ПСЕВДОЩЕЛЕВОЕ СОСТОЯНИЕ ДВУМЕРНОЙ КОНДО-РЕШЕТКИ

А. Ф. Барабанов ^{а,b*}, А. М. Белемук^а

^а Институт физики высоких давлений Российской академии наук 142190, Троицк, Московская обл., Россия

> ^b Московский физико-технический институт 141700, Долгопрудный, Московская обл., Россия

Поступила в редакцию 30 октября 2009 г.

Рассматривается псевдощелевое поведение спектральной функции носителей $A(\mathbf{k},\omega)$ в режиме малого допирования для двумерной решетки Кондо с сильным спин-дырочным антиферромагнитным взаимодействием. Рассеяние носителей описывается на языке локального полярона в рамках неприводимых функций Грина. Рассматривается поведение спектра носителей в нодальной и антинодальной областях. Полученное значение величины псевдощели согласуется с данными экспериментов по фотоэмиссии с угловым разрешением.

Нормальное состояние высокотемпературных сверхпроводников (ВТСП) характеризуются сложным поведением спектральных и транспортных свойств [1,2]. Эксперименты по фотоэмиссии с угловым разрешением (ARPES) спектров носителей допированных купратов в нормальном состоянии выявили необычный характер квазичастичной зоны [3]. В частности, они указывают на наличие щели в нормальном состоянии в спектре квазичастичных возбуждений и арочную (ark type) ферми-поверхность при малом и промежуточном допировании.

Переход по допированию из металлического в диэлектрическое состояние сопровождается возникновением псевдощели, которая проявляет себя как подавление плотности электронных состояний на уровне Ферми E_F (эксперименты по туннелированию) или как уменьшение спектральной плотности носителей $A(\mathbf{k}, \omega)$ при частотах, отвечающих химическому потенциалу μ (эксперименты по фотоэмиссии). Одновременно резко возрастает спиновая корреляционная длина. В псевдощелевом режиме плотность состояний максимальна для состояний с ферми-импульсами, близкими к нодальному направлению $(0, 0)-(\pi, \pi)$ зоны Бриллюэна и сильно уменьшается вблизи антинодальной области $(\pi, 0)$, где псевдощель принимает наибольшее значение. Для купратов с дырочным допированием псевдощель открывается при некоторой температуре T^* (температура кроссовера), которая монотонно возрастает с уменьшением допирования. Последние результаты ARPES-экспериментов указывают на немонотонную температурную зависимость величины псевдощели Δ_{pg} от температуры, а также на то, что величина Δ_{pg} не обращается в нуль при температуре кроссовера T^* [4].

Одним из центральных вопросов теории остается описание арочного характера поверхности Ферми и объяснение механизма формирования псевдощели при переходе из режима оптимального допирования в сильно недодопированный предел [5–8]. В последнее время имеется существенное теоретическое продвижение в изучении проблемы (см., например, работы [9–13] и ссылки в них). Наиболее интенсивно проблема изучается в рамках различных вариантов моделей Хаббарда и t-J [14–17]. При этом остаются сложности при попытках единого описания пределов малого и оптимального допирования. Используются феноменологические формы спиновой восприимчивости, которые рассматриваются как входной параметр теории.

В настоящей работе формирование псевдощели изучается в случае регулярной модели Кондо, для которой (в отличие от модели Хаббарда) носители и

^{*}E-mail: abarab@bk.ru

⁷ ЖЭТФ, вып.2(8)

спиновая подсистема разделены в нулевом приближении по их обменному взаимодействию \hat{J} . Такая модель наиболее близка к спин-фермионному прототипу модели Эмери [18]. Отличительной чертой рассмотрения является введение спинового полярона уже в среднеполевом приближении. Это приводит к формированию двух зон и позволяет сразу учесть существенную часть взаимодействия \hat{J} . Учет рассеяния полярона существенно меняет спектральную плотность носителей $A(\mathbf{k}, \omega)$ вблизи границы антиферромагнитной (АФМ) зоны Бриллюэна и формирует псевдощель.

