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ON BOUND STATE COMPUTATIONS IN THREE-AND FOUR-ELECTRON ATOMIC SYSTEMSA. M. Frolov *, D. M. WardlawDepartment of Chemistry, University of Western OntarioLondon, Ontario, Canada N6A 5B7Reeived Otober 30, 2009A variational approah is developed for bound state alulations in three- and four-eletron atomi systems.This approah an be applied to determine, in priniple, an arbitrary bound state in three- and four-eletronions and atoms. Our variational wave funtions are onstruted from four- and �ve-body Gaussoids that respe-tively depend on six (r12; r13; r14; r23; r24; r34) and ten (r12; r13; r14; r15; r23; r24; r25; r34; r35 and r45) relativeoordinates. The approah allows operating with di�erent numbers of eletron spin funtions. In partiular, thetrial wave funtions for the 1S states in four-eletron atomi systems inlude the two independent spin funtions�1 = ���� + ���� � ���� � ���� and �2 = 2���� + 2���� � ���� � ���� � ���� � ����. Wealso disuss the onstrution of variational wave funtions for the exited 23S states in four-eletron atomisystems. 1. INTRODUCTIONWe onsider the eletroni struture of three- andfour-eletron atoms and ions. In partiular, we under-take variational omputations of the singlet 1S statesand triplet 3S states in various four-eletron atoms andions. Below, by an atomi system, we mean a systemthat ontains a number of eletrons and one heavy nu-leus. In the nonrelativisti approximation used in thisstudy, the Hamiltonian of an arbitrary (A�1)-eletronatomi system takes the form (see, e.g., [1℄)H = �12 "A�1Xi=1 r2i + 1Mr2A#�� A�1Xi=1 QriA + A�2Xi=1 A�1Xj=2(>i) 1rij ; (1)where A is the total number of bodies in the atomi sys-tem. In a three-eletron atomi system, A = 4. In thisase, the subsripts 1, 2, 3 denote three eletrons, whilethe subsript 4 denotes the positively harged atominuleus. For four-eletron systems, A = 5 in Eq. (1),and the subsripts 1, 2, 3, 4 denote four eletrons, whilethe subsript 5 denotes the positively harged nuleus.The Hamiltonian in Eq. (1) and all equations that fol-*E-mail: afrolov�uwo.a

low are written in atomi units, where ~ = 1, me = 1,and e = 1. Also,ri = � ��xi ; ��yi ; ��zi�is the gradient operator of the ith partile (i == 1; 2; : : : ; A). The notation rij is for the relative dis-tane/oordinate between ith and jth partiles, i.e.,rij = jri� rj j = rji, where ri are the Cartesian oordi-nates of the ith partile. Also, M denotes the mass ofthe entral (heavy) nuleus, and hene M � 1.The main goal of this work is to disuss some im-portant details of bound state alulations of three-and four-eletron atoms and ions. In partiular, spe-ial attention is given to the orret symmetrizationof the four-eletron trial wave funtions that inludemore than one independent (eletron) spin funtion,something not onsidered elsewhere in the modern lit-erature. Formally, our main goal is to determinehighly aurate solutions of the Shrödinger equationH	 = E	, where H is the Hamiltonian in Eq. (1).It is lear that the permutation symmetry of the totalwave funtion 	 must be di�erent for the singlet andtriplet bound states in a four-eletron system. Theexpliit onstrution of trial wave funtions with theorret permutation symmetry between all three or allfour eletrons is the prinipal part of any aurate vari-ational alulation of suh atomi systems.5



A. M. Frolov, D. M. Wardlaw ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010In general, bound state omputations of three-,four- and many-eletron atomi systems with the use ofa number of di�erent spin funtions (whih, however,orrespond to the same value of the total (eletron) spinSe and its z-projetion (Se)z) are signi�antly moreompliated than analogous alulations for two-elet-ron helium-like atoms and ions. On the other hand,there is an obvious similarity in alulations of three-and four-eletron atomi systems. Indeed, two di�erentspin funtions must be used for the ground (doublet)12S states in three-eletron atoms and ions. The samenumber of spin funtions is needed for aurate ompu-tations of the 1S states in four-eletron atomi systems.We note that in any four-eletron atom and/or ion,all bound states are separated into two series of states:singlet states with the total eletron spin Se = 0, andtriplet states with the total eletron spin Se = 1. Inall previous works, only the ground singlet 11S statewas onsidered. Aurate omputations of the tripletstates in four-eletron atomi systems have been per-formed for a very few ions/atoms [2; 3℄. Moreover, inalmost all previous omputations of the singlet state infour-eletron (beryllium-like) atoms and ions, only onespin funtion�1 = ���� + ���� � ���� � ����was used. Here and everywhere below in this study,� and � are the spin-up and spin-down single-eletronfuntions, i.e., �̂z� = �=2 and �̂z� = ��=2. The se-ond independent spin funtion�2 = 2����+2������������������������has been ignored in almost all modern aurate om-putations of the singlet states in four-eletron atomisystems. Bearing this in mind, we want to develop amethod that an be used to perform bound state om-putations for the 1S (singlet) and 3S (triplet) boundstates in arbitrary four-eletron atoms and ions. Ourmethod is not restrited with respet to the number ofspin funtions inluded. It works equally well in theases where one, two, three, and even more indepen-dent spin funtions are used.2. VARIATIONAL WAVE FUNCTIONSA entral feature of any variational method is theonstrution of trial wave funtions 	 with the orretpermutation symmetry. In general, suh a trial wavefuntion must inlude all eletron and nuleus oordi-nates. Aurate wave funtions expliitly depend onall salar interpartile oordinates rij = jri � rj j in

