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A variational approach is developed for bound state calculations in three- and four-electron atomic systems.
This approach can be applied to determine, in principle, an arbitrary bound state in three- and four-electron
ions and atoms. Our variational wave functions are constructed from four- and five-body Gaussoids that respec-
tively depend on six (’I’127 r13, 714,723,724, 7’34) and ten (’I’127 713,714,715, 723, I'o4, I'25, I'34, '35 and 7’45) relative
coordinates. The approach allows operating with different numbers of electron spin functions. In particular, the
trial wave functions for the 1S states in four-electron atomic systems include the two independent spin functions
x1 = apaf + pafa — Baaf — afBfa and 2 = 2aaBB + 28Bac — faaf — aBfa — Bafa — afaf. We

also discuss the construction of variational wave functions for the excited 23S states in four-electron atomic

systems.

1. INTRODUCTION

We consider the electronic structure of three- and
four-electron atoms and ions. In particular, we under-
take variational computations of the singlet 1S states
and triplet 35 states in various four-electron atoms and
ions. Below, by an atomic system, we mean a system
that contains a number of electrons and one heavy nu-
cleus. In the nonrelativistic approximation used in this
study, the Hamiltonian of an arbitrary (A — 1)-electron
atomic system takes the form (see, e.g., [1])

[ 1
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where A is the total number of bodies in the atomic sys-
tem. In a three-electron atomic system, A = 4. In this
case, the subscripts 1, 2, 3 denote three electrons, while
the subscript 4 denotes the positively charged atomic
nucleus. For four-electron systems, A = 5 in Eq. (1),
and the subscripts 1, 2, 3, 4 denote four electrons, while
the subscript 5 denotes the positively charged nucleus.
The Hamiltonian in Eq. (1) and all equations that fol-
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low are written in atomic units, where A = 1, m, = 1,
and e = 1. Also,

o o0 0

is the gradient operator of the ith particle (i =
=1,2,...,A). The notation r;; is for the relative dis-
tance/coordinate between ith and jth particles, i.e.,
rij = |r; —rj| = rj;, where r; are the Cartesian coordi-
nates of the ith particle. Also, M denotes the mass of
the central (heavy) nucleus, and hence M > 1.

The main goal of this work is to discuss some im-
portant details of bound state calculations of three-
and four-electron atoms and ions. In particular, spe-
cial attention is given to the correct symmetrization
of the four-electron trial wave functions that include
more than one independent (electron) spin function,
something not considered elsewhere in the modern lit-
erature. Formally, our main goal is to determine
highly accurate solutions of the Schrédinger equation
HY = EV, where H is the Hamiltonian in Eq. (1).
It is clear that the permutation symmetry of the total
wave function ¥ must be different for the singlet and
triplet bound states in a four-electron system. The
explicit construction of trial wave functions with the
correct permutation symmetry between all three or all
four electrons is the principal part of any accurate vari-
ational calculation of such atomic systems.
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In general, bound state computations of three-,
four- and many-electron atomic systems with the use of
a number of different spin functions (which, however,
correspond to the same value of the total (electron) spin
Se and its z-projection (S¢),) are significantly more
complicated than analogous calculations for two-elect-
ron helium-like atoms and ions. On the other hand,
there is an obvious similarity in calculations of three-
and four-electron atomic systems. Indeed, two different
spin functions must be used for the ground (doublet)
128 states in three-electron atoms and ions. The same
number of spin functions is needed for accurate compu-
tations of the 1S states in four-electron atomic systems.

We note that in any four-electron atom and /or ion,
all bound states are separated into two series of states:
singlet states with the total electron spin S, = 0, and
triplet states with the total electron spin S, = 1. In
all previous works, only the ground singlet 1'S state
was considered. Accurate computations of the triplet
states in four-electron atomic systems have been per-
formed for a very few ions/atoms [2,3]. Moreover, in
almost all previous computations of the singlet state in
four-electron (beryllium-like) atoms and ions, only one
spin function

X1 = afap + pafa — faaf — affa

was used. Here and everywhere below in this study,
a and 3 are the spin-up and spin-down single-electron
functions, i.e., 6;a = a/2 and 6,8 = —f/2. The se-
cond independent spin function

X2 = 2aaff+2Bpaa—faaf—-apffa—Pfafa—abaf

has been ignored in almost all modern accurate com-
putations of the singlet states in four-electron atomic
systems. Bearing this in mind, we want to develop a
method that can be used to perform bound state com-
putations for the 1S (singlet) and S (triplet) bound
states in arbitrary four-electron atoms and ions. Our
method is not restricted with respect to the number of
spin functions included. It works equally well in the
cases where one, two, three, and even more indepen-
dent spin functions are used.