Гамильтониан модели на квадратной решетке (постоянную решетки полагаем g = 1) имеет вид

$$\hat{H} = \hat{h} + \hat{J} + \hat{I}, \qquad (1)$$

где

$$\hat{h} = \sum_{\mathbf{R}, \mathbf{l}=\mathbf{g}, \mathbf{d}, 2\mathbf{g}} t_l a_{\mathbf{R}+\mathbf{l},\sigma}^{\dagger} a_{\mathbf{R}\sigma} = \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} a_{\mathbf{k}\sigma}^{\dagger} a_{\mathbf{k}\sigma},$$

$$\varepsilon_{\mathbf{k}} = 4(t_g \gamma_{g\mathbf{k}} + t_d \gamma_{d\mathbf{k}} + t_{2g} \gamma_{2g\mathbf{k}}),$$

$$\hat{I} = \frac{1}{2} \sum_{\mathbf{R}, \mathbf{l}=\mathbf{g}, \mathbf{d}} I_l \mathbf{S}_{\mathbf{R}+\mathbf{l}} \cdot \mathbf{S}_{\mathbf{R}},$$

$$\hat{J} = 2J \sum_{\mathbf{R}} \mathbf{s}_{\mathbf{R}} \cdot \mathbf{S}_{\mathbf{R}} = \frac{J}{\sqrt{N}} \times$$

$$\times \sum_{\mathbf{k}, \mathbf{q}} a_{\mathbf{k}+\mathbf{q}, \sigma_1}^{\dagger} S_{\mathbf{q}}^{\alpha} \hat{\sigma}_{\sigma_1 \sigma_2}^{\alpha} a_{\mathbf{k} \sigma_2}.$$
(2)

Слагаемое \hat{h} описывает перескоки ферми-носителей (ниже считаем их дырками) между первыми (**g**), вторыми (**d**) и третьими (**2g**) ближайшими соседями с амплитудами t_g , t_d и t_{2g} ; $a^{\dagger}_{\mathbf{k}\sigma}$ и $a_{\mathbf{k}\sigma}$ — операторы рождения и уничтожения электронов проводимости. Спектр $\varepsilon_{\mathbf{k}}$ «голых» носителей представлен с помощью гармоник квадратной симметрии,

$$\gamma_{g\mathbf{k}} = (\cos k_x + \cos k_y)/2, \quad \gamma_{d\mathbf{k}} = \cos k_x \cos k_y,$$
$$\gamma_{2g\mathbf{k}} = (\cos 2k_x + \cos 2k_y)/2.$$

Слагаемое \hat{I} отвечает фрустрированному АФМ-обмену локализованных S = 1/2 спинов. Для обменных констант первых и вторых ближайших соседей удобно ввести параметр фрустрации p ($0 \le p \le 1$): $I_1 = I_g = (1 - p)I$ и $I_2 = I_d = pI$.

Спиновая подсистема трактуется в сферически-симметричном самосогласованном подходе [19] с учетом фрустрации [20], которая присутствует даже при нулевом допировании [21]. Это приводит к спиновой функции Грина вида

$$D_{\mathbf{q}}(\omega) = \langle \langle S_{\mathbf{q}}^{\alpha} | S_{-\mathbf{q}}^{\alpha} \rangle \rangle_{\omega} = \frac{F_{\mathbf{q}}}{\omega^2 - \omega_{\mathbf{q}}^2},$$

ЖЭТФ, том **138**, вып. 2 (8), 2010

где $F_{\mathbf{q}}$ и $\omega_{\mathbf{q}}^2$ выражаются через гармоники квадратной симметрии $\gamma_{g\mathbf{q}}$, $\gamma_{d\mathbf{q}}$, $\gamma_{2g\mathbf{q}}$ и узельные парные самосогласованные спиновые корреляционные функции, отвечающие первым пяти координационным сферам. Спиновый спектр имеет характерный вид

$$\omega_{\mathbf{q}}^2 \sim (1 - \gamma_{g\mathbf{q}}) [\Delta^2 + \lambda(\mathbf{q})], \quad \lambda(\mathbf{Q}) = 0,$$

