin
e then, many authorshave 
ondu
ted su
h 
al
ulations for singlet states invarious four-ele
tron systems (see, e.g., [5℄ and the ref-eren
es therein).4.3. Four-ele
tron atomi
 systems. TripletstatesThe trial wave fun
tion of the triplet 3S state inthe four-ele
tron atomi
 system 
an also be representedin the form with the two independent spin fun
tions�1 = ��������� and �2 = 2��������������.The variational expansion takes the form	 =  L=0(A;�rij	)(���� � ����) ++ �L=0(B;�rij	)(2���� � ���� � ����); (33)where  L=0(A;�rij	) and �L=0(B;�rij	) are the ra-dial parts of the total wave fun
tion. Here, �rij	 de-notes the 
omplete set of �fteen interparti
le (spatial)
oordinates, and the symbols A and B denote the 
or-responding sets of nonlinear parameters. Optimiza-tion of nonlinear parameters in the A and/or B setsis performed independently. The trial wave fun
tion inEq. (33) 
ontains two ele
tron spin fun
tions �1 and �2that 
orrespond to the S = 1 and Sz = 1 values.For triplet states, using the expli
it form of the �1and �2 fun
tions, we 
an easily �nd the four other spin11
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tions that 
orrespond to the S = 1 and Sz = 0,and to S = 1 and Sz = �1 values. For instan
e, inthe 
ase of the �1 = �(+1)1 spin fun
tion, the two spinfun
tions�(0)1 = ���� + ���� � ���� � ����;�(�1)1 = ���� � ����respe
tively 
orrespond to S = 1 and Sz = 0, and toS = 1 and Sz = �1. The three spin fun
tions �(+1)1 ,�(0)1 , �(�1)1 form a regular triplet of spin fun
tions. Ananalogous triplet of spin fun
tions 
an be 
onstru
tedfor the �2 spin fun
tion. To des
ribe experimental sit-uations without an external magneti
 �eld, we need touse the spin fun
tions asso
iated with one value of Sz,e.g., Sz = 1. We therefore always 
hoose�1 = (�� � ��)�� = ���� � ����;�2 = 2����� ���� � ����(see Eq. (33) above).In 
al
ulations with trial wave fun
tion (33), theexpli
it formulas for all three radial proje
tors P  ,P� (= P �), and P�� must be known. However, nu-meri
al 
al
ulations using a wave fun
tion with twospin fun
tions are 
omputationally intensive and werenot attempted in the 
urrent study. A

ordingly, wedid not attempt to derive the asso
iated proje
tors. In-stead, we performed some 
omputations of the tripletstates in four-ele
tron atomi
 systems with the use ofone spin fun
tion �1 = �(+1)1 = ���� � ���� only.The variational expansion in Eq. (33) is then writtenin the form	 =  L=0(A;�rij	)(�� � ��)�� ==  L=0(A;�rij	)(���� � ����): (34)Now, we need to obtain the spatial part of the totalwave fun
tion with the 
orre
t permutation symmetrybetween all identi
al parti
les 1, 2, 3, and 4. The 
or-responding spatial proje
tor is obtained by 
al
ulatingthe expli
it expression for the spin expe
tation valueP  = CXab
d sab
dh(�� � ��)��jP̂ab
dj �� (�� � ��)��iP̂ab
d; (35)where C is a normalization fa
tor and the integers sab
dare de�ned from the expli
it form of the total four-parti
le antisymmetrizer Âe in Eq. (28). After somealgebra, we �nd the expli
it formula for the 
orrespond-ing spatial proje
tor