2. VARIATIONAL WAVE FUNCTIONS

A central feature of any variational method is the
construction of trial wave functions ¥ with the correct
permutation symmetry. In general, such a trial wave
function must include all electron and nucleus coordi-
nates. Accurate wave functions explicitly depend on
all scalar interparticle coordinates r;; = |r; — rj| in

the atomic system. The use of a large number of re-
lative coordinates complicates the explicit symmetriza-
tion of trial wave functions. Another complication fol-
lows from the presence of different (independent) terms
in the spin part of the total wave function. For in-
stance, we discuss the case of the singlet 'S state in
four-electron atomic systems. To compute this state in
this study, we use the two independent spin functions

X1 = apaf + fapa — paaf — afpa,
Y2 = 2aafB+2Baa—ppaaf—alBa—Lafa—afaf.

These two functions obey the relations

S*xk =0, (S:)xke =0, (xilxs) = Dibir,  (2)

where k = 1,2, Dy, are normalization factors of the spin
functions, and S = s1 +s5 + 83+ 54 is the total electron
spin of the four-electron system.

The total wave function of the *S(L = 0) state of
the four-electron beryllium-like atom /ion is written in
the form (see, e.g., [4,5] and the references therein)

U0 =Vr=0(4; {rij})x1 + dr=0(B; {rij })x2, (3)

where ¢r—o(4;{ry;}) and ¢r—o(B;{r;}) are the
two independent radial parts (spatial parts) of the
total wave function. For the wave function in
Eq. (3), S2F = 0 and S.¥ = 0. The radial parts
Yr=0(4; {rij}) and ¢p—o(B; {rij}) of the total wave
function (3) are represented in the form [6]

br=o(4; {rij}) =

Na
=Py Crexp [ =S a2 | ()
k=1 ij

dr=0(B; {rij}) =

Np
=Py Crexp [ =Y 82 |, (5)
k=1 ij

where N4 and Npg are the numbers of basis functions
used, C; and Cjp are the linear parameters of varia-
tional expansions, and {rij} is the set of relative co-
ordinates that are needed for complete description of
five-body systems. The agf) and Bi(]]-“) denote the non-
linear parameters associated with the r;; relative coor-
dinate in the kth basis function. For all beryllium-like
ions and atoms considered in this paper, the notation
{rij} stands for ten relative coordinates ris, 713, r14,
T15, T23, T'24, T25, I'34, T35, and ry5. The radial basis
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functions in Eqgs. (4) and (5) are called the five-body
Gaussoids of ten relative coordinates. This name was
used in [6], where these basis functions were invented
for nuclear few-body systems.

The main advantage of the radial functions defined
in Eqs. (4) and (5) follows from the fact that the for-
mulas for all matrix elements do not depend explic-
itly on the total number of particles in the system. In
other words, these formulas are essentially the same
for three-, four-, five- and many-body systems, and are
discussed in the next section.

The symbols A and B in Eqs. (4) and (5) mean
that there are two different sets of nonlinear param-
eters: each of the basis functions in Eqgs. (4) and (5)
contains ten nonlinear parameters, which are optimized
independently. The summation over (ij) = (j4) in the
exponents of Eqs. (4) and (5) is taken over all possible
different, pairs of particles. In general, the radial basis
functions are not orthogonal to each other. The pro-
jectors Py and Po produce trial wave functions with
the correct permutation symmetry between all elec-
trons (see below). The symbol L in Eq. (4) is used for
the total angular momentum of the considered system.
For the ground state of any beryllium-like system, we
always have L = 0 and the total electron spin of such
states is equal to zero. Furthermore, the parity of these
states in the four-electron systems is even. These states
are therefore often denoted as 1.5¢, or 11.S¢ states.

For the triplet 35 states in four-electron atomic sys-
tems, there also exist two independent spin functions,

Y1 = afaa—Laaa, Y2 = 2aafa—Laca—afaa.

We note that there are, in fact, two independent triplets
of the spin functions, and hence the total number of
electron spin functions is 2 x 3 = 6. The above func-
tions y31 and o correspond to the values S, = 1 and
(Se). = 1. Using the explicit form of these two spin
functions, we can construct the four remaining spin
functions with Se = 1 and (S.). = 0 (two functions),
and S =1 and (S.), = —1 (two functions). In actual
calculations of the internal atomic structure, we can re-
strict ourselves to the use of the two spin functions Y
and y» only. All the six spin functions are needed only
in some special cases, e.g., if an external magnetic field
is present.

It is interesting to find that the total variational
wave function ¥ of three-electron atoms and ions is also
represented in form (3). In this case, y1 = afa — faa
and ys = 2aafl — faa — afa, while the two indepen-
dent radial parts depend on the six relative coordinates
T12,T13,723, 14,24, and rgq (here, the indices 1, 2, 3
refer to three electrons, and 4 to the nucleus). The

radial basis functions can also be chosen in form (4)
and (5). In this case, each of the radial basis functions
contains six nonlinear parameters. We also note that
for each of the spin functions, we have S%y; = (3/4)x;
and (S).x; = (1/2)x; (with ¢ = 1, 2). Explicit con-
structions of the variational wave functions for three-
and four-electron atomic systems are discussed below.