где величина $\Delta = \omega_{\mathbf{Q}}$ является спиновой щелью на АФМ-векторе $\mathbf{Q} = (\pi, \pi).$

Слагаемое \hat{J} в (2) описывает внутриузельный АФМ-обмен носителей с локализованными спинами $\mathbf{S}_{\mathbf{R}}$, $\hat{\sigma}^{\alpha}$ — матрицы Паули (в очевидных случаях по дважды повторяющимся индексам подразумевается суммирование). При характерных значениях $J \gtrsim t_l$ гамильтониан \hat{J} отвечает сильному взаимодействию. Поэтому для описания зарядовых возбуждений с самого начала вводим конечный набор базисных операторов $\varphi_{\mathbf{r}\sigma}^{(i)}$, учитывающий спаривание голой дырки с подсистемой локализованных спинов. Известно [22], что минимальным «хорошим» узельным набором служат следующие базисные операторы:

$$\varphi_{\mathbf{R}\sigma}^{(1)} = a_{\mathbf{R}\sigma}, \quad \varphi_{\mathbf{R}\sigma}^{(2)} = (3/4)^{-1/2} S_{\mathbf{R}}^{\alpha} \hat{\sigma}_{\sigma\sigma_{1}}^{\alpha} a_{\mathbf{R}\sigma_{1}}, \\ \langle \{\varphi_{\mathbf{R}\sigma}^{(i)}, \varphi_{\mathbf{R}\sigma}^{(j)\dagger}\} \rangle = \delta_{ij}.$$
(3)

Операторы $\varphi_{\mathbf{R}\sigma}^{(1)}$, $\varphi_{\mathbf{R}\sigma}^{(2)}$ дают полный набор однодырочных локальных спин-поляронных операторов. При этом в пределе малого числа дырок комбинация $2^{-1/2}(\varphi_{\mathbf{R}\sigma}^{(1)}/2 - (3/4)^{1/2}\varphi_{\mathbf{R}\sigma}^{(2)})$ является аналогом синглетного состояния одноузельного кластера [22], которое отстоит по энергии от триплетного состояния на величину -2J.

Стандартная проекционная процедура (в рамках метода Мори-Цванцига) для функций Грина моментов (3) в импульсном представлении,

$$\varphi_{\mathbf{k}}^{(j)} = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{-i\mathbf{k}\cdot\mathbf{R}} \varphi_{\mathbf{R}}^{(j)},$$

дает две зоны $E_{\mathbf{k}}^{(s)}$ (s = 1, 2 — номер зоны) спинового полярона. Функции Грина голой дырки, $G_h(\mathbf{k},\omega) = \langle \langle a_{\mathbf{k}\sigma} | a_{\mathbf{k}\sigma}^{\dagger} \rangle \rangle_{\omega}$, в приближении среднего поля, $G_h^{mf}(\mathbf{k},\omega)$, и число $n_{\mathbf{k}\sigma}$ голых дырок выражаются через функцию вычетов $Z_{\mathbf{k}}^{(s)}$:

$$G_{h}^{mf}(\mathbf{k}, z) = \sum_{l=1}^{2} \frac{Z_{\mathbf{k}}^{(l)}}{z - E_{\mathbf{k}}^{(l)}},$$

$$u_{h} = \sum_{\mathbf{k}, \sigma} \sum_{l=1}^{2} Z_{\mathbf{k}}^{(l)} n_{F}(E_{\mathbf{k}}^{(l)}), \quad \sum_{l=1}^{2} Z_{\mathbf{k}}^{(l)} = 1,$$
(4)

r

где $z = \omega + i\delta$, $n_{F,\mathbf{k}}^{(s)} = \left\{ \exp\left[(E_{\mathbf{k}}^{(s)} - \mu)/T \right] + 1 \right\}^{-1}$. Мы рассматриваем задачу в пределе малого чис-

Мы рассматриваем задачу в пределе малого числа дырок на узле, $\langle n_{\mathbf{R},\sigma} \rangle = n_h/2 \lesssim 0.1 \ll 1$, так что в уравнениях для функций Грина можно опускать члены $a^{\dagger}_{\mathbf{R}\sigma_1}a_{\mathbf{R}\sigma_2}$, пропорциональные плотности числа частиц. Тогда можно видеть, что в рамках выбранного базиса взаимодействие \hat{J} учтено точно.

