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DIAGRAM ANALYSIS OF THE HUBBARD MODEL:STATIONARITY PROPERTYOF THE THERMODYNAMIC POTENTIALV. A. Moskalenkoa;b*, L. A. Dohotaru 
**, I. D. Cebotari aaInstitute of Applied Physi
s, Moldova A
ademy of S
ien
es2028, Chisinau, MoldovabJoint Institute for Nu
lear Resear
h141980, Dubna, Russia
Te
hni
al University2004, Chisinau, MoldovaRe
eived O
tober 5, 2009The diagram approa
h proposed many years ago for the strongly 
orrelated Hubbard model is developed with theaim to analyze the thermodynami
 potential properties. A new exa
t relation between renormalized quantitiessu
h as the thermodynami
 potential, the one-parti
le propagator, and the 
orrelation fun
tion is established.This relation 
ontains an additional integration of the one-parti
le propagator with respe
t to an auxiliary
onstant. The va
uum skeleton diagrams 
onstru
ted from the irredu
ible Green's fun
tions and tunnelingpropagator lines are determined and a spe
ial fun
tional is introdu
ed. The properties of this fun
tional areinvestigated and its relation to the thermodynami
 potential is established. The stationarity property of thisfun
tional with respe
t to �rst-order variations of the 
orrelation fun
tion is demonstrated; as a 
onsequen
e,the stationarity property of the thermodynami
 potential is proved.1. INTRODUCTIONThe Hubbard model is one of the most importantmodels for ele
trons in solids; it des
ribes quantumme
hani
al hopping of ele
trons over latti
e sites andtheir short-range repulsive Coulomb intera
tion. Thismodel was dis
ussed by Hubbard [1℄ in des
ribing anarrow-band system of transition metals; it has beenrevised to investigate the properties of highly 
orrelatedele
tron systems su
h as 
opper oxide super
ondu
tors.The Hubbard model exhibits various phenomenain
luding a metal�insulator transition, antiferromag-netism, ferromagnetism, and super
ondu
tivity. Thismodel assumes that ea
h atom of the 
rystal latti
e hasonly one ele
tron orbit and the 
orresponding orbitalstate is nondegenerate.The Hamiltonian of the Hubbard model is a sum oftwo terms,*E-mail: moskalen�theor.jinr.ru**E-mail: statphys�asm.md

H = H0 +H 0; (1)where H0 is the atomi
 
ontribution, whi
h 
ontainsthe Coulomb intera
tion term U and the lo
al ele
tronenergy � in the atomH0 =Xi H0i ;H0i =X� �ni� + Uni"ni#;� = �� �; ni� = Cyi�Ci� ; (2)� is the 
hemi
al potential, H 0 is the hopping Hamil-tonian, H 0 =Xi;j X� t(i� j)Cyi�Cj� ;t(i� j) = t�(j� i); t(0) = 0; (3)Cyi� (Ci�) are the 
reation (annihilation) ele
tron ope-rators at a lo
al site i and with spin �, and t is thehopping integral. In the thermodynami
 perturbationtheory, we use thermal averages in a grand 
anoni
al107
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-tron number operator̂Ne =Xi;� ni�; (4)is added to Hamiltonian (1). The quantities U andN̂e are the fundamental parameters of the model. Thelarge Coulomb repulsion is taken into a

ount in thezeroth approximation of our theory. The operator H 0,whi
h des
ribes hopping of the ele
trons between sitesof the 
rystal latti
e, is regarded as a perturbation.New physi
al and mathemati
al 
on
epts and te
h-niques have been elaborated for investigating thismodel. We 
an only mention some of them. Thereare many analyti
 approximations su
h as the Hub-bard approximation, the non
rossing approximation,the slave-boson method, dynami
al mean �eld theory,and 
omposite and other proje
tion operator methodsand approa
hes.Numeri
al simulations of thermodynami
 quantitiesand the density of states have also been performed byvarious methods. Some exa
t results for the one- andtwo-dimensional Hubbard model are known. Ea
h ap-proximate method has its advantages and disadvan-tages. A short and 
omprehensive review of the me-thods 
an be found in papers and books [2�7℄. In ad-dition to these approa
hes, we also mention the spe
ialdiagram te
hniques elaborated for strongly 
orrelatedele
tron systems. In Refs. [8�10℄, a diagram te
hniquefor the Hubbard model was developed based on dis-entangling the nondiagonal Hubbard operator from ti-me-ordered produ
ts of other su
h operators. Be
ausethe algebra of the Hubbard transfer operators is more
ompli
ated than that of Fermi operators, the essentialfeatures of this te
hnique remain poorly developed.Other diagram approa
hes around the atomi
 limithave also been proposed for the Hubbard model inboth normal [11; 12℄ and super
ondu
ting [13℄ states.The theory introdu
es the generalized Wi
k theorem(GWT) that uses a 
umulant expansion of the statis-ti
al average values for the produ
ts of fermion oper-ators. The GWT takes into a

