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Based on the microscopic model of sd coupling between free electrons and local moments, we present a quantum
calculation of a nonadiabatic spin-transfer torque in a chiral helimagnet.

1. INTRODUCTION

The mutual influence of charge transport and spin
dynamics is a central issue of spintronics studies. A
topical issue is the current-driven manipulation of mag-
netization based on the spin-transfer torque (STT)
mechanism, when the magnetization dynamics is con-
trolled by spin-polarized conduction electrons via the
spin angular momentum transfer [1]. Recently, con-
siderable interest arose in the current-driven magne-
tization dynamics of complex magnetic textures, such
as higher-dimensional domain-wall models [2], spin spi-
rals [3], and helical spin-density waves [4]. In contrast
to layered systems, the STT in the last two systems is
a bulk effect.

Theoretical studies of the STT either use the mod-
ified classical Landau-Lifshitz—Gilbert equations [5] or
use the generalized charge transport theory to account
for spin currents and spin relaxation [6], or are based on
a microscopic derivation of the STT terms in the frame-
work of the sd model [7]. Tt is now well established that
the STT consists of two components: the adiabatic in-
plane part (Slonczewski torque) and the nonadiabatic
perpendicular part (the field-like torque). The first con-
stituent describes the adiabatic process of nonequilib-
rium conduction electrons. The field-like torque is re-
lated to the spatial mistracking of spins between con-
duction electrons and the local magnetization. Such a
division has been confirmed by recent current-switching
and spin-transfer-driven ferromagnetic resonance mea-
surements in magnetic tunnel junctions [8].
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In this paper, we present microscopic calculations
of the nonadiabatic STT in a chiral helimagnet, where
the incommensurate magnetic order is supported by the
antisymmetric Dzyaloshinskii-Morya (DM) exchange.
A specific ground state of the system known as the
soliton lattice (SL) [9], which is realized in an exter-
nal magnetic field applied perpendicularly to the helical
axis, is of special interest. Recently, we showed that the
SL involves an intrinsic sliding mode, which may be de-
tectable experimentally [10]. Apparently, the STT may
serve as a possible mechanism of the SL. movement.

The microscopic calculations of the STT are based
on the simple sd model, which captures most of the
physics of the interplay between the spin-polarized
transport of itinerant electrons and the magnetization
dynamics of local moments [11]. The electrons carry-
ing a current and coupled to local moments are treated
within the nonequillibrium (Keldysh) Green’s function
formalism [12]. For simplicity, we consider an effective
one-dimensional model, assuming that electrons travel
along the chiral z axis of the soliton lattice. The model
implies a ferromagnetic order of local moments in the
perpendicular zy plane, and the electron hopping along
the chiral axis is much greater than the hopping in per-
pendicular directions.

2. CONDUCTION ELECTRONS

The Hamiltonian of free electrons is

Z (CI+1 o
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Ho= =

5 Cio + CIa-ci+1a) - MZCL,%, (1)
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where ¢ is the hopping integral between the ith and
(i + 1)th sites located along the z axis, ¢! (¢is) is the
creation (annihilation) operator of the ith-site electron
with the spin quantum number o, and u denotes the
chemical potential.

The sd interaction with the exchange coupling J be-
tween the itinerant electron spins s; and the localized
moments S; is

Hsd:—JZSi~si

J
_5 Z (Sl : 0')00/ Cj,:o’ciﬂ'” (2)

ioo’

where o is the vector of Pauli matrices.

The dynamics of magnetization is slow compared to
that of conduction electrons, and the spin of itinerant
carriers approximately follows the direction of the local
moment. To describe the electron transport in such a
slowly varying magnetization field, it is convenient to
use a local frame of the electron.

The electron operators in the new frame are intro-
duced via the local gauge transformation a; = ﬁici,
a;f = c;r U, where the rotation matrix

A

Ui = cos(Qz;/2) +i67 sin(Qz;/2)

at the position z; depends on the wave number (Flo-
quet index) of the soliton lattice. For simplicity, we
consider the regime of a weak external magnetic field,
when Qa ~ D/J, where a is the lattice constant, D
is the DM coupling strength, and 7 is the symmetric
exchange integral inside the SL (see, e. g., Ref. [10]). In
this regime, the texture of localized moments is well ap-
proximated by ng & (cos(Qz),sin(@z),0). The approx-
imation becomes exact at zero magnetic field, where the
case of a left-handed (@ < 0) or right-handed (Q > 0)
spiral is realized.
After the local gauge transformation, the kinetic
energy term transforms into
Ho = Z(‘Ska - /’l/)a‘i];;o'a’kOW
ko

~
~

(3)

where the spin-up and the spin-down dispersions are

Ept = tcos [(k—%) a] , EgL =tcos [(k-l—%) a] .