3. MATRIX ELEMENTS

Actual computation of matrix elements with the
four- and five-body Gaussoids is Eqs. (4) and (5)
is based on analytic formulas derived elsewhere (see,
e.g., [6,7]). Tt was mentioned already in [6] that the
explicit expressions for all matrix elements needed for
the solution of the Schriodinger equation depend on the
total number of particles A in the system as a numerical
parameter. In other words, the expressions for matrix
elements in three-electron systems coincide with the
corresponding formulas for matrix elements obtained
for four- and five- and many-electron systems. More-
over, in some few-body systems, one of the electrons
can be replaced by another particle, e.g., by u~, but
such a replacement does not change the explicit formu-
las for matrix elements. Below, the symbol A denotes
the total number of particles (i.e., bodies) in the sys-
tem. An A-particle atomic system includes the (4 —1)-
electron subsystem plus one heavy nucleus. The A-
particle muonic atom/ion contains the (A — 2)-electron
subsystem, one negatively charged muon p~, and one
heavy nucleus.

The explicit formulas for all matrix elements needed
in computations of A-particle atomic systems can be
presented in a very brief form with the use of the com-
pact notation

A
(o] = (oz(k)| —exp | — Z afjr?j ,
i>j=1
A
13) = |ﬂ(£)> =exp | — Z ij?j

i>j=1

In this notation, the symbols |3) and |a) (or (a| and
(B]) denote the radial basis functions, differently from
the meaning of a and [ used in other sections of this
paper, where they denote spin-up and spin-down func-
tions.

In the notation defined in Eq. (6), the overlap ma-
trix element (a|f) is written in the form

(a|B) = (a®)|g)y = p3A-/2p=8/2 " (7)
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where D is the determinant of the (4 — 1) x (A —1)
matrix B with the matrix elements

A
b= (ak+85), i#j=12..,4A-1,
i#i (8)

by = (el +8), iAi=12. AL

In particular, the explicit expression for the (k, () ma-
trix element of the overlap matrix S for A = 5 is the
4 x 4 matrix B with matrix elements bi; defined in
Eq. (8). Analytic and/or numerical computations of
the determinant of this matrix and all its first-order
derivatives are straightforward.

The formula for the appropriate matrix elements of
the potential energy can be written as

4 7 D;;
Zwmmm=ﬁwm;/deD>x

(i5)

x exp(—ax?)z?dz, (9)

where
oD 0D

daij OBy’

with (ij) = (ji) = (12), (13), (23), (14), (24), (34) for
A =4 and (ij) = (ji) = (12), (13), (14), (15), ...,
(35), (45) for A = 5. The explicit expressions for var-
ious interparticle potentials often used in bound state
calculations can be found in [6]. The integral in the
last formula is computed analytically in many actual
cases, including the case of Coulomb, Yukawa-type, ex-
ponential, and oscillator potentials. The kinetic energy
matrix elements take the form

Dij =

3
(aIT|5) = 5 x

X { i m;—ijk(Dik + Djp — Dij)} (alB), (10)

ijk=1

where m; (i = 1,2,...,A) are the masses of the par-
ticles and ¢ # j # k. The explicit formulas for ma-
trix elements of other operators written in the basis of
many-dimensional Gaussoids can be found elsewhere
(see, e.g., [6,7]).

If all formulas needed for matrix elements of the
potential and kinetic energies are known, then the so-
lution of the incident Schrédinger equation is reduced
to the generalized eigenvalue problem

i (Haﬁ - Esaﬁ)cﬁ =0 (11)
B=1

fora=1,...,N, where NN is the total number of basis
functions used. Here,

Hop =Tap+ Vas = (a|T|) + (a|V]B)

is the Hamiltonian matrix, T, g = (a|T'|3) and V, 5 =
= (a|V|p) are respectively the matrices of the kinetic
and potential energies. The S, 3 = («|f) matrix in
Eq. (11) is the overlap matrix (7). For nonorthogonal
basis sets, the overlap matrix is a typical dense matrix,
i.e., all of its elements differ from zero in general. More-
over, it can be shown that the overlap matrix («|f3) is
a symmetric, positive definite matrix. This means that
all eigenvalues of the overlap matrix are positive.

4. ANTISYMMETRIZATION OF THE TRIAL
WAVE FUNCTIONS

We consider the antisymmetrization of the trial
wave functions and the related antisymmetrization of
the corresponding matrix elements derived in the pre-
vious section. As mentioned above, the correct anti-
symmetrization is a central part of the construction of
explicitly correlated, trial wave functions. In general,
such a wave function depends on all electron—nucleus
and electron—electron coordinates. In two-electron
atoms and ions, the antisymmetrization of the total
wave function is a trivial problem, since the wave func-
tion of the two-electron system is always represented
as a product of a radial and a two-electron spin func-
tions. Moreover, only singlet and triplet spin functions
are possible in any two-electron atom and/or ion. The
singlet states have the spin function y; = af — fa, and
the triplet states have three spin functions le
ng) = aff + Ba, and x§3) = Bp. For the singlet spin
function, S2y; = 0 and S.x1 = 0, and for the triplet
spin functions, S2x$) = 2y{? and S\ = kl?,
where k1 = 1, ko =0, and k3 = —1.