ount the fa
t that theHamiltonian H0 is nonquadrati
 in fermion operatorsdue to the Coulomb intera
tion. This last 
ir
umstan
eis responsible for the appearan
e of the nonvanishingsite 
umulants 
alled the irredu
ible Green's fun
tions.These new Green's fun
tions take all the spin, 
harge,and pairing �u
tuations of the system into a

ount.The perturbation formalism around the atomi
 limithas the advantage that lo
al (atomi
) physi
al proper-ties 
an be evaluated exa
tly and the transfer of thislo
al information to neighboring sites due to kineti


mobility of the 
ondu
tion ele
trons 
an be handledperturbatively in powers of the hopping integral.A GWT for 
hronologi
al averages of produ
ts ofele
tron operators was subsequently formulated alsoby Metzner [14℄. Metzner did not derive a Dyson-type equation for the renormalized one-parti
le Green'sfun
tion, and the role of our 
orrelation fun
tion wasnot established. In spite of the similarity to our works,the diagrams in his approa
h are quite di�erent fromours. The n-parti
le 
umulant is represented by a 2n-valent-point vertex with n in
oming and n outgoinglines, whereas in our approa
h, su
h a 
umulant or ir-redu
ible Green's fun
tions is represented by a re
tan-gle with 2n verti
es with n in
oming and n outgoingarrows. The re
tangle 
ontains verti
es with the samesite index but di�erent time and spin labels. In ad-dition, Metzner investigated the limit of high latti
edimensions.In this paper, we develop the diagram theory pro-posed previously for the Hubbard model [11; 12℄ withthe aim to demonstrate the existen
e of a relation be-tween renormalized values of the thermodynami
 po-tential and the one-parti
le Green's fun
tion and also toprove the stationarity properties of this potential. Su
ha theorem was �rst proved by Luttinger and Ward [15℄for un
orrelated systems by using the diagram te
h-nique of weak-
oupling �eld theory.The strong-
oupling diagram theory used by us re-quires new 
on
epts and new equations to prove thestationarity properties of the thermodynami
 potentialfor strongly 
orrelated systems. Su
h a proof has al-ready been a
hieved for the Anderson impurity modelin [16℄.This paper is organized as follows. In Se
. 2, we de-velop the diagram theory in the strong-
oupling limitand introdu
e the skeleton diagrams. In Se
. 3, weprove the stationarity theorem for the renormalizedthermodynami
 potential. Se
tion 4 
ontains our 
on-
lusions.2. PERTURBATIVE TREATMENTWe use the de�nition of the one-parti
le MatsubaraGreen's fun
tions in the intera
tion representation asin [11; 12℄,G(xjx0) = � 
TCx�(�)Cx0�0(� 0)U(�)�
0 ; (5)where x stands for (x; �; �) and the supers
ript �
� de-notes the 
onne
ted part of the diagrams that appearin the right-hand side of Eq. (5). We use a somewhatgeneralized series expansion for the evolution operator108



ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010 Diagram analysis of the Hubbard model : : :
x0

x x0 �++= x x0 x x0G�(xjx0) �t �t �t
x x0 x x��2 ��3 ��3 x0 x x0 + : : :��3Fig. 1. First three orders of the perturbation theory for the one-parti
le propagator. The solid line depi
ts the zeroth-orderpropagator and the dashed line depi
ts the tunneling matrix element. The re
tangles depi
t irredu
ible two-parti
les Green'sfun
tions G(0)ir2 , and dots are the verti
es of the diagramsU(�) be
ause we introdu
e an auxiliary 
onstant � anduse �H 0 instead of H 0:U�(�) = T exp0��� �Z0 H 0(�) d�1A : (6)In the presen
e of this 
onstant, we use � as a label forall dynami
 quantities su
h as G�(xjx0). At the �nalstage of the 
al
ulations, this 
onstant it set equal tounity.In the zeroth-order approximation, the one-parti
leGreen's fun
tion G(0)(xjx0) is lo
al,G(0)(xjx0) = Æxx0Æ��0G(0)(� � � 0); (7)and its Fourier representation isG(0)� (i!n) = �Z0 G(0)� (�) exp (i!n� ) d� == 1Z0 �exp(��E0) + exp(��E�)i!n +E0 �E� ++ exp(��E�) + exp(��E2)i!n +E� �E2 � ; (8)whereZ0 = exp(��E0) + exp(��E�) ++ exp(��E�) + exp(��E2);E0 = 0; E� = E� = �; E2 = 2�+ U;� = ��; !n = (2n+ 1)�=�;with E0, E� , and E2 being the energies of atomi
 sites.As was proved in [11; 12℄, propagator (5) has thediagram representation depi
ted in Fig. 1. The order-nirredu
ible Green's fun
tions are shown with re
tangleswith 2n verti
es. The arrows entering a vertex denoteannihilated ele
trons, and those that go out, 
reatedele
trons.