the atomi system. The use of a large number of re-lative oordinates ompliates the expliit symmetriza-tion of trial wave funtions. Another ompliation fol-lows from the presene of di�erent (independent) termsin the spin part of the total wave funtion. For in-stane, we disuss the ase of the singlet 1S state infour-eletron atomi systems. To ompute this state inthis study, we use the two independent spin funtions�1 = ���� + ���� � ���� � ����;�2 = 2����+2������������������������:These two funtions obey the relationsS2�k = 0; (Sz)�k = 0; h�ij�ki = DkÆik; (2)where k = 1; 2, Dk are normalization fators of the spinfuntions, and S = s1+s2+s3+s4 is the total eletronspin of the four-eletron system.The total wave funtion of the 1S(L = 0) state ofthe four-eletron beryllium-like atom/ion is written inthe form (see, e.g., [4; 5℄ and the referenes therein)	L=0 =  L=0(A;�rij	)�1 + �L=0(B;�rij	)�2; (3)where  L=0(A;�rij	) and �L=0(B;�rij	) are thetwo independent radial parts (spatial parts) of thetotal wave funtion. For the wave funtion inEq. (3), S2	 = 0 and Sz	 = 0. The radial parts L=0(A;�rij	) and �L=0(B;�rij	) of the total wavefuntion (3) are represented in the form [6℄ L=0(A;�rij	) == P1 NAXk=1Ck exp0��Xij �(k)ij r2ij1A ; (4)�L=0(B;�rij	) == P2 NBXk=1 Ck exp0��Xij �(k)ij r2ij1A ; (5)where NA and NB are the numbers of basis funtionsused, Ck and Ck are the linear parameters of varia-tional expansions, and �rij	 is the set of relative o-ordinates that are needed for omplete desription of�ve-body systems. The �(k)ij and �(k)ij denote the non-linear parameters assoiated with the rij relative oor-dinate in the kth basis funtion. For all beryllium-likeions and atoms onsidered in this paper, the notation�rij	 stands for ten relative oordinates r12, r13, r14,r15, r23, r24, r25, r34, r35, and r45. The radial basis6



ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010 On bound state omputations : : :funtions in Eqs. (4) and (5) are alled the �ve-bodyGaussoids of ten relative oordinates. This name wasused in [6℄, where these basis funtions were inventedfor nulear few-body systems.The main advantage of the radial funtions de�nedin Eqs. (4) and (5) follows from the fat that the for-mulas for all matrix elements do not depend expli-itly on the total number of partiles in the system. Inother words, these formulas are essentially the samefor three-, four-, �ve- and many-body systems, and aredisussed in the next setion.The symbols A and B in Eqs. (4) and (5) meanthat there are two di�erent sets of nonlinear param-eters: eah of the basis funtions in Eqs. (4) and (5)ontains ten nonlinear parameters, whih are optimizedindependently. The summation over (ij) = (ji) in theexponents of Eqs. (4) and (5) is taken over all possibledi�erent pairs of partiles. In general, the radial basisfuntions are not orthogonal to eah other. The pro-jetors P1 and P2 produe trial wave funtions withthe orret permutation symmetry between all ele-trons (see below). The symbol L in Eq. (4) is used forthe total angular momentum of the onsidered system.For the ground state of any beryllium-like system, wealways have L = 0 and the total eletron spin of suhstates is equal to zero. Furthermore, the parity of thesestates in the four-eletron systems is even. These statesare therefore often denoted as 1Se, or 11Se states.For the triplet 3S states in four-eletron atomi sys-tems, there also exist two independent spin funtions,�1 = ���������; �2 = 2��������������:We note that there are, in fat, two independent tripletsof the spin funtions, and hene the total number ofeletron spin funtions is 2 � 3 = 6. The above fun-tions �1 and �2 orrespond to the values Se = 1 and(Se)z = 1. Using the expliit form of these two spinfuntions, we an onstrut the four remaining spinfuntions with Se = 1 and (Se)z = 0 (two funtions),and Se = 1 and (Se)z = �1 (two funtions). In atualalulations of the internal atomi struture, we an re-strit ourselves to the use of the two spin funtions �1and �2 only. All the six spin funtions are needed onlyin some speial ases, e.g., if an external magneti �eldis present.It is interesting to �nd that the total variationalwave funtion 	 of three-eletron atoms and ions is alsorepresented in form (3). In this ase, �1 = ���� ���and �2 = 2��� � ��� � ���, while the two indepen-dent radial parts depend on the six relative oordinatesr12; r13; r23; r14; r24, and r34 (here, the indies 1, 2, 3refer to three eletrons, and 4 to the nuleus). The