We note that the singlet spin function 1 is antisym-
metric with respect to the electron variables. There-
fore, its product with a symmetric radial function pro-
duces a function that is totally antisymmetric with re-
spect to all electron variables. It is clear that such a
function can be regarded as a total wave function with
the correct permutation symmetry between two elec-
trons. For triplet states, the corresponding radial func-
tion must be antisymmetric with respect to all electron
(spatial) coordinates.

In contrast with two-electron systems, the antisym-
metrization of three-electron wave functions is a sig-
nificantly more complex process because not one but
a number of different independent spin functions exist

= aaq,
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for the same spin state. This statement is true even
for the doublet states with S = 1/2 and S, = £1/2
in any three-electron atomic system. In actual com-
putations, such spin functions are usually chosen to
be orthogonal to each other. For instance, any vari-
ational expansion written for the doublet 25 states
in a three-electron atomic system must include the
two independent spin functions y; = afa — faa and
Y2 = 2aaf — faa — afa. The total wave function
for the ground doublet 12S(L = 0) state of the three-
electron atomic system is written as (see, e.g., [8,9])

U= = Yr=o0(4; {rij })(aBa — Baa) +
+ ¢r—0(B; {rij})(2aa,6’ — Baa — afa), (12)

where ¥,—(4; {rij}) and ¢r—o(B; {rij}) are the two
independent spatial parts. The symbols A and B indi-
cate that the two sets of nonlinear parameters associ-
ated with ¢ and ¢ are optimized independently.

We note that each of these two spin functions yi
and y» satisfies the equations

(S)sz = 1cha (13)

3
S%xr = S(S + 1)xk = = Xrs 5

4
where £k = 1, 2, S = s; + sy + s3 is the total elec-
tron spin of the three-electron system, and S, is its
z-projection. Equations (13) indicate clearly that the
two spin functions y; and y» are equally important in
this variational method. Therefore, we cannot neglect
any of these spin functions a priori. This means that
in any of our calculations for a three-electron atomic
system, we have to appropriately use the two differ-
ent radial functions and two spin configurations y; and
x2. The explicit construction of the trial wave functions
for three-electron atomic systems with two independent
spin functions is more complicated than in the case of
one spin function, and the solution to this problem is
based on the method of projection operators discussed
below.

4.1. Three-electron atomic systems. Doublet
states

We suppose that our trial wave function for a three-
electron atomic system is written in form (12). In real
applications, however, only the trial functions that have
the correct permutation symmetry between all identi-
cal particles, i.e., electrons, are accepted. This means
that the two terms in the right-hand side of Eq. (12)
must be completely antisymmetric with respect to spin
and spatial coordinates of the three electrons, i.e., with
respect to the indices 1, 2, and 3 in our notation. In

other words, we must have AT = —U, where ¥ is
given by Eq. (12) and A, is the three-particle antisym-
metrizer [10, 11]

~

. . . . .
Ae = 6(6 — Pz — P13 — Po3 + Piag + Pi32).  (14)

Here, € is the identity permutation and pi]’ is the per-
mutation of the ith and jth particles. Analogously, the
operator If’ijk is the permutation of the ith, jth and
kth particles. The same notation is used everywhere in
what follows.

By using the three-particle antisymmetrizer in
Eq. (14), we can construct a trial wave function with
the correct permutation symmetry. In reality, we
need not the wave function itself but the matrix el-
ements with the correct permutation symmetry. We
describe the approach that allows obtaining properly
symmetrized matrix elements. First, we note that the
expectation value of an arbitrary totally symmetric op-
erator W is written in the form

(Ae Z%(z‘hﬁ {ri HxilWlAe x
x> Az {riPxg),  (15)

where y; are the spin functions (i = 1,...,Ns). The
spin functions y; and y» are assumed to be orthog-
onal to each other, i.e., (xi|x;) = di;. The notation
i (A {rij}) is for the corresponding radial functions
that depend on all relative coordinates {rij} and non-
linear parameters A;. These radial functions can be
arbitrary, and are not necessarily orthogonal to each
other. The operator W is a differential operator written
in the relative coordinates. It is assumed to be totally
symmetric with respect to all inter-electron permuta-
tions.

Next, we note that the totally symmetric operator
W commutes with the A, operator in Eq. (14). More-
over, the operator A, is an orthogonal projector [12],
ie., (A)? = Ao and (A.)* = A., where B* is the
operator conjugate to B. If the operator W is inde-
pendent of spin variables, then these properties of A,
allow reducing Eq. (15) to the form

Z Z(W(z‘hﬁ {rig DIW[ A (Aj; {ri; 1)) x

x (xilAelx;). (16)

This expectation value can be rewritten in another form
with the use of the matrix notation

[G(W)]z] = <Xi|Ae|Xj>[W-"ie]ijv (17)
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where [...];; denotes the (ij) matrix element of the cor-
responding matrix. The matrix elements of @ (W) com-
puted on any basis set of spatial three-electron wave
functions have the correct permutation symmetry be-
tween all identical particles. The size of the [©(TV)];;
matrix is equal to the number of spin functions used in
calculations.