P  = 12p6�2ê+ 2P̂12 � P̂13 � P̂23 � P̂14 � P̂24 �� 2P̂34 � 2P̂12P̂34 � P̂123 � P̂124 � P̂132 � P̂142 ++ P̂134 + P̂234 + P̂243 + P̂143 + P̂1432 + P̂1234 ++ P̂1243 + P̂1342�: (36)This proje
tor 
reates the spatial part of an arbitrarymatrix element needed in bound state 
omputationsof the triplet 3S states in an arbitrary four-ele
tronatomi
 system. Su
h a matrix element has the 
or-re
t permutation symmetry among all four identi
alparti
les (ele
trons). Expli
it formulas for the spatialproje
tors 
orresponding to the triplet states have notbeen published previously.Using the formulas presented above, we 
an performa

urate 
omputations of triplet bound states in vari-ous four-ele
tron atomi
 systems. As follows from ourresults of su
h 
al
ulations (see, e.g., [2℄), the methoddes
ribed above allows determining various expe
tationvalues in four-ele
tron atomi
 systems to a relativelyhigh numeri
al a

ura
y. In parti
ular, su
h expe
ta-tion values 
an be 
omputed for all positive and nega-tive powers of the relative 
oordinates rij . In general,the expe
tation value of any regular fun
tion of the tenrelative 
oordinates rij 
an be 
omputed to a very goodnumeri
al a

ura
y. Analogous expe
tation values 
on-taining delta-fun
tions of the relative 
oordinates andtheir produ
ts with the regular fun
tions of the relative
oordinates also do not present any problem for numer-i
al 
omputations. Real problems arise in 
omputa-tions of expe
tation values that in
lude produ
ts of del-ta-fun
tions with the 
orresponding ele
tron spin fun
-tions, e.g., h�iÆNii and h�i�jÆNiÆNji, where N refersto the nu
leus and i to the ith ele
tron. The �rst ex-pe
tation value h�iÆNii represents the single-ele
trondensity of �-ele
trons on the atomi
 nu
leus. Analo-gous expe
tation values 
an be 
omputed in the 
aseof �-ele
trons. A very poor 
onvergen
e of su
h expe
-tation values means that another spin fun
tion mustbe in
luded in 
omputations. In Eq. (33), su
h a spinfun
tion is 
alled the se
ond (ele
tron) spin fun
tion �2.5. GENERALIZATION TO THE FIVE- ANDSIX-ELECTRON ATOMIC SYSTEMSThe method des
ribed above allows 
onstru
tingthe properly antisymmetrized trial fun
tions for three-and four-ele
tron atomi
 systems. Formally, ourmethod 
an be generalized to the �ve-, six-, and ma-ny-ele
tron atomi
 systems. However, its dire
t gene-ralization is very di�
ult, sin
e the proper antisym-12
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omputations : : :metrization of the trial basis fun
tions and their linear
ombinations be
omes extremely di�
ult in the 
aseof many-ele
tron atoms with A � 1 � 5 ele
trons. To
onstru
t the trial wave fun
tions for �ve-, six-, andmany-ele
tron atoms, di�erent interparti
le permuta-tions must be applied to a nonsymmetrized basis fun
-tion. The presen
e of a very large number of terms inea
h wave fun
tion drasti
ally 
ompli
ates the expli
itexpressions for the spatial proje
tors mentioned above.For instan
e, su
h a spatial proje
tor 
onstru
ted forthe B atom (�ve-ele
tron atom) must in
lude 120 dif-ferent terms. Some of these terms 
an be equal to zeroidenti
ally, but in any 
ase the total number of remain-ing terms is still very large. Therefore, it is importantto develop some e�e
tive methods that 
an be usedto operate with a very large number of terms in trialwave fun
tions. Our 
urrent hopes rely on the twofollowing methods. The �rst is based on the use of var-ious symboli
-algebra 
omputational platforms su
h asMaple [14℄. In this approa
h, all integrations over spinvariables 
an be performed analyti
ally. The expres-sions for all spatial proje
tors are never written expli
-itly, but they are used internally by this 
omputationalplatform. We also note that for some basis sets, thea
tion of any interparti
le permutation P̂ab
::: on thebasis wave fun
tions redu
es to the permutation of the
orresponding nonlinear parameters in these fun
tions.In parti
ular, this is the 
ase for the variational ex-pansion de�ned by Eqs. (4) and (5). This means thata
tual permutations of the nonlinear parameters in thebasis wave fun
tions 
an always be applied instead ofthe permutation of the relative 
oordinates. This dras-ti
ally simpli�es the expli
it 
onstru
tion of the totallysymmetrized trial wave fun
tions. The permutation ofthe nonlinear parameters in the basis wave fun
tions
an be 
ombined with the analyti
 integration over spinvariables in the total wave fun
tion. This 
an be usedin the future methods.The se
ond method is based on the relations thatexist for the spin fun
tions in three-, four-, and ma-ny-ele
tron systems. For instan
e, the se
ond spinfun
tion �2 used in numeri
al 
omputations of thetriplet states of four-ele
tron systems is obtained fromthe �2 spin fun
tion known for the doublet statesin three-ele
tron systems. Formally, we 
an write�2(1; 2; 3; 4) = �2(1; 2; 3)�(4), where �(4) is the spinfun
tion of the additional (fourth) ele
tron. Thenotation �2(1; 2; 3) is for the se
ond spin fun
tionof the doublet state in the three-ele
tron system,and �2(1; 2; 3; 4) means the se
ond triplet spin fun
-tion of the four-ele
tron system. A similar relationexists between another (�rst) triplet spin fun
tion of