radial basis funtions an also be hosen in form (4)and (5). In this ase, eah of the radial basis funtionsontains six nonlinear parameters. We also note thatfor eah of the spin funtions, we have S2�i = (3=4)�iand (S)z�i = (1=2)�i (with i = 1, 2). Expliit on-strutions of the variational wave funtions for three-and four-eletron atomi systems are disussed below.3. MATRIX ELEMENTSAtual omputation of matrix elements with thefour- and �ve-body Gaussoids is Eqs. (4) and (5)is based on analyti formulas derived elsewhere (see,e.g., [6; 7℄). It was mentioned already in [6℄ that theexpliit expressions for all matrix elements needed forthe solution of the Shrödinger equation depend on thetotal number of partilesA in the system as a numerialparameter. In other words, the expressions for matrixelements in three-eletron systems oinide with theorresponding formulas for matrix elements obtainedfor four- and �ve- and many-eletron systems. More-over, in some few-body systems, one of the eletronsan be replaed by another partile, e.g., by ��, butsuh a replaement does not hange the expliit formu-las for matrix elements. Below, the symbol A denotesthe total number of partiles (i.e., bodies) in the sys-tem. An A-partile atomi system inludes the (A�1)-eletron subsystem plus one heavy nuleus. The A-partile muoni atom/ion ontains the (A�2)-eletronsubsystem, one negatively harged muon ��, and oneheavy nuleus.The expliit formulas for all matrix elements neededin omputations of A-partile atomi systems an bepresented in a very brief form with the use of the om-pat notationh�j = h�(k)j = exp0�� AXi>j=1�kijr2ij1A ;j�i = j�(`)i = exp0�� AXi>j=1�ìjr2ij1A : (6)In this notation, the symbols j�i and j�i (or h�j andh�j) denote the radial basis funtions, di�erently fromthe meaning of � and � used in other setions of thispaper, where they denote spin-up and spin-down fun-tions.In the notation de�ned in Eq. (6), the overlap ma-trix element h�j�i is written in the formh�j�i = h�(k)j�(`)i = �3(A�1)=2D�3=2; (7)7



A. M. Frolov, D. M. Wardlaw ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010where D is the determinant of the (A � 1) � (A � 1)matrix B̂ with the matrix elementsbii = AXj 6=i(�kij + �ìj); i 6= j = 1; 2; : : : ; A� 1;bij = �(�kij + �ìj); i 6= j = 1; 2; : : : ; A� 1: (8)In partiular, the expliit expression for the (k; `) ma-trix element of the overlap matrix Ŝ for A = 5 is the4 � 4 matrix B̂ with matrix elements bij de�ned inEq. (8). Analyti and/or numerial omputations ofthe determinant of this matrix and all its �rst-orderderivatives are straightforward.The formula for the appropriate matrix elements ofthe potential energy an be written asX(ij)h�jV (rij )j�i = 4p� h�j�iXij 1Z0 V  xrDijD !�� exp(�x2)x2dx; (9)where Dij = �D��ij = �D��ij ;with (ij) = (ji) = (12), (13), (23), (14), (24), (34) forA = 4 and (ij) = (ji) = (12), (13), (14), (15), : : : ,(35), (45) for A = 5. The expliit expressions for var-ious interpartile potentials often used in bound statealulations an be found in [6℄. The integral in thelast formula is omputed analytially in many atualases, inluding the ase of Coulomb, Yukawa-type, ex-ponential, and osillator potentials. The kineti energymatrix elements take the formh�jT j�i = 32D �� 24 AXijk=1 �ik�jkmk (Dik +Djk �Dij)35 h�j�i; (10)where mi (i = 1; 2; : : : ; A) are the masses of the par-tiles and i 6= j 6= k. The expliit formulas for ma-trix elements of other operators written in the basis ofmany-dimensional Gaussoids an be found elsewhere(see, e.g., [6; 7℄).If all formulas needed for matrix elements of thepotential and kineti energies are known, then the so-lution of the inident Shrödinger equation is reduedto the generalized eigenvalue problemNX�=1�H�;� �ES�;��C� = 0 (11)

for � = 1; : : : ; N , where N is the total number of basisfuntions used. Here,H�;� = T�;� + V�;� = h�jT j�i+ h�jV j�iis the Hamiltonian matrix, T�;� = h�jT j�i and V�;� == h�jV j�i are respetively the matries of the kinetiand potential energies. The S�;� = h�j�i matrix inEq. (11) is the overlap matrix (7). For nonorthogonalbasis sets, the overlap matrix is a typial dense matrix,i.e., all of its elements di�er from zero in general. More-over, it an be shown that the overlap matrix h�j�i isa symmetri, positive de�nite matrix. This means thatall eigenvalues of the overlap matrix are positive.4. ANTISYMMETRIZATION OF THE TRIALWAVE FUNCTIONSWe onsider the antisymmetrization of the trialwave funtions and the related antisymmetrization ofthe orresponding matrix elements derived in the pre-vious setion. As mentioned above, the orret anti-symmetrization is a entral part of the onstrution ofexpliitly orrelated, trial wave funtions. In general,suh a wave funtion depends on all eletron�nuleusand eletron�eletron oordinates. In two-eletronatoms and ions, the antisymmetrization of the totalwave funtion is a trivial problem, sine the wave fun-tion of the two-eletron system is always representedas a produt of a radial and a two-eletron spin fun-tions. Moreover, only singlet and triplet spin funtionsare possible in any two-eletron atom and/or ion. Thesinglet states have the spin funtion �1 = �����, andthe triplet states have three spin funtions �(1)2 = ��,�(2)2 = �� + ��, and �(3)2 = ��. For the singlet spinfuntion, S2�1 = 0 and Sz�1 = 0, and for the tripletspin funtions, S2�(i)2 = 2�(i)2 and Sz�(i)2 = �i�(i)2 ,where �1 = 1, �2 = 0, and �3 = �1.We note that the singlet spin funtion �1 is antisym-metri with respet to the eletron variables. There-fore, its produt with a symmetri radial funtion pro-dues a funtion that is totally antisymmetri with re-spet to all eletron variables. It is lear that suh afuntion an be regarded as a total wave funtion withthe orret permutation symmetry between two ele-trons. For triplet states, the orresponding radial fun-tion must be antisymmetri with respet to all eletron(spatial) oordinates.In ontrast with two-eletron systems, the antisym-metrization of three-eletron wave funtions is a sig-ni�antly more omplex proess beause not one buta number of di�erent independent spin funtions exist8



ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010 On bound state omputations : : :for the same spin state. This statement is true evenfor the doublet states with S = 1=2 and Sz = �1=2in any three-eletron atomi system. In atual om-putations, suh spin funtions are usually hosen tobe orthogonal to eah other. For instane, any vari-ational expansion written for the doublet 2S statesin a three-eletron atomi system must inlude thetwo independent spin funtions �1 = ��� � ��� and�2 = 2��� � ��� � ���. The total wave funtionfor the ground doublet 12S(L = 0) state of the three-eletron atomi system is written as (see, e.g., [8; 9℄)	L=0 =  L=0(A;�rij	)(��� � ���) ++ �L=0(B;�rij	)(2��� � ��� � ���); (12)where  L=0(A;�rij	) and �L=0(B;�rij	) are the twoindependent spatial parts. The symbols A and B indi-ate that the two sets of nonlinear parameters assoi-ated with  and � are optimized independently.We note that eah of these two spin funtions �1and �2 satis�es the equationsS2�k = S(S + 1)�k = 34�k; (S)z�k = 12�k; (13)where k = 1, 2, S = s1 + s2 + s3 is the total ele-tron spin of the three-eletron system, and Sz is itsz-projetion. Equations (13) indiate learly that thetwo spin funtions �1 and �2 are equally important inthis variational method. Therefore, we annot negletany of these spin funtions a priori. This means thatin any of our alulations for a three-eletron atomisystem, we have to appropriately use the two di�er-ent radial funtions and two spin on�gurations �1 and�2. The expliit onstrution of the trial wave funtionsfor three-eletron atomi systems with two independentspin funtions is more ompliated than in the ase ofone spin funtion, and the solution to this problem isbased on the method of projetion operators disussedbelow.4.1. Three-eletron atomi systems. DoubletstatesWe suppose that our trial wave funtion for a three-eletron atomi system is written in form (12). In realappliations, however, only the trial funtions that havethe orret permutation symmetry between all identi-al partiles, i.e., eletrons, are aepted. This meansthat the two terms in the right-hand side of Eq. (12)must be ompletely antisymmetri with respet to spinand spatial oordinates of the three eletrons, i.e., withrespet to the indies 1, 2, and 3 in our notation. In

other words, we must have Âe	 = �	, where 	 isgiven by Eq. (12) and Âe is the three-partile antisym-metrizer [10; 11℄Âe = 16(ê� P̂12 � P̂13 � P̂23 + P̂123 + P̂132): (14)Here, ê is the identity permutation and P̂ij is the per-mutation of the ith and jth partiles. Analogously, theoperator P̂ijk is the permutation of the ith, jth andkth partiles. The same notation is used everywhere inwhat follows.By using the three-partile antisymmetrizer inEq. (14), we an onstrut a trial wave funtion withthe orret permutation symmetry. In reality, weneed not the wave funtion itself but the matrix el-ements with the orret permutation symmetry. Wedesribe the approah that allows obtaining properlysymmetrized matrix elements. First, we note that theexpetation value of an arbitrary totally symmetri op-erator W is written in the formhÂeX i(Ai;�rij	)�ijW jÂe ��X j(Aj ;�rij	)�ji; (15)where �i are the spin funtions (i = 1; : : : ; Ns). Thespin funtions �1 and �2 are assumed to be orthog-onal to eah other, i.e., h�ij�ji = Æij . The notation i(Ai;�rij	) is for the orresponding radial funtionsthat depend on all relative oordinates �rij	 and non-linear parameters Ai. These radial funtions an bearbitrary, and are not neessarily orthogonal to eahother. The operatorW is a di�erential operator writtenin the relative oordinates. It is assumed to be totallysymmetri with respet to all inter-eletron permuta-tions.Next, we note that the totally symmetri operatorW ommutes with the Âe operator in Eq. (14). More-over, the operator Âe is an orthogonal projetor [12℄,i.e., (Âe)2 = Âe and (Âe)� = Âe, where B� is theoperator onjugate to B. If the operator W is inde-pendent of spin variables, then these properties of Âeallow reduing Eq. (15) to the formXi Xj h i(Ai;�rij	)jW jÂe j(Aj ;�rij	)i �� h�ijÂej�ji: (16)This expetation value an be rewritten in another formwith the use of the matrix notation[�(W )℄ij = h�ijÂej�ji[W Âe℄ij ; (17)9



