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DIAGRAM ANALYSIS OF THE HUBBARD MODEL:STATIONARITY PROPERTYOF THE THERMODYNAMIC POTENTIALV. A. Moskalenkoa;b*, L. A. Dohotaru **, I. D. Cebotari aaInstitute of Applied Physis, Moldova Aademy of Sienes2028, Chisinau, MoldovabJoint Institute for Nulear Researh141980, Dubna, RussiaTehnial University2004, Chisinau, MoldovaReeived Otober 5, 2009The diagram approah proposed many years ago for the strongly orrelated Hubbard model is developed with theaim to analyze the thermodynami potential properties. A new exat relation between renormalized quantitiessuh as the thermodynami potential, the one-partile propagator, and the orrelation funtion is established.This relation ontains an additional integration of the one-partile propagator with respet to an auxiliaryonstant. The vauum skeleton diagrams onstruted from the irreduible Green's funtions and tunnelingpropagator lines are determined and a speial funtional is introdued. The properties of this funtional areinvestigated and its relation to the thermodynami potential is established. The stationarity property of thisfuntional with respet to �rst-order variations of the orrelation funtion is demonstrated; as a onsequene,the stationarity property of the thermodynami potential is proved.1. INTRODUCTIONThe Hubbard model is one of the most importantmodels for eletrons in solids; it desribes quantummehanial hopping of eletrons over lattie sites andtheir short-range repulsive Coulomb interation. Thismodel was disussed by Hubbard [1℄ in desribing anarrow-band system of transition metals; it has beenrevised to investigate the properties of highly orrelatedeletron systems suh as opper oxide superondutors.The Hubbard model exhibits various phenomenainluding a metal�insulator transition, antiferromag-netism, ferromagnetism, and superondutivity. Thismodel assumes that eah atom of the rystal lattie hasonly one eletron orbit and the orresponding orbitalstate is nondegenerate.The Hamiltonian of the Hubbard model is a sum oftwo terms,*E-mail: moskalen�theor.jinr.ru**E-mail: statphys�asm.md

H = H0 +H 0; (1)where H0 is the atomi ontribution, whih ontainsthe Coulomb interation term U and the loal eletronenergy � in the atomH0 =Xi H0i ;H0i =X� �ni� + Uni"ni#;� = �� �; ni� = Cyi�Ci� ; (2)� is the hemial potential, H 0 is the hopping Hamil-tonian, H 0 =Xi;j X� t(i� j)Cyi�Cj� ;t(i� j) = t�(j� i); t(0) = 0; (3)Cyi� (Ci�) are the reation (annihilation) eletron ope-rators at a loal site i and with spin �, and t is thehopping integral. In the thermodynami perturbationtheory, we use thermal averages in a grand anonial107



V. A. Moskalenko, L. A. Dohotaru, I. D. Cebotari ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010ensemble, and therefore the term ��N̂e, with the ele-tron number operator̂Ne =Xi;� ni�; (4)is added to Hamiltonian (1). The quantities U andN̂e are the fundamental parameters of the model. Thelarge Coulomb repulsion is taken into aount in thezeroth approximation of our theory. The operator H 0,whih desribes hopping of the eletrons between sitesof the rystal lattie, is regarded as a perturbation.New physial and mathematial onepts and teh-niques have been elaborated for investigating thismodel. We an only mention some of them. Thereare many analyti approximations suh as the Hub-bard approximation, the nonrossing approximation,the slave-boson method, dynamial mean �eld theory,and omposite and other projetion operator methodsand approahes.Numerial simulations of thermodynami quantitiesand the density of states have also been performed byvarious methods. Some exat results for the one- andtwo-dimensional Hubbard model are known. Eah ap-proximate method has its advantages and disadvan-tages. A short and omprehensive review of the me-thods an be found in papers and books [2�7℄. In ad-dition to these approahes, we also mention the speialdiagram tehniques elaborated for strongly orrelatedeletron systems. In Refs. [8�10℄, a diagram tehniquefor the Hubbard model was developed based on dis-entangling the nondiagonal Hubbard operator from ti-me-ordered produts of other suh operators. Beausethe algebra of the Hubbard transfer operators is moreompliated than that of Fermi operators, the essentialfeatures of this tehnique remain poorly developed.Other diagram approahes around the atomi limithave also been proposed for the Hubbard model inboth normal [11; 12℄ and superonduting [13℄ states.The theory introdues the generalized Wik theorem(GWT) that uses a umulant expansion of the statis-tial average values for the produts of fermion oper-ators. The GWT takes into aount the fat that theHamiltonian H0 is nonquadrati in fermion operatorsdue to the Coulomb interation. This last irumstaneis responsible for the appearane of the nonvanishingsite umulants alled the irreduible Green's funtions.These new Green's funtions take all the spin, harge,and pairing �utuations of the system into aount.The perturbation formalism around the atomi limithas the advantage that loal (atomi) physial proper-ties an be evaluated exatly and the transfer of thisloal information to neighboring sites due to kineti