First, we compute the matrix elements of the A, op-
erator. Based on Eq. (17), this operator can be written
in the form ©(é), where é is the unit operator. We note
that ./ie can be written as

Ae = § Sabcpabca

abe

(18)

where su;. are integers and ﬁabc are the interparticle
permutations in the system of three identical particles.
The sum in Eq. (18) is computed over all interparti-
cle permutations possible in three-body systems, as in
Eq. (14). The (ij) matrix element, of A, in our basis is

[Ae]i]’ = Z 3abc<Xi|]3abc|Xj>Pabc~

abe

(19)

In the case of the (ij) matrix element of the O(W)
operator, we find

[G(W)]ZJ = Z Sabc<Xi|pabc|Xj>Wpabc =
abe

=W [Z 3abc<Xi|pabc|Xj>pabc . (20)

abe

We note that both the expectation value <Xi|pabc|Xj>
and Sqpc are integers for all abe, while the operator
P,y is a projector that acts on the spatial coordinates
of the three electrons (a — b — ¢). In other words, the
A, operator is represented as a finite sum of all spatial
permutations Pope with integer coefficients equal to the
products of the sgp. in Eq. (18), and the <Xi|]5abc|Xj>
expectation values. The computation of all expectation
values

(Xil Pave|x;) = (XilPabex;)
can be regarded as the integration over electron spin

coordinates.
Based on Eq. (20), we can introduce the operator

P = DZ 3abc<Xi|]3abc|Xj>pab07

abe

(21)

where D is a normalization constant. The numerical
value of D is determined by the idempotency of P,
P2 = P. The explicit use of this operator substantially
simplifies the formulas in what follows. For instance,

10

the (o, 8) matrix element of any arbitrary totally sym-
metric operator W can be written as

(Pa|W|PB) = (a|PWP|B) =

= (a|WP|B) = (a|W[PB), (22)
where a and  are nonsymmetric basis functions. This
matrix element has the correct permutation symmetry
between all electrons. This is the main advantage of
constructing the orthogonal spatial projector P in ex-
plicit form.

In actual computations of the doublet 25 states in
three-electron atomic systems after the integration over
electron spin coordinates, we find the four spatial pro-
jectors

1 N N ~ ~ ~

Py = —=(2642P 15— P13—Po3—Pioz—Piza ), (23
PYap 2\/§< 12 13 23 123 132) ( )

1/ R . ~
P¢¢:§<P13_P23_P123+P132)7 (24)

1/ . . .
Pd’d’:§(P13_P23_P123+P132)7 (25)
Pos = —= (26—2P1s+Pi3+Pos—Pias— P32 ), (26
o) 2\/§< € 12 13 23 123 132) ( )

where the indices ¥ and ¢ correspond to the notation
for radial functions used in Eq. (12). Each of these
projectors produces matrix elements between the two
radial basis functions from Eq. (12) with the correct
permutation symmetry. We note that the two projec-
tors Py and Py coincide with each other. It can also
be shown that the three projectors Pyy, Pyg, and Pyg
are orthogonal to each other. In actual computations,
only the upper triangles of the Hamiltonian and overlap
matrices are used. Therefore, only the three projectors
Py, Pye, and Pye are important in computations of
the bound doublet 2S states in all three-electron atomic
systems.

The approach described above allows constructing
the spatial parts of the total variational wave functions
with the correct permutation symmetry between all
identical particles in a three-electron atomic system. In
our previous work, we have also found (see [2,5]) that
the same approach works perfectly for all four-, five-
and many-electron systems. Moreover, the symmetry
of the electron spin functions can also be different, e.g.,
for the singlet and triplet states in four-electron sys-
tems. Below, the variational wave functions for the
singlet and triplet states in four-electron atomic sys-
tems are constructed explicitly. The explicit formulas
for the spatial parts of trial wave functions are derived
with the use of the corresponding spatial projectors.
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4.2. Four-electron atomic systems. Singlet
states

Numerical computations of bound states in four-
electron atomic systems include the nontrivial step of
antisymmetrization of all electron variables, i.e., vari-
ables 1, 2, 3, and 4 in the trial wave function ¥. The
variational wave function ¥ of any singlet 'S(L = 0)
state in a four-electron atomic system is represented in
the form

Up—o = thr—o(4; {rij }) x
x (afaf + pafa — faaf — affa) +
+ ¢r—0(B; {rij})(Qaaﬁ,é’ + 2BBaa —
— Baaf — apfa — fafa — afaf), (27)

where 11— (A; {ri;}) and ¢r—o(B;{r;;}) are the two
independent spatial parts of the total four-electron
wave function. The symbols A and B indicate that the
two sets of nonlinear parameters associated with ¢ and
¢ are optimized independently. Such a trial wave func-
tion must be antisymmetric with respect to all electron
variables, i.e., AU = —W, where

Ae :é_P12_]313_]523_]514_]524_]334+]5123+
+ [3132 + [3124 + ﬁ142 + ﬁ134 + ﬁ143 + ]3234 +
+ 13243 - 131234 - 151243 - 151324 - 131342 - 151423 -

— Przo + PioPsy + PisPoy + PyPos (28)

is the total four-particle antisymmetrizer. In addition
to the notation explained above, If’ijkl is the permuta-
tion of the particles i, j, k, .