A. M. Frolov, D. M. Wardlaw ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010where [: : : ℄ij denotes the (ij)matrix element of the or-responding matrix. The matrix elements of �(W ) om-puted on any basis set of spatial three-eletron wavefuntions have the orret permutation symmetry be-tween all idential partiles. The size of the [�(W )℄ijmatrix is equal to the number of spin funtions used inalulations.First, we ompute the matrix elements of the Âe op-erator. Based on Eq. (17), this operator an be writtenin the form �(ê), where ê is the unit operator. We notethat Âe an be written asÂe =Xab sabP̂ab; (18)where sab are integers and P̂ab are the interpartilepermutations in the system of three idential partiles.The sum in Eq. (18) is omputed over all interparti-le permutations possible in three-body systems, as inEq. (14). The (ij) matrix element of Âe in our basis is[Âe℄ij =Xab sabh�ijP̂abj�jiP̂ab: (19)In the ase of the (ij) matrix element of the �(W )operator, we �nd[�(W )℄ij =Xab sabh�ijP̂abj�jiWP̂ab ==W hXab sabh�ijP̂abj�jiP̂abi: (20)We note that both the expetation value h�ijP̂abj�jiand sab are integers for all ab, while the operatorPab is a projetor that ats on the spatial oordinatesof the three eletrons (a! b! ). In other words, theÂe operator is represented as a �nite sum of all spatialpermutations P̂ab with integer oe�ients equal to theproduts of the sab in Eq. (18), and the h�ijP̂abj�jiexpetation values. The omputation of all expetationvalues h�ijP̂abj�ji = h�ijP̂ab�jian be regarded as the integration over eletron spinoordinates.Based on Eq. (20), we an introdue the operatorP = DXab sabh�ijP̂abj�jiP̂ab; (21)where D is a normalization onstant. The numerialvalue of D is determined by the idempoteny of P ,P2 = P . The expliit use of this operator substantiallysimpli�es the formulas in what follows. For instane,

the (�; �) matrix element of any arbitrary totally sym-metri operator W an be written ashP�jW jP�i = h�jPWPj�i == h�jWPj�i = h�jW jP�i; (22)where � and � are nonsymmetri basis funtions. Thismatrix element has the orret permutation symmetrybetween all eletrons. This is the main advantage ofonstruting the orthogonal spatial projetor P in ex-pliit form.In atual omputations of the doublet 2S states inthree-eletron atomi systems after the integration overeletron spin oordinates, we �nd the four spatial pro-jetorsP  = 12p3�2ê+2P̂12�P̂13�P̂23�P̂123�P̂132�; (23)P � = 12�P̂13 � P̂23 � P̂123 + P̂132�; (24)P� = 12�P̂13 � P̂23 � P̂123 + P̂132�; (25)P�� = 12p3�2ê�2P̂12+P̂13+P̂23�P̂123�P̂132�; (26)where the indies  and � orrespond to the notationfor radial funtions used in Eq. (12). Eah of theseprojetors produes matrix elements between the tworadial basis funtions from Eq. (12) with the orretpermutation symmetry. We note that the two proje-tors P � and P� oinide with eah other. It an alsobe shown that the three projetors P  , P �, and P��are orthogonal to eah other. In atual omputations,only the upper triangles of the Hamiltonian and overlapmatries are used. Therefore, only the three projetorsP  , P �, and P�� are important in omputations ofthe bound doublet 2S states in all three-eletron atomisystems.The approah desribed above allows onstrutingthe spatial parts of the total variational wave funtionswith the orret permutation symmetry between allidential partiles in a three-eletron atomi system. Inour previous work, we have also found (see [2; 5℄) thatthe same approah works perfetly for all four-, �ve-and many-eletron systems. Moreover, the symmetryof the eletron spin funtions an also be di�erent, e.g.,for the singlet and triplet states in four-eletron sys-tems. Below, the variational wave funtions for thesinglet and triplet states in four-eletron atomi sys-tems are onstruted expliitly. The expliit formulasfor the spatial parts of trial wave funtions are derivedwith the use of the orresponding spatial projetors.10



ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010 On bound state omputations : : :4.2. Four-eletron atomi systems. SingletstatesNumerial omputations of bound states in four-eletron atomi systems inlude the nontrivial step ofantisymmetrization of all eletron variables, i.e., vari-ables 1, 2, 3, and 4 in the trial wave funtion 	. Thevariational wave funtion 	 of any singlet 1S(L = 0)state in a four-eletron atomi system is represented inthe form	L=0 =  L=0(A;�rij	)�� (���� + ���� � ���� � ����) ++ �L=0(B;�rij	)(2���� + 2������ ���� � ���� � ���� � ����); (27)where  L=0(A;�rij	) and �L=0(B;�rij	) are the twoindependent spatial parts of the total four-eletronwave funtion. The symbols A and B indiate that thetwo sets of nonlinear parameters assoiated with  and� are optimized independently. Suh a trial wave fun-tion must be antisymmetri with respet to all eletronvariables, i.e., Âe	 = �	, whereÂe = ê� P̂12� P̂13� P̂23� P̂14� P̂24� P̂34+ P̂123++ P̂132 + P̂124 + P̂142 + P̂134 + P̂143 + P̂234 ++ P̂243 � P̂1234 � P̂1243 � P̂1324 � P̂1342 � P̂1423 �� P̂1432 + P̂12P̂34 + P̂13P̂24 + P̂14P̂23 (28)is the total four-partile antisymmetrizer. In additionto the notation explained above, P̂ijkl is the permuta-tion of the partiles i; j; k; l.Using the proedure desribed in the previous se-tion, we an �nd expliit formulas for the orrespondingspatial projetors. In fat, using the expliit form [27℄of the trial wave funtion 	 onstruted for singletstates in four-eletron systems and integrating overeletron spin oordinates, we �nd the four spatial pro-jetorsP  = 14p3�2ê+2P̂12�P̂13�P̂23�P̂14�P̂24+2P̂34++ 2P̂12P̂34 + 2P̂13P̂24 + 2P̂14P̂23 � P̂123 � P̂132 ��P̂124�P̂142�P̂134�P̂143�P̂234�P̂243�P̂1234�P̂1243++ 2P̂1324 � P̂1342 � P̂1432 + 2P̂1423�; (29)P � = 14�P̂13�P̂23�P̂14+P̂24+P̂123�P̂132�P̂124++ P̂142 + P̂134 � P̂143 � P̂234 + P̂243 ++ P̂1234 � P̂1243 � P̂1342 + P̂1432�; (30)