Ниже приняты следующие энергетические параметры модели в единицах $\tau = 0.4$ эВ:

$$t_g = -0.6, \quad t_d = 0.8, \quad t_{2g} = 0.6,$$

 $J = 3, \quad I = 0.3, \quad T = 0.1I.$

Принятые значения t_g, t_d и t_{2g} формируют дно зоны голой дырки вблизи точки $0.45(\pi, \pi)$, т. е. дно зоны сдвинуто к точке (0,0) относительно АФМ-зоны Бриллюэна. Выбор перескоковых параметров близок к значению параметров, принятых в работе [23]. Такой выбор в приближении среднего поля приводит к результатам, близким к полученным при рассмотрении задачи в самосогласованном борновском приближении для модели Эмери [24].

Относительно выбора перескоковых интегралов отметим, что редукция наиболее адекватной модели Эмери для плоскости CuO₂ сверхпроводящих купратов как на sd-модель, так и на широко распространенную обобщенную $t_1 t_2 J$ -модель представляет сложную задачу. Для $t_1 t_2 J$ -модели в работе [25] показано, что при редукции можно говорить только о некотором интервале перескоковых параметров. В частности, допустимы значения параметров, когда $|t_q| < t_d$. Подчеркнем, что в *sd*-модели волновая функция дырки является аналогом четырех дырок, делокализованных в кластере CuO4 по четырем узлам кислорода. В принципе возможен другой выбор параметров, когда дно спектра голой дырки лежит правее границы АФМ-зоны Бриллюэна ($t_g = 0.3$, $t_d = 0.25, t_{2g} = 0.2$). Учет рассеяния голой дырки в обоих случаях приводит в приближении среднего поля к близким результатам для нижней зоны спинового полярона, а именно, дно спектра нижней поляронной зоны благодаря АФМ-корреляциям в обоих случаях сдвигается к точке $(\pi/2, \pi/2)$.

Для спиновой подсистемы рассматриваемое значение параметра фрустрации p = 0.1 отвечает реалистическому для купратов обмену $I \approx 0.12$ эВ, щели в спиновом спектре $\Delta \approx 0.12I$ и значениям двухузельных корреляционных функций $C_{\mathbf{l}} = \langle \mathbf{S}_{\mathbf{R}+\mathbf{l}} \cdot \mathbf{S}_{\mathbf{R}} \rangle$, равным

$$C_{\mathbf{g}} = -0.306, \quad C_{\mathbf{d}} = 0.158, \quad C_{2\mathbf{g}} = 0.126,$$

 $C_{\mathbf{g+d}} = -0.107, \quad C_{2\mathbf{d}} = 0.078.$

Отметим, что поляронные зоны являются аналогами двух хаббардовских зон [11], однако в отличие от последних зоны $E^{(1,2)}_{\mathbf{k}}$ учитывают часть взаимодействия \widehat{J} .

В случае простейшего поляронного подхода (с двумя базисными моментами) приближение среднего поля отражает характерную перестройку спектральной плотности носителей [22]. В частности, оно предсказывает значительное сужение нижней поляронной зоны по сравнению с зоной голых дырок и значительное перераспределение веса носителей по зоне Бриллюэна, что приводит к арочному типу поверхности Ферми.