Using the procedure described in the previous sec-
tion, we can find explicit formulas for the corresponding
spatial projectors. In fact, using the explicit form [27]
of the trial wave function ¥ constructed for singlet
states in four-electron systems and integrating over
electron spin coordinates, we find the four spatial pro-
jectors

43

+2P15P3y + 2P13Pay + 2Py Pyg — Prag — Prgo —
—Piog—Prys—Pi3y—Prys—Pogg— Posz—Prozsa— Pross+
+2Pi354 — Prisgy — Prygs + 2151423)7 (29)

Py = (2é+2ﬁ12_ﬁ’13—ﬁ23—ﬁ14—ﬁ24+2ﬁ34+

174 ~ ~ ~ ~ ~ ~
Pyo = 1 (P13—P23—P14+P24+P123—P132—P124+
+ 13142 + 15134 - p143 - 13234 + p243 +
+ Prass — Piass — Pia + 151432)7 (30)
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Poy = Py, (31)

43

— 2Py + 2P15 Py + 2Py3Pys + 2P Py —
— Prag — Pigs — Prog — Prys — Pras — Pryg —
— Py3q — Poaz + Proga + Proas —
— 2Pi304 + Prgaz + Prazs — 21‘31423)_ (32)

Pgp = (Qé — 2Py + Pig + Po3 + Py + Py —

In reality, because Pyy = Pgsy, we need to use only
three such operators Pyy, Pye, and Pye. The use of
these three projectors for matrix elements allows pro-
ducing matrix elements with the correct permutation
structure among all four identical particles. We note
that all such matrix elements are computed only be-
tween the corresponding spatial basis functions and
do not include any spin function. The explicit for-
mulas for the complete set of singlet spatial projectors
for four-electron atomic systems, Eqs. (29)-(32), have
not been presented in previous publications. The first
bound state computations of four-electron atomic sys-
tems with the use of completely correlated wave func-
tions were performed in [13]. Since then, many authors
have conducted such calculations for singlet states in
various four-electron systems (see, e.g., [5] and the ref-
erences therein).

4.3. Four-electron atomic systems. Triplet
states

The trial wave function of the triplet 3S state in
the four-electron atomic system can also be represented
in the form with the two independent spin functions
Y1 = afaa — faaa and y2 = 2aafa — faaa — afaa.
The variational expansion takes the form

U =1r—o(4; {rij})(aﬁaa — faaa) +
+ ¢r=0(B; {rij })(2aafa — faca — afaa),

where 11,—0(4; {mj}) and ¢p—o(B; {mj}) are the ra-
dial parts of the total wave function. Here, {r;;} de-
notes the complete set of fifteen interparticle (spatial)
coordinates, and the symbols A and B denote the cor-
responding sets of nonlinear parameters. Optimiza-
tion of nonlinear parameters in the A and/or B sets
is performed independently. The trial wave function in
Eq. (33) contains two electron spin functions y; and x»
that correspond to the S =1 and S, = 1 values.

For triplet states, using the explicit form of the y;
and y» functions, we can easily find the four other spin

(33)
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functions that correspond to the S = 1 and S, = 0,
and to S = 1 and S, = —1 values. For instance, in
the case of the y; = Xgﬂ) spin function, the two spin
functions

0 = aBaB + aBBa — Baaf — Bafa,
X\ = aBBs — BapB

respectively correspond to S = 1 and S, = 0, and to
S =1and S, = —1. The three spin functions X§+1),
Xgo), x(fl) form a regular triplet of spin functions. An
analogous triplet of spin functions can be constructed
for the x2 spin function. To describe experimental sit-
uations without an external magnetic field, we need to
use the spin functions associated with one value of S,
e.g., S, = 1. We therefore always choose

X1 = (af — fa)aa = afaa — faaa,
Y2 = 2aafa — faaa — afaa

(see Eq. (33) above).

In calculations with trial wave function (33), the
explicit formulas for all three radial projectors Py,
Poy(= Pye), and Py must be known. However, nu-
merical calculations using a wave function with two
spin functions are computationally intensive and were
not attempted in the current study. Accordingly, we
did not attempt to derive the associated projectors. In-
stead, we performed some computations of the triplet
states in four-electron atomic systems with the use of
one spin function y; = X§+1) = afaa — Baaa only.
The variational expansion in Eq. (33) is then written
in the form

U =1r—o(4; {rij})(aﬂ — Ba)aa =

= r—o(4; {rij })(aﬂaa — Baaa). (34)

Now, we need to obtain the spatial part of the total
wave function with the correct permutation symmetry
between all identical particles 1, 2, 3, and 4. The cor-
responding spatial projector is obtained by calculating
the explicit expression for the spin expectation value