mobility of the ondution eletrons an be handledperturbatively in powers of the hopping integral.A GWT for hronologial averages of produts ofeletron operators was subsequently formulated alsoby Metzner [14℄. Metzner did not derive a Dyson-type equation for the renormalized one-partile Green'sfuntion, and the role of our orrelation funtion wasnot established. In spite of the similarity to our works,the diagrams in his approah are quite di�erent fromours. The n-partile umulant is represented by a 2n-valent-point vertex with n inoming and n outgoinglines, whereas in our approah, suh a umulant or ir-reduible Green's funtions is represented by a retan-gle with 2n verties with n inoming and n outgoingarrows. The retangle ontains verties with the samesite index but di�erent time and spin labels. In ad-dition, Metzner investigated the limit of high lattiedimensions.In this paper, we develop the diagram theory pro-posed previously for the Hubbard model [11; 12℄ withthe aim to demonstrate the existene of a relation be-tween renormalized values of the thermodynami po-tential and the one-partile Green's funtion and also toprove the stationarity properties of this potential. Suha theorem was �rst proved by Luttinger and Ward [15℄for unorrelated systems by using the diagram teh-nique of weak-oupling �eld theory.The strong-oupling diagram theory used by us re-quires new onepts and new equations to prove thestationarity properties of the thermodynami potentialfor strongly orrelated systems. Suh a proof has al-ready been ahieved for the Anderson impurity modelin [16℄.This paper is organized as follows. In Se. 2, we de-velop the diagram theory in the strong-oupling limitand introdue the skeleton diagrams. In Se. 3, weprove the stationarity theorem for the renormalizedthermodynami potential. Setion 4 ontains our on-lusions.2. PERTURBATIVE TREATMENTWe use the de�nition of the one-partile MatsubaraGreen's funtions in the interation representation asin [11; 12℄,G(xjx0) = � 
TCx�(�)Cx0�0(� 0)U(�)�0 ; (5)where x stands for (x; �; �) and the supersript �� de-notes the onneted part of the diagrams that appearin the right-hand side of Eq. (5). We use a somewhatgeneralized series expansion for the evolution operator108
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x x0 �++= x x0 x x0G�(xjx0) �t �t �t
x x0 x x��2 ��3 ��3 x0 x x0 + : : :��3Fig. 1. First three orders of the perturbation theory for the one-partile propagator. The solid line depits the zeroth-orderpropagator and the dashed line depits the tunneling matrix element. The retangles depit irreduible two-partiles Green'sfuntions G(0)ir2 , and dots are the verties of the diagramsU(�) beause we introdue an auxiliary onstant � anduse �H 0 instead of H 0:U�(�) = T exp0��� �Z0 H 0(�) d�1A : (6)In the presene of this onstant, we use � as a label forall dynami quantities suh as G�(xjx0). At the �nalstage of the alulations, this onstant it set equal tounity.In the zeroth-order approximation, the one-partileGreen's funtion G(0)(xjx0) is loal,G(0)(xjx0) = Æxx0Æ��0G(0)(� � � 0); (7)and its Fourier representation isG(0)� (i!n) = �Z0 G(0)� (�) exp (i!n� ) d� == 1Z0 �exp(��E0) + exp(��E�)i!n +E0 �E� ++ exp(��E�) + exp(��E2)i!n +E� �E2 � ; (8)whereZ0 = exp(��E0) + exp(��E�) ++ exp(��E�) + exp(��E2);E0 = 0; E� = E� = �; E2 = 2�+ U;� = ��; !n = (2n+ 1)�=�;with E0, E� , and E2 being the energies of atomi sites.As was proved in [11; 12℄, propagator (5) has thediagram representation depited in Fig. 1. The order-nirreduible Green's funtions are shown with retangleswith 2n verties. The arrows entering a vertex denoteannihilated eletrons, and those that go out, reatedeletrons.