Для выхода за рамки приближения среднего поля используем метод неприводимых функций Грина (демонстрация метода на примере модели Хаббарда подробно изложена, например, в работе [11]). Тогда функция Грина имеет вид

$$G_{h}(\mathbf{k}, z) = \frac{z - H_{22} - \Sigma(\mathbf{k}, z)}{(z - H_{11})(z - H_{22} - \Sigma(\mathbf{k}, z)) - H_{12}H_{21}},$$
 (5)

где $H_{ij} = H_{ij}(\mathbf{k}) = \langle \{ [\varphi_{\mathbf{k}}^{(i)}, \hat{H}], \varphi_{\mathbf{k}}^{(j)\dagger} \} \rangle$, а собственно-энергетическая часть $\Sigma(\mathbf{k}, z)$ дается неприводимой функцией Грина

$$\Sigma(\mathbf{k}, z) = \left\langle \left\langle \left[\varphi_{\mathbf{k}}^{(2)}, \hat{H} \right] | \left[\varphi_{\mathbf{k}}^{(2)}, \hat{H} \right]^{\dagger} \right\rangle \right\rangle_{z}^{irr}$$

Нулевой функции $\Sigma(\mathbf{k}, z)$ отвечает функция Грина $G_h^{mf}(\mathbf{k}, z)$ (4) в приближении среднего поля, которая эффективно описывает гибридизацию зон $H_{11}(\mathbf{k})$ и $H_{22}(\mathbf{k})$ (матричный гибридизационный элемент $H_{12}(\mathbf{k})$) и приводит к расщеплению зоны $(\hat{h})_{11}(\mathbf{k}) = \varepsilon_{\mathbf{k}}$. Очевидно, что учет $\Sigma(\mathbf{k}, z)$ должен привести к дальнейшему расщеплению зон $E_{\mathbf{k}}^{(1)}$, $E_{\mathbf{k}}^{(2)}$ в той области по (\mathbf{k}, z) , где функция $\Sigma(\mathbf{k}, z)$ велика.

В рамках самосогласованного борновского приближения величина $\Sigma(\mathbf{k}, z)$ выражается через $G_h(\mathbf{k} - \mathbf{q}, z)$ и $D(\mathbf{q}, z)$ [11]. Ниже $G_h(\mathbf{k}, z)$ находится в простейшем подходе, когда: 1) в выражении для $\Sigma(\mathbf{k}, z)$ заменяем $G_h(\mathbf{k} - \mathbf{q}, z)$ на $G_h^{mf}(\mathbf{k}, z)$ нижней зоны $E_{\mathbf{k}}^{(1)}$ (в которой находится μ); 2) при вычислении $\Sigma(\mathbf{k}, z)$ опущены вклады от рассеяния на двух спиновых волнах (пропорциональные I^2) и оставлено только рассеяние с возбуждением одной спиновой волны (пропорциональные $\varepsilon_{\mathbf{k}-\mathbf{q}}^2$). В результате $\Sigma(\mathbf{k}, z)$ принимает вид

$$\Sigma(\mathbf{k}, z) = \frac{4}{N} \times \sum_{\mathbf{q}} \varepsilon_{\mathbf{k}-\mathbf{q}}^{2} \langle \langle S_{\mathbf{q}}^{z} a_{\mathbf{k}-\mathbf{q}\sigma_{0}} | \left(S_{\mathbf{q}}^{z} a_{\mathbf{k}-\mathbf{q}\sigma_{0}} \right)^{\dagger} \rangle \rangle_{z}^{irr},$$

$$\left\langle \left\langle S_{\mathbf{q}}^{z} a_{\mathbf{k}-\mathbf{q}\sigma_{0}} \right| \left(S_{\mathbf{q}}^{z} a_{\mathbf{k}-\mathbf{q}\sigma_{0}} \right)^{\dagger} \right\rangle \right\rangle_{z}^{irr} \approx \\ \approx Z_{\mathbf{k}-\mathbf{q}}^{(1)} \frac{F_{\mathbf{q}}}{2\omega_{\mathbf{q}}} \left[\frac{1 - n_{F,\mathbf{k}-\mathbf{q}}^{(1)} + m_{B,\mathbf{q}}}{z - E_{\mathbf{k}-\mathbf{q}}^{(1)} - \omega_{\mathbf{q}}} + \frac{n_{F,\mathbf{k}-\mathbf{q}}^{(1)} + m_{B,\mathbf{q}}}{z - E_{\mathbf{k}-\mathbf{q}}^{(1)} + \omega_{\mathbf{q}}} \right]$$