the four-ele
tron atomi
 systems, �1(1; 2; 3; 4), and�1(1; 2; 3) used above (see Eq. (12)) for the doubletstates in three-ele
tron atoms/ions. By studying thisand other similar relations between spin fun
tions, we
an �nd some useful 
onne
tions between the spatialproje
tors 
onstru
ted for three- and four-ele
tron sys-tems. This approa
h 
an also simplify methods andalgorithms to be developed in the future for systemswith �ve or more ele
trons.6. NUMERICAL RESULTSTo illustrate our method in appli
ations to a
tualthree- and four-ele
tron atomi
 systems, we brie�y de-s
ribe the results of variational 
omputations of boundstates in the three-ele
tron Be+ ion in its 12S state andthe four-ele
tron Be atom in its 11S and 23S states.For simpli
ity, all nu
lear masses were assumed to bein�nite in su
h 
al
ulations. A separate group of 
al-
ulations have been performed for the 23S ele
tronstate in the six-body oxygen�muoni
 ion O8+��e�4 .This positively 
harged ion (q = +3) is a well-boundatomi
 system that 
ontains the 
omposite �nu
leus�(O8+ + ��) with the overall �nu
lear� 
harge +7 andfour atomi
 ele
trons. Below, we 
onsider the 16O nu-
leus only. In our 
al
ulations of the O8+��e�4 ion, weused M = 29156:9457me for the mass of the oxygen-16nu
leus and m� = 206:768262me [15; 16℄.Numeri
al results of our 
omputations are given inthe Table, where we list the total energies E and someother bound state properties expressed in atomi
 units.The ele
tron state of ea
h atomi
 system is shown inthe following bra
kets. For the O8+��e�4 ion, the no-tation 23Se stands for the triplet ele
tron state. Themuoni
 quasinu
leus O8+ + �� is in its ground 11Sstate. This is always assumed, but not shown in ournotation. For ea
h energy shown, only nine de
imaldigits are presented. In general, optimization of thenonlinear parameters in variational expansions (4) and(5) always de
reases the total energies. On the otherhand, small variations in a few last de
imal digits arenot 
riti
ally important for our present purposes.As follows from the Table, our method provides verygood numeri
al a

ura
y for doublet states in three-ele
tron atoms and ions. This method also works per-fe
tly for singlet and triplet four-ele
tron atomi
 sys-tems. It is very likely that the analogous pro
edure 
anbe developed for �ve-, six-, and many-ele
tron atomi
systems. However, for atomi
 systems with �ve andmore ele
trons, a number of additional problems o