x0x12 �1�2
x0x x x01��(xjx0) = � � �1 �

x 2 �23 �3 x0�1 + : : :1� �32 x x0123 �1�3�2 �� �22 � �36
Fig. 2. Skeleton diagrams for the 
orrelation fun
-tion ��. Double dashed lines depi
t the tunnelingGreen's fun
tions T� and re
tangles depi
t the irre-du
ible Green's fun
tionsIn [11℄, we introdu
ed the notion of a 
orrelationfun
tion Z�(xjx0) that is the sum of strongly 
onne
teddiagrams 
ontaining irredu
ible Green's fun
tions andis related to the more 
onvenient fun
tion��(xjx0) = G0(xjx0) + Z�(xjx0):In Fig. 1, the fourth and seventh diagrams in theright-hand side pertain to the 
orrelation fun
tion. Be-
ause irredu
ible fun
tions are lo
al and tunneling mat-rix elements have the property that t(x � x) = 0, allthe diagrams 
ontaining self-lo
ked tunneling elementsare omitted in Fig. 1.109
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an be seen from Fig. 1, the pro
ess of propa-gator renormalization is a

ompanied by an analogousrenormalization pro
ess for tunneling matrix elementsand by the repla
ement of the instantaneous quantity�t(x � x0) = �t(x � x0)Æ(� � � 0 � 0+)with the dynami
al oneeT�(xjx0) = �t(x� x0)Æ(� � � 0 � 0+) ++X1;2 �t(x � 1)G�(1j2)�t(2� x0); (9)whi
h in the Fourier representationt(x) = 1N Xk �(k) exp (�ik � x);G�(xjx0) = 1N Xk 1� X!n G�(kji!n)�� exp [�ik � (x� x0)� i!n(� � � 0)℄be
omeseT�(kji!n) � �T�(kji!n) == ��(k)[1 + ��(k)G�(kji!n)℄: (10)The renormalized tunneling matrix element T� isin fa
t the tunneling Green's fun
tion and is to be de-pi
ted as a double dashed line (see Fig. 2). The matrixelement eT� is represented by su
h a double dashed linetimes �.We now introdu
e the skeleton diagrams that 
on-tain only the irredu
ible Green's fun
tions and dashedlines without any renormalization. In su
h skeleton di-agrams, simple dashed lines are repla
ed with doubledashed lines, with the 
omplete renormalization of dy-nami
al quantities.The skeleton diagrams for the 
orrelation fun
tion�� are shown in Fig. 2. They are of two kinds. The�rst four diagrams are lo
al and therefore their Fourierrepresentation is independent of the momentum. Thelast diagram and others with more re
tangles are notlo
al and their Fourier representation depends on themomentum. Only the �rst 
ategory of diagrams aretaken into a

ount in dynami
al mean �eld theory.As was proved in [11; 12℄, the knowledge of �� per-mits formulating the following Dyson-type equation forthe one-parti
le Green's fun
tion:G�(k) = ��(k)1� ��(k)��(k) : (11)