где $m_{B,\mathbf{q}} = [\exp(\omega_{\mathbf{q}}/T) - 1]^{-1}.$

На рисунке представлены результаты расчетов спектральной плотности дырки $A(\mathbf{k},\omega) = (-1/\pi) Im \langle \langle a_{\mathbf{k}\sigma} | a_{\mathbf{k}\sigma}^{\dagger} \rangle \rangle_{\omega+i\delta}$ для значений химического потенциала $\mu = -2.2$ эВ, отвечающего малому допированию ($n_h \approx 0.05$). Число точек разбиения **k**-пространства выбиралось 100 × 100 для первой четверти зоны Бриллюэна. Увеличение числа точек разбиения качественно не меняет картину. Мы не проводим «сглаживания», чтобы явно показать точность вычислений.

На рисунке *а* представлена зависимость $A(\mathbf{k}, \omega)$ для фиксированного значения $\omega = \mu$, т.е. поведение спектральной функции на ферми-уровне E_F . Максимальное значение спектральной функции будет задавать точки ферми-поверхности. Отметим несимметричное поведение $A(\mathbf{k},\omega)$ относительно линии ${
m A}\Phi{
m M}$ -зоны Бриллюэна: в области $k_x = k_y > 0.5\pi$ ее значения значительно меньше, чем в области $k_x = k_y < 0.5\pi$. Последнее свойство отражает арочный характер поверхности Ферми. При предельно малом допировании поверхность Ферми расположена вблизи точки $(\pi/2, \pi/2)$ и имеет вид дырочного кармана (hole pocket), причем экспериментально будет наблюдаться только часть поверхности, лежащая ближе к точке Г относительно АФМ-зоны Бриллюэна. Эта часть поверхности Ферми хорошо видна в ARPES-спектре и визуально представляет собой арку, причем спектр ARPES имеет в области нодальной точки когерентный характер с относительно хорошо выраженным максимумом кривой распределения энергии (energy distribution curve, EDC).

Особый интерес при теоретическом и экспериментальном исследовании купратов представляют так называемые горячие точки — области зоны Бриллюэна, лежащие вблизи (π , 0) и симметрично расположенных точек, где наблюдается максимальное значение псевдощели. Определим конкретнее положение горячей точки. Под горячими точками будем понимать те точки поверхности Фер-

Дырочная спектральная плотность $A(\mathbf{k},\omega)$ для $\mu = -2.2$ эВ (малое допирование): a — при фиксированном значении $\omega = \mu$; δ — вдоль направления $(x_{hp}, 0)-(x_{hp}, \pi)$, проходящего через горячую точку $(x_{hp}, y_{hp}) \approx (0.8\pi, 0.3\pi)$; e — вдоль направления $k_x = k_y$

ми, которые связаны вектором (π, π) (или $(-\pi, \pi)$). Это как раз те точки зоны Бриллюэна, в которых происходит пересечение предполагаемой поверхности Ферми с границей АФМ-зоны Бриллюэна. В ARPES-сигнале псевдощель видна как смещение ARPES-спектра (EDC) как целого относительно ферми-уровня [4]. Наиболее ярко отсутствие спектрального веса на ферми-уровне проявляется при построении ARPES-изображений (ARPES images) — распределений интенсивности фотоэмиссии в зависимости от импульса **k** и энергии *E* фотоэлектрона. Так, в наиболее тщательно исследованном образце Bi₂Sr₂CaCu₂O_{8+x} (BSCCO) при промежуточном допировании (x = 0.11, отвечающем температуре сверхпроводящего перехода $T_c = 77$ K) ARPES-изображения при проходе по k через горячую точку (см. рис. 1 в работе [4]) отчетливо показывают отсутствие ARPES-интенсивности в областях энергий $E < E_F$ шириной порядка 25 мэВ (приблизительно при 100 К) и 15 мэВ (примерно при 200 К), т. е. имеется псевдощель. Причем псевдощель не обращается в нуль с повышением температуры (при температуре кроссовера T^*), а сохраняется даже при $T > T^*$. Значение псевдощели в зависимости от температуры имеет немонотонный характер, достигая минимального значения при 170 К и возрастая при отклонении температуры от 170 К в любую сторону. При минимальном значении псевдощели отмечается также когерентный характер квазичастиц, поскольку наблюдается корреляция между шириной ARPES-спектра и его положением относительно E_F .