P� = P �; (31)P�� = 14p3�2ê� 2P̂12 + P̂13 + P̂23 + P̂14 + P̂24 �� 2P̂34 + 2P̂12P̂34 + 2P̂13P̂24 + 2P̂14P̂23 �� P̂123 � P̂132 � P̂124 � P̂142 � P̂134 � P̂143 �� P̂234 � P̂243 + P̂1234 + P̂1243 �� 2P̂1324 + P̂1342 + P̂1432 � 2P̂1423�: (32)In reality, beause P � = P� , we need to use onlythree suh operators P  , P �, and P��. The use ofthese three projetors for matrix elements allows pro-duing matrix elements with the orret permutationstruture among all four idential partiles. We notethat all suh matrix elements are omputed only be-tween the orresponding spatial basis funtions anddo not inlude any spin funtion. The expliit for-mulas for the omplete set of singlet spatial projetorsfor four-eletron atomi systems, Eqs. (29)�(32), havenot been presented in previous publiations. The �rstbound state omputations of four-eletron atomi sys-tems with the use of ompletely orrelated wave fun-tions were performed in [13℄. Sine then, many authorshave onduted suh alulations for singlet states invarious four-eletron systems (see, e.g., [5℄ and the ref-erenes therein).4.3. Four-eletron atomi systems. TripletstatesThe trial wave funtion of the triplet 3S state inthe four-eletron atomi system an also be representedin the form with the two independent spin funtions�1 = ��������� and �2 = 2��������������.The variational expansion takes the form	 =  L=0(A;�rij	)(���� � ����) ++ �L=0(B;�rij	)(2���� � ���� � ����); (33)where  L=0(A;�rij	) and �L=0(B;�rij	) are the ra-dial parts of the total wave funtion. Here, �rij	 de-notes the omplete set of �fteen interpartile (spatial)oordinates, and the symbols A and B denote the or-responding sets of nonlinear parameters. Optimiza-tion of nonlinear parameters in the A and/or B setsis performed independently. The trial wave funtion inEq. (33) ontains two eletron spin funtions �1 and �2that orrespond to the S = 1 and Sz = 1 values.For triplet states, using the expliit form of the �1and �2 funtions, we an easily �nd the four other spin11



A. M. Frolov, D. M. Wardlaw ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010funtions that orrespond to the S = 1 and Sz = 0,and to S = 1 and Sz = �1 values. For instane, inthe ase of the �1 = �(+1)1 spin funtion, the two spinfuntions�(0)1 = ���� + ���� � ���� � ����;�(�1)1 = ���� � ����respetively orrespond to S = 1 and Sz = 0, and toS = 1 and Sz = �1. The three spin funtions �(+1)1 ,�(0)1 , �(�1)1 form a regular triplet of spin funtions. Ananalogous triplet of spin funtions an be onstrutedfor the �2 spin funtion. To desribe experimental sit-uations without an external magneti �eld, we need touse the spin funtions assoiated with one value of Sz,e.g., Sz = 1. We therefore always hoose�1 = (�� � ��)�� = ���� � ����;�2 = 2����� ���� � ����(see Eq. (33) above).In alulations with trial wave funtion (33), theexpliit formulas for all three radial projetors P  ,P� (= P �), and P�� must be known. However, nu-merial alulations using a wave funtion with twospin funtions are omputationally intensive and werenot attempted in the urrent study. Aordingly, wedid not attempt to derive the assoiated projetors. In-stead, we performed some omputations of the tripletstates in four-eletron atomi systems with the use ofone spin funtion �1 = �(+1)1 = ���� � ���� only.The variational expansion in Eq. (33) is then writtenin the form	 =  L=0(A;�rij	)(�� � ��)�� ==  L=0(A;�rij	)(���� � ����): (34)Now, we need to obtain the spatial part of the totalwave funtion with the orret permutation symmetrybetween all idential partiles 1, 2, 3, and 4. The or-responding spatial projetor is obtained by alulatingthe expliit expression for the spin expetation valueP  = CXabd sabdh(�� � ��)��jP̂abdj �� (�� � ��)��iP̂abd; (35)where C is a normalization fator and the integers sabdare de�ned from the expliit form of the total four-partile antisymmetrizer Âe in Eq. (28). After somealgebra, we �nd the expliit formula for the orrespond-ing spatial projetor