Pyw = CY, sabea((aB — Ba)ac| Paped] x
abed

x (aff — Ba)aa) Popeq, (35)

where C is a normalization factor and the integers Sqpeq
are defined from the explicit form of the total four-
particle antisymmetrizer A, in Eq. (28). After some
algebra, we find the explicit formula for the correspond-
ing spatial projector

12

1 o/ e
Pyy = m<26+2p12 — P13 — Pog — Piy — Poy —
— 2P34 — 2Py P3y — Prog — Proy — Piay — P +
+P134+15234+13243 +13143 +131432 +P1234+
+ Progs + ]51342)- (36)

This projector creates the spatial part of an arbitrary
matrix element needed in bound state computations
of the triplet ®S states in an arbitrary four-electron
atomic system. Such a matrix element has the cor-
rect permutation symmetry among all four identical
particles (electrons). Explicit formulas for the spatial
projectors corresponding to the triplet states have not
been published previously.

Using the formulas presented above, we can perform
accurate computations of triplet bound states in vari-
ous four-electron atomic systems. As follows from our
results of such calculations (see, e.g., [2]), the method
described above allows determining various expectation
values in four-electron atomic systems to a relatively
high numerical accuracy. In particular, such expecta-
tion values can be computed for all positive and nega-
tive powers of the relative coordinates r;;. In general,
the expectation value of any regular function of the ten
relative coordinates r;; can be computed to a very good
numerical accuracy. Analogous expectation values con-
taining delta-functions of the relative coordinates and
their products with the regular functions of the relative
coordinates also do not present any problem for numer-
ical computations. Real problems arise in computa-
tions of expectation values that include products of del-
ta~-functions with the corresponding electron spin func-
tions, e.g., (@;0n;) and (a;;0nidnj), where N refers
to the nucleus and ¢ to the ith electron. The first ex-
pectation value (a;0n;) represents the single-electron
density of a-electrons on the atomic nucleus. Analo-
gous expectation values can be computed in the case
of B-electrons. A very poor convergence of such expec-
tation values means that another spin function must
be included in computations. In Eq. (33), such a spin
function is called the second (electron) spin function yes.

5. GENERALIZATION TO THE FIVE- AND
SIX-ELECTRON ATOMIC SYSTEMS

The method described above allows constructing
the properly antisymmetrized trial functions for three-
and four-electron atomic systems.  Formally, our
method can be generalized to the five-, six-, and ma-
ny-electron atomic systems. However, its direct gene-
ralization is very difficult, since the proper antisym-
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metrization of the trial basis functions and their linear
combinations becomes extremely difficult in the case
of many-electron atoms with A — 1 > 5 electrons. To
construct the trial wave functions for five-, six-, and
many-electron atoms, different interparticle permuta-
tions must be applied to a nonsymmetrized basis func-
tion. The presence of a very large number of terms in
each wave function drastically complicates the explicit
expressions for the spatial projectors mentioned above.
For instance, such a spatial projector constructed for
the B atom (five-electron atom) must include 120 dif-
ferent terms. Some of these terms can be equal to zero
identically, but in any case the total number of remain-
ing terms is still very large. Therefore, it is important
to develop some effective methods that can be used
to operate with a very large number of terms in trial
Our current hopes rely on the two
following methods. The first is based on the use of var-
ious symbolic-algebra computational platforms such as
Maple [14]. In this approach, all integrations over spin
variables can be performed analytically. The expres-
sions for all spatial projectors are never written explic-
itly, but they are used internally by this computational
platform. We also note that for some basis sets, the
action of any interparticle permutation Pype.. on the
basis wave functions reduces to the permutation of the
corresponding nonlinear parameters in these functions.
In particular, this is the case for the variational ex-
pansion defined by Eqgs. (4) and (5). This means that
actual permutations of the nonlinear parameters in the
basis wave functions can always be applied instead of
the permutation of the relative coordinates. This dras-
tically simplifies the explicit construction of the totally
symmetrized trial wave functions. The permutation of
the nonlinear parameters in the basis wave functions
can be combined with the analytic integration over spin
variables in the total wave function. This can be used
in the future methods.

wave functions.

The second method is based on the relations that
exist for the spin functions in three-, four-, and ma-
ny-electron systems. For instance, the second spin
function y» used in numerical computations of the
triplet states of four-electron systems is obtained from
the y2 spin function known for the doublet states
in three-electron systems. Formally, we can write
x2(1,2,3,4) = x2(1,2,3)a(4), where a(4) is the spin
function of the additional (fourth) electron. The
notation x»(1,2,3) is for the second spin function
of the doublet state in the three-electron system,
and y2(1,2,3,4) means the second triplet spin func-
tion of the four-electron system. A similar relation
exists between another (first) triplet spin function of
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the four-electron atomic systems, yi(1,2,3,4), and
x1(1,2,3) used above (see Eq. (12)) for the doublet
states in three-electron atoms/ions. By studying this
and other similar relations between spin functions, we
can find some useful connections between the spatial
projectors constructed for three- and four-electron sys-
tems. This approach can also simplify methods and
algorithms to be developed in the future for systems
with five or more electrons.