Here, the Fourier transformation

iy = L—1/2 E eikZia]gg—, aj:'o- — L—1/2 E e_ikZiaLo_
k k

is introduced, and L is the length of the system along
the z axis. To obtain result (3), the identity

Q(z; — zj) Qz
2

(3

2

S PP Zj
U:U; L= cos + 167 sin i)

was used.
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In the new rotating frame, the local moment ng is
directed along the x axis and the sd interaction acquires
the form

(4)

where the relation U; (ng(z;) - o) Ui_l = 6" was used.
Hereinafter, the notation ay = (axt,x)) is introduced.
The total field-like spin torque on ng is given by [§]

L

T=a' /dz [ng(2) x s(2)], -

0

Using
Ui [l’lo(Zi) X U]z Ui_l =gY

allows representing the torque as
T — 1 Ty
= 5 Z akcr Qg .
k

Obviously, the STT is related to spin accumulation in
the subsystem of itinerant carriers perpendicular to the
local moment. We note that the transverse s¥ compo-
nent does not emerge in an isolated system. The spin
accumulation is a feature of the nonequilibrium state
created by the applied electric field, when the electric
current passes through the helimagnet.

Below, we present a formulation of the nonadiabatic
coupling between the conduction electrons and the lo-
cal moments obtained within the equation-of-motion
(EOM) approach of the nonequilibrium Green’s func-
tion method [13]. The approach uses the lowest-order
Born approximation that is valid for a relatively weak
sd interaction.

(5)

3. NONEQUILIBRIUM GREEN’S FUNCTIONS

In the EOM method, the Hamiltonian of the system
is split into two parts, H = Ho+H1, where Hg describes
noninteracting electrons and is given by Eq. (3). The
term H; = Hgq represents the sd interaction of elec-
trons with the local moments (see Eq. (4)), and it is
initilally supposed that H; =0 at ¢ = —oo. When H;
is adiabatically switched on, the sd interaction starts
to affect the electron transport.

Our goal is to compute the components of the spin
accumulation
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averaged over a nonequillibrium state. To perform the
calculations, the contour-ordered Green’s function

~i (Tears (Dl (1))

defined on the complex time plane is needed, where ¢
and t' are defined on the Keldysh contour C, and T de-
notes C-contour ordering. Because the one-directional
time axis is changed into a loop with two branches
C*, the Green’s function contains information on four

kakm’ (t7 tl) =

Green’s functions depending on the relative positions
of t and t' in the loop:

GT o (bt = =i <Ta,m(t)a2,0, (t’)> :

time-ordered, t,t' €C*; (6)

Gl (1) = =i (Tags (Hal,,. (1)),
anti-time-ordered, t,t' € C™; (7)

Gl?o’,k’o" (t, tl) =

“greater” component,

—i <a,m(t)a2,0, (t’)> ,
teC ,t'eCt; (8)

Gko’ k'o’ (t t' ) <aL’o" (tl)akcf (t)> )
“lesser” component, t € CT, t' € C™. (9)

Here, T(T) is the usual (anti)time-ordering operator.
The usual retarded G* and advanced G* Green’s func-
tions (lower indices are omitted) are expressed in terms
of these time-loop-ordered Green’s functions as

GR(tt) =00t -t [G”(t,t)—-G=(t.t)], (10)

Gt ) =0t —t) [G=(t, ') =G~ (t,t")].  (11)

Due to the well-known relations

GT(t,t") = 0(t—t"G™ (t,t")+0(t' —)G=(t,t'), (12)

GT(t,t) = 0(t' —t)G™ (t,t')+0(t—t)G<(t,t)), (13)

GT(t, )+ GT () = G (t, ) + G<(t,t'),  (14)

where 6(t) is the step function, only two of the time-
loop-ordered Green’s functions are independent.

According to the general formalism [13], the EOM
for the nonequilibrium time-loop Green’s function

(A(ta)B(ty)) = —iTr{poTc [A(ta) B(1)]}

is given by

ta)B(ts)) = galta — ts) ([A(t), B(ts)],) +

4 / dt ga(ta — 1) ([AMH), Hy (0] . B(1))) . (15)
C

where the upper (lower) sign is for fermions (bosons).
In Eq. (15), po stands for the equilibrium density ma-
trix, and the single-particle time-loop Green’s function
ga is defined for different relative orders of ¢; and t5 on
the Keldysh contour as follows:

fa(t2_t1)
EE— t t
' 1+ F, ) 2 > cty,
’Lga(tz — tl) = ~ ( ) (16)
Fafa t2_t1
—_— =t t1.
1+ F, 2 <ct1

The coefficients F, and f, are obtained from the rela-
tions A(t,)po = FupoA(t,) and A(t,) = aq . ..oqf(ta),
where « is either a creation or an annihilation operator.
Following the Langreth theorem, the integration over
the loop in Eq. (15) can be changed to the integration
along the real time axis [12].