P  = 12p6�2ê+ 2P̂12 � P̂13 � P̂23 � P̂14 � P̂24 �� 2P̂34 � 2P̂12P̂34 � P̂123 � P̂124 � P̂132 � P̂142 ++ P̂134 + P̂234 + P̂243 + P̂143 + P̂1432 + P̂1234 ++ P̂1243 + P̂1342�: (36)This projetor reates the spatial part of an arbitrarymatrix element needed in bound state omputationsof the triplet 3S states in an arbitrary four-eletronatomi system. Suh a matrix element has the or-ret permutation symmetry among all four identialpartiles (eletrons). Expliit formulas for the spatialprojetors orresponding to the triplet states have notbeen published previously.Using the formulas presented above, we an performaurate omputations of triplet bound states in vari-ous four-eletron atomi systems. As follows from ourresults of suh alulations (see, e.g., [2℄), the methoddesribed above allows determining various expetationvalues in four-eletron atomi systems to a relativelyhigh numerial auray. In partiular, suh expeta-tion values an be omputed for all positive and nega-tive powers of the relative oordinates rij . In general,the expetation value of any regular funtion of the tenrelative oordinates rij an be omputed to a very goodnumerial auray. Analogous expetation values on-taining delta-funtions of the relative oordinates andtheir produts with the regular funtions of the relativeoordinates also do not present any problem for numer-ial omputations. Real problems arise in omputa-tions of expetation values that inlude produts of del-ta-funtions with the orresponding eletron spin fun-tions, e.g., h�iÆNii and h�i�jÆNiÆNji, where N refersto the nuleus and i to the ith eletron. The �rst ex-petation value h�iÆNii represents the single-eletrondensity of �-eletrons on the atomi nuleus. Analo-gous expetation values an be omputed in the aseof �-eletrons. A very poor onvergene of suh expe-tation values means that another spin funtion mustbe inluded in omputations. In Eq. (33), suh a spinfuntion is alled the seond (eletron) spin funtion �2.5. GENERALIZATION TO THE FIVE- ANDSIX-ELECTRON ATOMIC SYSTEMSThe method desribed above allows onstrutingthe properly antisymmetrized trial funtions for three-and four-eletron atomi systems. Formally, ourmethod an be generalized to the �ve-, six-, and ma-ny-eletron atomi systems. However, its diret gene-ralization is very di�ult, sine the proper antisym-12



ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010 On bound state omputations : : :metrization of the trial basis funtions and their linearombinations beomes extremely di�ult in the aseof many-eletron atoms with A � 1 � 5 eletrons. Toonstrut the trial wave funtions for �ve-, six-, andmany-eletron atoms, di�erent interpartile permuta-tions must be applied to a nonsymmetrized basis fun-tion. The presene of a very large number of terms ineah wave funtion drastially ompliates the expliitexpressions for the spatial projetors mentioned above.For instane, suh a spatial projetor onstruted forthe B atom (�ve-eletron atom) must inlude 120 dif-ferent terms. Some of these terms an be equal to zeroidentially, but in any ase the total number of remain-ing terms is still very large. Therefore, it is importantto develop some e�etive methods that an be usedto operate with a very large number of terms in trialwave funtions. Our urrent hopes rely on the twofollowing methods. The �rst is based on the use of var-ious symboli-algebra omputational platforms suh asMaple [14℄. In this approah, all integrations over spinvariables an be performed analytially. The expres-sions for all spatial projetors are never written expli-itly, but they are used internally by this omputationalplatform. We also note that for some basis sets, theation of any interpartile permutation P̂ab::: on thebasis wave funtions redues to the permutation of theorresponding nonlinear parameters in these funtions.In partiular, this is the ase for the variational ex-pansion de�ned by Eqs. (4) and (5). This means thatatual permutations of the nonlinear parameters in thebasis wave funtions an always be applied instead ofthe permutation of the relative oordinates. This dras-tially simpli�es the expliit onstrution of the totallysymmetrized trial wave funtions. The permutation ofthe nonlinear parameters in the basis wave funtionsan be ombined with the analyti integration over spinvariables in the total wave funtion. This an be usedin the future methods.The seond method is based on the relations thatexist for the spin funtions in three-, four-, and ma-ny-eletron systems. For instane, the seond spinfuntion �2 used in numerial omputations of thetriplet states of four-eletron systems is obtained fromthe �2 spin funtion known for the doublet statesin three-eletron systems. Formally, we an write�2(1; 2; 3; 4) = �2(1; 2; 3)�(4), where �(4) is the spinfuntion of the additional (fourth) eletron. Thenotation �2(1; 2; 3) is for the seond spin funtionof the doublet state in the three-eletron system,and �2(1; 2; 3; 4) means the seond triplet spin fun-tion of the four-eletron system. A similar relationexists between another (�rst) triplet spin funtion of