x0x12 �1�2
x0x x x01��(xjx0) = � � �1 �

x 2 �23 �3 x0�1 + : : :1� �32 x x0123 �1�3�2 �� �22 � �36
Fig. 2. Skeleton diagrams for the orrelation fun-tion ��. Double dashed lines depit the tunnelingGreen's funtions T� and retangles depit the irre-duible Green's funtionsIn [11℄, we introdued the notion of a orrelationfuntion Z�(xjx0) that is the sum of strongly onneteddiagrams ontaining irreduible Green's funtions andis related to the more onvenient funtion��(xjx0) = G0(xjx0) + Z�(xjx0):In Fig. 1, the fourth and seventh diagrams in theright-hand side pertain to the orrelation funtion. Be-ause irreduible funtions are loal and tunneling mat-rix elements have the property that t(x � x) = 0, allthe diagrams ontaining self-loked tunneling elementsare omitted in Fig. 1.109



V. A. Moskalenko, L. A. Dohotaru, I. D. Cebotari ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010As an be seen from Fig. 1, the proess of propa-gator renormalization is aompanied by an analogousrenormalization proess for tunneling matrix elementsand by the replaement of the instantaneous quantity�t(x � x0) = �t(x � x0)Æ(� � � 0 � 0+)with the dynamial oneeT�(xjx0) = �t(x� x0)Æ(� � � 0 � 0+) ++X1;2 �t(x � 1)G�(1j2)�t(2� x0); (9)whih in the Fourier representationt(x) = 1N Xk �(k) exp (�ik � x);G�(xjx0) = 1N Xk 1� X!n G�(kji!n)�� exp [�ik � (x� x0)� i!n(� � � 0)℄beomeseT�(kji!n) � �T�(kji!n) == ��(k)[1 + ��(k)G�(kji!n)℄: (10)The renormalized tunneling matrix element T� isin fat the tunneling Green's funtion and is to be de-pited as a double dashed line (see Fig. 2). The matrixelement eT� is represented by suh a double dashed linetimes �.We now introdue the skeleton diagrams that on-tain only the irreduible Green's funtions and dashedlines without any renormalization. In suh skeleton di-agrams, simple dashed lines are replaed with doubledashed lines, with the omplete renormalization of dy-namial quantities.The skeleton diagrams for the orrelation funtion�� are shown in Fig. 2. They are of two kinds. The�rst four diagrams are loal and therefore their Fourierrepresentation is independent of the momentum. Thelast diagram and others with more retangles are notloal and their Fourier representation depends on themomentum. Only the �rst ategory of diagrams aretaken into aount in dynamial mean �eld theory.As was proved in [11; 12℄, the knowledge of �� per-mits formulating the following Dyson-type equation forthe one-partile Green's funtion:G�(k) = ��(k)1� ��(k)��(k) : (11)