Для сравнения с данными ARPES-изображений на рисунке б представлена величина $A(\mathbf{k},\omega)$ как функция ω при **k**, отвечающих проходу через горячую точку, а именно, вдоль вертикальной линии $(x_{hp}, 0) - (x_{hp}, \pi)$. Значение x_{hp} выбирается как пересечение предполагаемой ферми-поверхности с границей АФМ-зоны Бриллюэна, и оно получается равным $x_{hp} \approx 0.8\pi, y_{hp} \approx 0.3\pi$. Предполагаемая поверхность Ферми строится по ARPES-данным как продолжение ферми-арки на поверхности Ферми, хорошо видимой в нодальной точке до пересечения с границей зоны Бриллюэна. Отметим, что так реконструируемая поверхность Ферми совпадает с истинной поверхностью Ферми только в режиме оптимального и большего допирования. В рассматриваемом режиме арка в нодальной точке составляет часть ферми-поверхности в виде дырочного кармана, который явно виден на рисунке а.

Из вида спектральной функции на рисунке δ при значении ω выше уровня химического потенциала $\mu = -2.2$ эВ (частоты ω рассматриваются в дырочном представлении, в электронном представлении частоты ω отвечают энергиям электронов под ферми-уровнем E_F) отчетливо видно отсутствие спектрального веса при $\omega = \mu$ и в области над μ , что указывает на наличие псевдощели. Ее величина составляет $\Delta_{pg} \approx 20$ мэВ (оцениваем по величине ω , отвечающей максимуму спектральной функции $A(\mathbf{k}, \omega)$ при $k_y \approx 0.35\pi$, т.е. практически в горячей точке). Так определяемая нами псевдощель обусловлена, по-сути, характером дисперсии квазичастиц в горячей точке. Рассматриваемая нами температура T = 0.1I составляет T = 12 мэВ ≈ 140 К. Значение псевдощели соответствует полученным в работе [4] значениям $\Delta_{pg} \approx 20$ мэВ при T = 140 К. Отметим также, что построенная зависимость $A(\mathbf{k}, \omega)$ качественно воспроизводит ARPES-изображение. При движении из горячей точки (x_{hp}, y_{hp}) в точку $(x_{hp}, 0)$ максимум спектральной функции смещается на величину 0.2 эВ в сторону больших ω (в сторону меньших энергий от значения ферми-уровня E_F в электронном представлении) и качественно совпадает с ARPES-изображением (см. рис. 1 в работе [4]).

На рисунке в мы представили спектральную плотность $A(\mathbf{k},\omega)$ для направления $k_x = k_y$ в широком интервале-2.4
э $\mathbf{B} \leq \omega \leq -0.4$ э В при том же значении химического потенциала $\mu = -2.2$ эВ. Рисунок в дает представление о характере дисперсии квазичастиц при малом допировании. Во-первых, явно прослеживается наличие двух зон — нижней (заполненной дырками) в области частот $\omega \sim \mu$, $\omega < -1.9$ эВ и верхней (пустой при заданном μ) в области энергий -1.5 эВ $< \omega < -0.5$ эВ. Отметим существование щели между зонами порядка $J \approx 1.2$ эВ. Наличие двух зон отражает структуру приближения среднего поля, в котором локальный полярон строится в виде суперпозиции двух базисных операторов (3). Во-вторых, нижняя зона содержит существенную плотность состояний в окрестности нодальной точки с хорошо определенными квазичастицами, что полностью согласуется с когерентным характером ARPES-спектров на арках поверхности Ферми. В-третьих, верхняя поляронная зона очень напоминает спектр затравочных дырок (1). Учет рассеяния локального полярона на спиновых флуктуациях (2) сильно изменяет спектр затравочных дырок, отщепляя от $A(\mathbf{k},\omega)$ нижнюю поляронную зону со значительным спектральным весом.