6. NUMERICAL RESULTS

To illustrate our method in applications to actual
three- and four-electron atomic systems, we briefly de-
scribe the results of variational computations of bound
states in the three-electron Be™ ion in its 125 state and
the four-electron Be atom in its 1S and 23S states.
For simplicity, all nuclear masses were assumed to be
infinite in such calculations. A separate group of cal-
culations have been performed for the 23S electron
state in the six-body oxygen—muonic ion O+ pu~e; .
This positively charged ion (¢ = +3) is a well-bound
atomic system that contains the composite “nucleus”
(O3 + ) with the overall “nuclear” charge +7 and
four atomic electrons. Below, we consider the %0 nu-
cleus only. In our calculations of the O%Fy~e; ion, we
used M = 29156.9457m, for the mass of the oxygen-16
nucleus and m, = 206.768262m. [15, 16].

Numerical results of our computations are given in
the Table, where we list the total energies E' and some
other bound state properties expressed in atomic units.
The electron state of each atomic system is shown in
the following brackets. For the 08t y~e; ion, the no-
tation 23S, stands for the triplet electron state. The
muonic quasinucleus O3 + p~ is in its ground 1S
state. This is always assumed, but not shown in our
notation. For each energy shown, only nine decimal
digits are presented. In general, optimization of the
nonlinear parameters in variational expansions (4) and
(5) always decreases the total energies. On the other
hand, small variations in a few last decimal digits are
not critically important for our present purposes.

As follows from the Table, our method provides very
good numerical accuracy for doublet states in three-
electron atoms and ions. This method also works per-
fectly for singlet and triplet four-electron atomic sys-
tems. It is very likely that the analogous procedure can
be developed for five-, six-, and many-electron atomic
systems. However, for atomic systems with five and
more electrons, a number of additional problems occur
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Table. The nonrelativistic energies and other properties determined for the S states in some three- and four-electron

atoms, ions, and muonic ions (in atomic units)

Bet (125) Be (119) Be (229) 08t u=e, (23S.)
E —14.3247627 —14.6673323 —14.4300595 —6619.33457
(rox) 2.65796 2.10684 2.03603 4.77655
(r=1 1.08200 0.72912 0.61933 1.26072
(ren) 1.03379 1.49297 2.63085 0.98798
(Tee) 1.75565 2.54516 4.70847 2.43483

and direct generalization of our method is very difficult
(see a discussion in the previous section).

We also note that the overall convergence rates of
radial variational expansions (4) and (5) for three- and
four-electron atomic systems are comparable with each
other. This seems to be very strange, but we need
to remember that the number of nonlinear parame-
ters in each basis function rapidly increases as the to-
tal number of bodies A in the system increases. For
four-electron atomic systems, each of these basis func-
tion contains ten nonlinear parameters (each of them
varied independently), while for three-electron atomic
systems, there are only six such parameters in each
basis function. Briefly, this means that the overall “fle-
xibility” of the four-electron trial function is compara-
ble with the analogous “flexibility” of the three-electron
trial functions.

7. CONCLUSION

We have considered the problem of accurate com-
putations of bound states in three- and four-electron
atomic systems. The method developed in this study
allows constructing variational wave functions for an
arbitrary bound state in three- and four-electron
atomic systems. All such trial wave functions have
the correct permutation symmetry (with respect to all
permutations of identical particles, i.e., electrons). It is
important to note that the total number of independent
spin functions can be varied in our method. Numerical
computations can start with the use of one electron spin
function only. The second spin function can be intro-
duced later to improve the overall convergence of the
results. Our procedure can be generalized to bound
states with a nonzero angular momentum L. Such a
generalization is straightforward, but it requires exten-
sive use of additional notation, application of special
methods developed in the theory of angular momen-
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tum, and substantial explanations. Variational calcu-
lations of the bound P(L = 1) states in five-electron
atomic systems will be considered in our next study.
The ground state of the B-atom is the P(L = 1) state.

Our method is based on explicit constructions of
the total wave functions for various bound states in
three- and four-electron atomic systems. The unified
procedure has been applied to an example of each
type of system. The central part of the procedure is
the construction of spatial projectors with the correct
permutation symmetry between all identical particles
(electrons). This method was originally developed for
three-electron atomic systems in [8] (see also [9]). We
generalized this procedure to the cases where a number
of different spin functions are used in computations.
In addition, we have constructed spatial projectors
needed in calculations of the singlet and triplet bound
states in four-electron atomic systems. Currently, the
total energies and other properties of bound states in
four-electron atomic systems can be determined to the
accuracy that is better than the accuracy of old bound
state calculations performed for two-electron atomic
systems [17]. In general, using various optimization
strategies for nonlinear parameters in the trial wave
functions allows very accurate variational energies and
highly accurate wave functions to be obtained. Such
wave functions can be used in accurate computations
of different bound state properties, including various
relativistic and QED corrections.

It is a pleasure to thank the University of Western
Ontario for financial support.
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