the four-eletron atomi systems, �1(1; 2; 3; 4), and�1(1; 2; 3) used above (see Eq. (12)) for the doubletstates in three-eletron atoms/ions. By studying thisand other similar relations between spin funtions, wean �nd some useful onnetions between the spatialprojetors onstruted for three- and four-eletron sys-tems. This approah an also simplify methods andalgorithms to be developed in the future for systemswith �ve or more eletrons.6. NUMERICAL RESULTSTo illustrate our method in appliations to atualthree- and four-eletron atomi systems, we brie�y de-sribe the results of variational omputations of boundstates in the three-eletron Be+ ion in its 12S state andthe four-eletron Be atom in its 11S and 23S states.For simpliity, all nulear masses were assumed to bein�nite in suh alulations. A separate group of al-ulations have been performed for the 23S eletronstate in the six-body oxygen�muoni ion O8+��e�4 .This positively harged ion (q = +3) is a well-boundatomi system that ontains the omposite �nuleus�(O8+ + ��) with the overall �nulear� harge +7 andfour atomi eletrons. Below, we onsider the 16O nu-leus only. In our alulations of the O8+��e�4 ion, weused M = 29156:9457me for the mass of the oxygen-16nuleus and m� = 206:768262me [15; 16℄.Numerial results of our omputations are given inthe Table, where we list the total energies E and someother bound state properties expressed in atomi units.The eletron state of eah atomi system is shown inthe following brakets. For the O8+��e�4 ion, the no-tation 23Se stands for the triplet eletron state. Themuoni quasinuleus O8+ + �� is in its ground 11Sstate. This is always assumed, but not shown in ournotation. For eah energy shown, only nine deimaldigits are presented. In general, optimization of thenonlinear parameters in variational expansions (4) and(5) always dereases the total energies. On the otherhand, small variations in a few last deimal digits arenot ritially important for our present purposes.As follows from the Table, our method provides verygood numerial auray for doublet states in three-eletron atoms and ions. This method also works per-fetly for singlet and triplet four-eletron atomi sys-tems. It is very likely that the analogous proedure anbe developed for �ve-, six-, and many-eletron atomisystems. However, for atomi systems with �ve andmore eletrons, a number of additional problems our13



A. M. Frolov, D. M. Wardlaw ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010Table. The nonrelativisti energies and other properties determined for the S states in some three- and four-eletronatoms, ions, and muoni ions (in atomi units)Be+ (12S) Be (11S) Be (23S) O8+��e�4 (23Se)E �14:3247627 �14:6673323 �14:4300595 �6619:33457hr�1eN i 2.65796 2.10684 2.03603 4.77655hr�1ee i 1.08200 0.72912 0.61933 1.26072hreN i 1.03379 1.49297 2.63085 0.98798hreei 1.75565 2.54516 4.70847 2.43483and diret generalization of our method is very di�ult(see a disussion in the previous setion).We also note that the overall onvergene rates ofradial variational expansions (4) and (5) for three- andfour-eletron atomi systems are omparable with eahother. This seems to be very strange, but we needto remember that the number of nonlinear parame-ters in eah basis funtion rapidly inreases as the to-tal number of bodies A in the system inreases. Forfour-eletron atomi systems, eah of these basis fun-tion ontains ten nonlinear parameters (eah of themvaried independently), while for three-eletron atomisystems, there are only six suh parameters in eahbasis funtion. Brie�y, this means that the overall ��e-xibility� of the four-eletron trial funtion is ompara-ble with the analogous ��exibility� of the three-eletrontrial funtions. 7. CONCLUSIONWe have onsidered the problem of aurate om-putations of bound states in three- and four-eletronatomi systems. The method developed in this studyallows onstruting variational wave funtions for anarbitrary bound state in three- and four-eletronatomi systems. All suh trial wave funtions havethe orret permutation symmetry (with respet to allpermutations of idential partiles, i.e., eletrons). It isimportant to note that the total number of independentspin funtions an be varied in our method. Numerialomputations an start with the use of one eletron spinfuntion only. The seond spin funtion an be intro-dued later to improve the overall onvergene of theresults. Our proedure an be generalized to boundstates with a nonzero angular momentum L. Suh ageneralization is straightforward, but it requires exten-sive use of additional notation, appliation of speialmethods developed in the theory of angular momen-

tum, and substantial explanations. Variational alu-lations of the bound P (L = 1) states in �ve-eletronatomi systems will be onsidered in our next study.The ground state of the B-atom is the P (L = 1) state.Our method is based on expliit onstrutions ofthe total wave funtions for various bound states inthree- and four-eletron atomi systems. The uni�edproedure has been applied to an example of eahtype of system. The entral part of the proedure isthe onstrution of spatial projetors with the orretpermutation symmetry between all idential partiles(eletrons). This method was originally developed forthree-eletron atomi systems in [8℄ (see also [9℄). Wegeneralized this proedure to the ases where a numberof different spin funtions are used in omputations.In addition, we have onstruted spatial projetorsneeded in alulations of the singlet and triplet boundstates in four-eletron atomi systems. Currently, thetotal energies and other properties of bound states infour-eletron atomi systems an be determined to theauray that is better than the auray of old boundstate alulations performed for two-eletron atomisystems [17℄. In general, using various optimizationstrategies for nonlinear parameters in the trial wavefuntions allows very aurate variational energies andhighly aurate wave funtions to be obtained. Suhwave funtions an be used in aurate omputationsof di�erent bound state properties, inluding variousrelativisti and QED orretions.It is a pleasure to thank the University of WesternOntario for �nanial support.REFERENCES1. L. D. Landau and E. M. Lifshitz, Quantum Mehanis.Non-Relativisti Theory, Oxford, England, PergamonPress (1977).14
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