В заключение сформулируем основной результат нашего рассмотрения. Построение спектральной функции носителей с учетом рассеяния локального полярона на спиновых флуктуациях позволяет учесть существенные особенности поведения спектральной плотности $A(\mathbf{k},\omega)$ в купратах при малом допировании. Среди этих особенностей в первую очередь следует отметить воспроизведение арочного характера поверхности Ферми и наличие псевдощелевого состояния электронной подсистемы.

Работа выполнена при финансовой поддержке РФФИ (грант № 10-02-00614-а).

ЛИТЕРАТУРА

- P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 173 (2006).
- 2. M. Eschrig, Adv. Phys. 55, 47 (2006).
- A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).
- 4. A. A. Kordyuk, S. V. Borisenko, V. B. Zabolonyy et al., Phys. Rev. B 79, 020504(R) (2009).
- T. Hanaguri, Y. Kohsaka, J. C. Davis et al., Nature Phys. 3, 865 (2007).
- M. Hashimoto, T. Yoshida, H. Yagi et al., arXiv: 0801.0782v2.
- W. S. Lee, I. M. Vishik, K. Tanaka et al., Nature 450, 81 (2007).
- S. Hufner, M. A. Hossain, A. Damascelli, and G. A. Sawatzky, Rep. Progr. Phys. 71, 062501 (2008).
- K. Shen, F. Ronning, D. H. Lu, F. Baumberger et al., Science 307, 901 (2005).
- 10. A. Sherman, Phys. Rev. B 73, 155105 (2006); 74, 035104 (2006).
- N. M. Plakida and V. S. Oudovenko, *W*ЭТФ 131, 259 (2007).
- 12. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii et al., Phys. Rev. B 72, 155105 (2005).
- М. В. Еремин, В. В. Игламов, Письма в ЖЭТФ 87, 199 (2008).
- 14. O. P. Sushkov, G. A. Zawatzky, R. Eder, and H. Eskes, Phys. Rev. B 56, 11769 (1997).

- N. M. Plakida and V. S. Oudovenko, Phys. Rev. B 59, 11949 (1999).
- 16. P. Prelovšek and A. Ramšak, Phys. Rev. B 65, 174529 (2002).
- P. Prelovšek, I. Sega, and J. Bonča, Phys. Rev. Lett.
 92 027002 (2004); I. Sega, P. Prelovšek, and J. Bonča, Phys. Rev. B 68, 054524 (2003).
- V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987);
 V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547 (1988).
- 19. H. Shimahara and S. Takada, J. Phys. Soc. Jpn. 60, 2394 (1991).
- 20. А. Ф. Барабанов, В. М. Березовский, ЖЭТФ 106, 1156 (1994); А. F. Barabanov and V. M. Berezovskii, Phys. Lett. A 186, 175 (1994); J. Phys. Soc. Jpn. 63, 3974 (1994), Phys. Lett. A 186, 175 (1994); A. F. Barabanov and L. A. Maksimov, Phys. Lett. A 207, 390 (1995).
- J. F. Annet, R. M. Martin, A. K. McMahan et al., Phys. Rev. B 40, 2620 (1989).
- 22. А. Ф. Барабанов, А. А. Ковалев, О. В. Уразаев и др., ЖЭТФ 119, 777 (2001); А. F. Barabanov, А. А. Kovalev, О. V. Urazaev, and А. М. Belemouk, Phys. Lett. A 265, 221 (2000); А 238, 288 (1998); А. Ф. Барабанов, Е. Жасинас, О. В. Уразаев, Л. А. Максимов, Письма в ЖЭТФ 66, 173 (1997).
- 23. А. Ф. Барабанов, О. В. Уразаев, А. А. Ковалев, Л. А. Максимов, Письма в ЖЭТФ 68, 386 (1998).
- 24. R. O. Kuzian, R. Hayn, A. F. Barabanov, and L. A. Maksimov, Phys. Rev. B 58, 6194 (1998).
- 25. V. I. Belinicher, A. L. Chernyshev, and V. A. Shubin, Phys. Rev. B 53, 335 (1996).