ur13
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 energies and other properties determined for the S states in some three- and four-ele
tronatoms, ions, and muoni
 ions (in atomi
 units)Be+ (12S) Be (11S) Be (23S) O8+��e�4 (23Se)E �14:3247627 �14:6673323 �14:4300595 �6619:33457hr�1eN i 2.65796 2.10684 2.03603 4.77655hr�1ee i 1.08200 0.72912 0.61933 1.26072hreN i 1.03379 1.49297 2.63085 0.98798hreei 1.75565 2.54516 4.70847 2.43483and dire
t generalization of our method is very di�
ult(see a dis
ussion in the previous se
tion).We also note that the overall 
onvergen
e rates ofradial variational expansions (4) and (5) for three- andfour-ele
tron atomi
 systems are 
omparable with ea
hother. This seems to be very strange, but we needto remember that the number of nonlinear parame-ters in ea
h basis fun
tion rapidly in
reases as the to-tal number of bodies A in the system in
reases. Forfour-ele
tron atomi
 systems, ea
h of these basis fun
-tion 
ontains ten nonlinear parameters (ea
h of themvaried independently), while for three-ele
tron atomi
systems, there are only six su
h parameters in ea
hbasis fun
tion. Brie�y, this means that the overall ��e-xibility� of the four-ele
tron trial fun
tion is 
ompara-ble with the analogous ��exibility� of the three-ele
trontrial fun
tions. 7. CONCLUSIONWe have 
onsidered the problem of a

urate 
om-putations of bound states in three- and four-ele
tronatomi
 systems. The method developed in this studyallows 
onstru
ting variational wave fun
tions for anarbitrary bound state in three- and four-ele
tronatomi
 systems. All su
h trial wave fun
tions havethe 
orre
t permutation symmetry (with respe
t to allpermutations of identi
al parti
les, i.e., ele
trons). It isimportant to note that the total number of independentspin fun
tions 
an be varied in our method. Numeri
al
omputations 
an start with the use of one ele
tron spinfun
tion only. The se
ond spin fun
tion 
an be intro-du
ed later to improve the overall 
onvergen
e of theresults. Our pro
edure 
an be generalized to boundstates with a nonzero angular momentum L. Su
h ageneralization is straightforward, but it requires exten-sive use of additional notation, appli
ation of spe
ialmethods developed in the theory of angular momen-

tum, and substantial explanations. Variational 
al
u-lations of the bound P (L = 1) states in �ve-ele
tronatomi
 systems will be 
onsidered in our next study.The ground state of the B-atom is the P (L = 1) state.Our method is based on expli
it 
onstru
tions ofthe total wave fun
tions for various bound states inthree- and four-ele
tron atomi
 systems. The uni�edpro
edure has been applied to an example of ea
htype of system. The 
entral part of the pro
edure isthe 
onstru
tion of spatial proje
tors with the 
orre
tpermutation symmetry between all identi
al parti
les(ele
trons). This method was originally developed forthree-ele
tron atomi
 systems in [8℄ (see also [9℄). Wegeneralized this pro
edure to the 
ases where a numberof different spin fun
tions are used in 
omputations.In addition, we have 
onstru
ted spatial proje
torsneeded in 
al
ulations of the singlet and triplet boundstates in four-ele
tron atomi
 systems. Currently, thetotal energies and other properties of bound states infour-ele
tron atomi
 systems 
an be determined to thea

ura
y that is better than the a

ura
y of old boundstate 
al
ulations performed for two-ele
tron atomi
systems [17℄. In general, using various optimizationstrategies for nonlinear parameters in the trial wavefun
tions allows very a

urate variational energies andhighly a

urate wave fun
tions to be obtained. Su
hwave fun
tions 
an be used in a

urate 
omputationsof di�erent bound state properties, in
luding variousrelativisti
 and QED 
orre
tions.It is a pleasure to thank the University of WesternOntario for �nan
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