4. SPIN ACCUMULATION IN THE
NONEQUILIBRIUM STATE

The electron spin density in the nonequilibrium
state is defined through the “lesser” Green’s function

<a£a°‘ak> = —iTr {G;k(t,t)&a} , a=uxy,z (17)

Using the Langreth method for Eq. (15), we obtain
the EOM for the “lesser” component

JS
Glftr,k’o" (t,tl) = gk: (t — t )61616’50'0" — 7 X

o0

DI / gl (¢ = )G, o (11,1 =

g1

- 5 0001 /dtlgkza )

X Gko'l,k’o"(t17t)7 (18)

where we set A(t) = ay (t), B(t') = aL,U, (t".
Using the equilibrium density matrix

exp ( BZ ko — akaako'>

po = :

Trexp ( BZ ko — ako-aka>
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where = 1/T is the inverse temperature, we recover
the coefficient Fy, = e P and the single-particle
time-loop Green’s function

i Gro(t2 —t1) =

:{ (1= fuo) e

—fro € —i(ero —p) (t2— t1),
where f, = (e#(Ere 1) 41)
tribution function.
Equation (19) yields the results

GR (ts — 1) = —if(ts — 1))~ Ero—m(t2=t1),
G (t — 1) = i0(t, — ta)e (e mt2t1),
gk>a(t2 —t1) = —i(1 — fro)e —i(ere —p)(t2— t1)

gk:<0' (t2 - tl) = kao_e—l(&‘kg—u)(tz—t1)7

—i(ehe —p)(t2— t1) ts > ot

19
ty < C’tla ( )

' is the Fermi—Dirac dis-

(20)

for the retarded, advanced, “greater”
ponents of the Green’s function.

In the first-order Born approximation, the “lesser”
component obtained from Eq. (18) is given by

, and “lesser” com-

Gljo‘;k’a" (taa tb) ~ ifk:a eii(skaiu)(taitb)(skk’(So-o"

_i‘]?s (fk e*t(sk, w)(t fk Lol (erpor —1)(ta 7tb))
5kkr0m ’
79 (21
Eko — Eko' — i0 ( )

This produces the 2 x 2 matrix at equal time arguments

Giplt,t) =
) IS fer—frl
kaT ! 2 61@—61@—'[0
~ JS -
IR Vit I il

2 €kl —6kT—i0

(22)

The spin accumulation components are easily ob-
tained from Eq. (17) as

toae frt fki
<aka ak> ,]573816T Zery (23)
<aL&yak> =7JS (fir — fry) 6 (eer —€ry),  (24)
<a25'2ak> = frr — fre (25)

where P means the principal value. Substituting these
results in Eq. (5), we obtain the final result for the
nonadiabatic STT

T—WJS

g (26)

(fkT — fry) 6 (et —€ky) -
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To estimate the torque, we use the relaxation time
approximation [4, 6] for the distribution function fi, in
the presence of an electric field E directed along the z
axis

0 o
fka ~ f(O) (ska) - BETQ)]W- fa (Ek )7 (27)
ko
where 7 is the electron relaxation time, vp, =

h 10z, /Ok is the electron band velocity, and
FO(ery) = (e8Eke=1) £ 1)~ 1 is the equilibrium Fermi-
Dirac distribution function.

Substituting (27) in Eq. (26) and replacing summa-
tion with integration over the Brillouin zone, we obtain

x/a
/dk <U 0f¢

—7/a
Af ) (exy)
861@

eET

= —JSL—~ 01V (er)

Oekr

— gy

) dteur —au). (29

The d-function implies the condition ey = €, which
selects definite points in the reciprocal space, i.e.,
k = 0,7/a in our case. (We bear in mind that the
points k = 7 /a are equivalent due to the periodicity.)
This provides the transformation

1 s
Oewr —en) = 2|tlasin(Qa/2) [5 (k B E) +90 (k)] '
Together with the relation
8f(0)(5kcr) _ _i ch—2 ko — M
Osre AT 2T )
this yields
t eET
L—
T=J8 |t] 16hT
o+ [ €0

P (e5) o

where g9 = t cos(Qa/2). The chemical potential p can
be found from the given electron concentration per site
0<n<2as

).

2T 2T

1
T f(O)(E tr):i
L% k

The dependence of T on the electron concentration 7
is presented in the Figure. Apparently, a change in the
concentration of free carriers causes a change of sign of
the spin-transfer torque.
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7, arb. units
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Dependence of the spin-transfer torque T on the elect-
ron concentration per site 7o

5. CONCLUSIONS

Based on the microscopic sd model, we analyzed
the nonadiabatic STT in a chiral helimagnet with a
zero or weak perpendicular magnetic field using the
nonequilibrium (Keldysh) Green’s function method.
Ths electric current that passes through a chiral heli-
magnet generates spin accumulation with a component
transverse to the local magnetization and creates a
field-like STT. The torque changes sign with the sd
exchange coupling and the carrier concentration. In
contrast to domain-wall configurations, where the
nonadiabatic torque arises for short domain walls [3],
this phenomenon is a bulk effect in a chiral helimagnet.
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