Here, k stands for (k; i!n) with odd Matsubara fre-quenies. It follows from (10) and (11) thateT�(k) = �T�(k);T�(k) = �(k)1� ��(k)��(k) : (12)Equation (12) has the form of a Dyson equation for thetunneling Green's funtion, and the role of the massoperator �� is played by the orrelation funtion timesthe auxiliary onstant �:��(k) = ���(k): (13)In the Hubbard-I approximation, we neglet theorrelation funtion Z�(k) and onsider ��(k) equalto the zeroth-order Green's funtion G0(k). In this ap-proximation, GI�(k) = G0(k)1� ��(k)G0(k)whih desribes two Hubbard energy subbands sepa-rated from eah other for U 6= 0, whih annot desribethe Mott�Hubbard transition.3. THERMODYNAMIC POTENTIALDIAGRAMSThe thermodynami potential of the system is de-termined by the onneted part of the mean value ofthe evolution operator [11; 12℄F = F0 � 1� hU(�)i0 : (14)From the beginning, we onsider a more general quan-tity F (�) = F0 � 1� hU�(�)i0 ; (15)and set � = 1 at the �nal stage.The �rst-order diagrams for hU�(�)i0 obtainedusing the perturbation theory are shown in Fig. 3. Tounderstand these diagram ontributions better, we exa-mine the expressionXx;x0 G�(xjx0)�t(x0 � x)Æ(� � � 0 � 0+)Æ��0 == ��Xx;x0X� G��(x� x0j � 0+)�t(x0 � x) == ��Xk;� X!n �(k)G��(kji!n) exp(i!n0+); (16)110
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1 Fig. 3. The �rst four orders of the perturbation theory for hU�(�)i0where summation and integration over repeated indiesis assumed and we have integrated with respet to time.In terms of diagrams, Eq. (16) implies the proe-dure of loking the external lines of the G� propagatordiagrams shown in Fig. 1 with the tunneling matrix el-ement t(x0 � x), whih yields diagrams without exter-nal lines similar to those for hU�(�)i0 shown in Fig. 3.These two series of diagrams di�er by the oe�ientsin front of them.In expression (16), the oe�ients 1=n before eahdiagram, where n is the order of the perturbation theo-ry, are absent. These oe�ients are present in Fig. 3.To restore these 1=n oe�ients in (16) and obtain theoinidene with the hU�(�)i0 series, it is enough tointegrate (16) with respet to �, whih yields�Xx;x0X� � Z d�t(x0 � x)G��(x� x0j � 0+): (17)Expression (17) displayed in the diagram representa-tion exatly oinides with the mean value of the evo-lution operator:hU�(�)i0 = �Xx;x0 �t(x0 � x)�� �Z0 d�0G�0�(x� x0j � 0+): (18)In the Fourier representation, we have

hU�(�)i0 = � �Z0 d�0 �� Xk;�;!n �(k)G�0�(kji!n) exp(i!n0+): (19)It follows from (15) and (19) thatF (�) = F0 + �Z0 d�0Xk;� 1� ��X!n �(k)G�0�(kji!n) exp(i!n0+): (20)Using de�nition (14), Eq. (20) an be written asF (�) = F0 + �Z0 d�0�0 Xk;� 1� ��X!n T�0(k)��0 (k) exp(i!n0+); (21)whene�F (�)d� =Xk;� 1� X!n T�(k)��(k) exp(i!n0+) == 1� Tr(T���): (22)To obtain a full system of equations, we add thede�nition of the hemial potential to (21),Ne =Xk;� 1� X!n G�(kji!n) exp(i!n0+); (23)111
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Fig. 4. The simplest skeleton diagrams for the funtional Y 0(�). Double dashed lines are the tunneling funtions T�(k)where Ne is the number of eletrons.Equation (20) establishes the relation betweenthe thermodynami potential and the renormalizedone-partile propagator. This last quantity depends onthe auxiliary parameter �, and Eq. (20) ontains an ad-ditional integration over it, whih makes this equationinonvenient.We obtain a more onvenient equation for the ther-modynami potential without suh an integration over�. For this, we introdue the speial funtional [15℄Y (�) = Y1(�) + Y 0(�); (24)whereY1(�) = � 1� Xk;�;!n[ln(�(k)���(k)� 1) ++ T�(k)���(k)℄ exp(i!n0+); (25)and Y 0(�) is onstruted from skeleton diagrams with-out external lines as shown in Fig. 4.Our observation about two kinds of skeleton dia-grams for the �(k) funtion an be repeated in relationto the vauum skeleton diagrams in Fig. 4.The dependene on � in the funtional Y 0(�) istwofold: through the dependene of the renormalizedGreen's funtion G�; T�;��, and �� and through theexpliit fators �n in front of eah diagram of Y 0(�).Using the above de�nitions, we an prove the equa-tions

Æ�Y1(�)ÆT�(k) = ����(k) = ���(k);Æ�Y 0(�)ÆT�(k) = ���(k) = ��(k): (26)As a result, we obtain the stationarity propertyÆ�Y (�)ÆT�(k) = 0: (27)Using de�nition (13) of the mass operator ��(k), wean rewrite the funtional Y1(�) in the formY1(�) = � 1� Xk;� X!n [ln(�(k)��(k)� 1) ++ T�(k)��(k)℄ exp(i!n0+); (28)and prove the seond form of the stationarity propertyÆY (�)Æ��(k) = 0 (29)if we take the Dyson equation for the tunneling fun-tion T�(k) into aount.We now disuss the derivative of the funtionalY (�) with respet to �. Using stationarity property(29), we obtaindY (�)d� =Xk ÆY (�)Æ��(k) Æ��(k)Æ� + �Y (�)�� ������ == �Y 0(�)�� ������ (30)beause Y1(�) in (28) has no expliit dependene on �.112



ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010 Diagram analysis of the Hubbard model : : :Using Fig. 4 for Y 0(�) and the de�nition of �� inFig. 2, it is easy to establish the property��Y 0(�)�� ������ = 1� Xk;� X!n T�(k)���(k) exp(i!n0+) == 1� Tr(T���): (31)It therefore follows from (30) and (31) that�dY (�)d� = 1� Xk;� X!n T�(k)��(k) = 1� Tr(T���): (32)From Eqs. (22) and (32), we have�dF (�)d� = �dY (�)d� ; (33)and hene F (�) = Y (�) + onst: (34)Beause the perturbation is absent for � = 0 andF (0) = F0 and Y (0) = 0, we haveF (�) = Y (�) + F0: (35)We an now set � = 1 to obtainF (1) = Y (1) + F0 (36)with the stationarity propertyÆFÆ� = 0: (37)4. CONCLUSIONSWe have developed the diagram theory proposed forthe Hubbard model many years ago, and introduedthe notion of the renormalized tunneling Green's fun-tion T in addition to those known previously. We havede�ned the orrelation funtion � and the mass op-erator � for the tunneling funtion, and have estab-lished Dyson equations for them. The mass operatorwas found in (13) to be equal to the orrelation funtionfor � = 1.We have obtained a diagram representation of theorrelation funtion in terms of the skeleton diagramsthat ontain the many-partile irreduible Green'sfuntions G(0)ir2n with all possible values of n (the per-turbation theory order) and the renormalized tunnelingGreen's funtions.We have established a relation between renorma-lized values of the thermodynami potential and the

one-partile Green's funtion. This last funtion hasan additional dependene on the auxiliary onstant �and must be integrated over it. We have shown thatit is possible to avoid suh an integration over � andto introdue the speial funtional Y (�) onstrutedfrom skeleton diagrams. We have proved the stationar-ity property of this funtional and found its relation tothe stationarity of the thermodynami potential withrespet to a variation of the mass operator or the fulltunneling funtion. This theorem is a generalizationof the known Luttinger and Ward theorem [15℄ provedfor weakly orrelated systems to the ase of stronglyorrelated systems desribed by the Hubbard model.As regards the diagrams for the orrelation fun-tion � in Fig. 2 and for the funtional Y 0 in Fig. 4,we emphasize that a part of the skeleton diagramsare loal, and they are the only ones assoiated withthe dynamial mean �eld theory. The other diagramsare nonloal, ontain spae and time �utuations, andare omitted in this theory. The generalization of thedynamial mean �eld theory is related to taking thesespae �utuations into aount together with time �u-tuations.Two of us (V. A. M and L. A. D) thank N. M. Pla-kida and S. Cojoaru for a very helpful disussion.REFERENCES1. J. Hubbard, Pro. Roy. So. London A 276, 238(1963), 277, 237 (1964), 281, 401 (1964).2. P. Fulde, Eletron Correlations in Moleules and So-lids, Springer-Verlag, Berlin (1993).3. A. C. Hewson, The Kondo Problem to Heavy Fermions,Cambridge Univ. Press, Cambridge, England (1993).4. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozen-berg, Rev. Mod. Phys. 8, 13 (1996).5. H. Matsumoto and F. Manini, Phys. Rev. B 55, 2095(1997).6. A. Avella, F. Manini, and R. Munzner, Phys. Rev.B 63, 245117 (2001).7. G. Kotliar and D. Vollhardt, Physis Today 57, 53(2004).8. P. M. Slobodyan and I. V. Stasyuk, Teor. Mat. Fiz.19, 423 (1974); Preprint 73-136R (in Russian), Insti-tute of Theoretial Physis, Ukranian SSR Aademy ofSienes, Kiev (1973).8 ÆÝÒÔ, âûï. 1 (7) 113
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