Here, k stands for (k; i!n) with odd Matsubara fre-quen
ies. It follows from (10) and (11) thateT�(k) = �T�(k);T�(k) = �(k)1� ��(k)��(k) : (12)Equation (12) has the form of a Dyson equation for thetunneling Green's fun
tion, and the role of the massoperator �� is played by the 
orrelation fun
tion timesthe auxiliary 
onstant �:��(k) = ���(k): (13)In the Hubbard-I approximation, we negle
t the
orrelation fun
tion Z�(k) and 
onsider ��(k) equalto the zeroth-order Green's fun
tion G0(k). In this ap-proximation, GI�(k) = G0(k)1� ��(k)G0(k)whi
h des
ribes two Hubbard energy subbands sepa-rated from ea
h other for U 6= 0, whi
h 
annot des
ribethe Mott�Hubbard transition.3. THERMODYNAMIC POTENTIALDIAGRAMSThe thermodynami
 potential of the system is de-termined by the 
onne
ted part of the mean value ofthe evolution operator [11; 12℄F = F0 � 1� hU(�)i
0 : (14)From the beginning, we 
onsider a more general quan-tity F (�) = F0 � 1� hU�(�)i
0 ; (15)and set � = 1 at the �nal stage.The �rst-order diagrams for hU�(�)i
0 obtainedusing the perturbation theory are shown in Fig. 3. Tounderstand these diagram 
ontributions better, we exa-mine the expressionXx;x0 G�(xjx0)�t(x0 � x)Æ(� � � 0 � 0+)Æ��0 == ��Xx;x0X� G��(x� x0j � 0+)�t(x0 � x) == ��Xk;� X!n �(k)G��(kji!n) exp(i!n0+); (16)110
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hU�(�)i
0 = ��22
1 Fig. 3. The �rst four orders of the perturbation theory for hU�(�)i
0where summation and integration over repeated indi
esis assumed and we have integrated with respe
t to time.In terms of diagrams, Eq. (16) implies the pro
e-dure of lo
king the external lines of the G� propagatordiagrams shown in Fig. 1 with the tunneling matrix el-ement t(x0 � x), whi
h yields diagrams without exter-nal lines similar to those for hU�(�)i
0 shown in Fig. 3.These two series of diagrams di�er by the 
oe�
ientsin front of them.In expression (16), the 
oe�
ients 1=n before ea
hdiagram, where n is the order of the perturbation theo-ry, are absent. These 
oe�
ients are present in Fig. 3.To restore these 1=n 
oe�
ients in (16) and obtain the
oin
iden
e with the hU�(�)i
0 series, it is enough tointegrate (16) with respe
t to �, whi
h yields�Xx;x0X� � Z d�t(x0 � x)G��(x� x0j � 0+): (17)Expression (17) displayed in the diagram representa-tion exa
tly 
oin
ides with the mean value of the evo-lution operator:hU�(�)i
0 = �Xx;x0 �t(x0 � x)�� �Z0 d�0G�0�(x� x0j � 0+): (18)In the Fourier representation, we have

hU�(�)i
0 = � �Z0 d�0 �� Xk;�;!n �(k)G�0�(kji!n) exp(i!n0+): (19)It follows from (15) and (19) thatF (�) = F0 + �Z0 d�0Xk;� 1� ��X!n �(k)G�0�(kji!n) exp(i!n0+): (20)Using de�nition (14), Eq. (20) 
an be written asF (�) = F0 + �Z0 d�0�0 Xk;� 1� ��X!n T�0(k)��0 (k) exp(i!n0+); (21)when
e�F (�)d� =Xk;� 1� X!n T�(k)��(k) exp(i!n0+) == 1� Tr(T���): (22)To obtain a full system of equations, we add thede�nition of the 
hemi
al potential to (21),Ne =Xk;� 1� X!n G�(kji!n) exp(i!n0+); (23)111
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�

� �424 � �48 + : : :):
� �22 � �36Y 0(�) = � 1�Xk;�X!n (�

Fig. 4. The simplest skeleton diagrams for the fun
tional Y 0(�). Double dashed lines are the tunneling fun
tions T�(k)where Ne is the number of ele
trons.Equation (20) establishes the relation betweenthe thermodynami
 potential and the renormalizedone-parti
le propagator. This last quantity depends onthe auxiliary parameter �, and Eq. (20) 
ontains an ad-ditional integration over it, whi
h makes this equationin
onvenient.We obtain a more 
onvenient equation for the ther-modynami
 potential without su
h an integration over�. For this, we introdu
e the spe
ial fun
tional [15℄Y (�) = Y1(�) + Y 0(�); (24)whereY1(�) = � 1� Xk;�;!n[ln(�(k)���(k)� 1) ++ T�(k)���(k)℄ exp(i!n0+); (25)and Y 0(�) is 
onstru
ted from skeleton diagrams with-out external lines as shown in Fig. 4.Our observation about two kinds of skeleton dia-grams for the �(k) fun
tion 
an be repeated in relationto the va
uum skeleton diagrams in Fig. 4.The dependen
e on � in the fun
tional Y 0(�) istwofold: through the dependen
e of the renormalizedGreen's fun
tion G�; T�;��, and �� and through theexpli
it fa
tors �n in front of ea
h diagram of Y 0(�).Using the above de�nitions, we 
an prove the equa-tions

Æ�Y1(�)ÆT�(k) = ����(k) = ���(k);Æ�Y 0(�)ÆT�(k) = ���(k) = ��(k): (26)As a result, we obtain the stationarity propertyÆ�Y (�)ÆT�(k) = 0: (27)Using de�nition (13) of the mass operator ��(k), we
an rewrite the fun
tional Y1(�) in the formY1(�) = � 1� Xk;� X!n [ln(�(k)��(k)� 1) ++ T�(k)��(k)℄ exp(i!n0+); (28)and prove the se
ond form of the stationarity propertyÆY (�)Æ��(k) = 0 (29)if we take the Dyson equation for the tunneling fun
-tion T�(k) into a

ount.We now dis
uss the derivative of the fun
tionalY (�) with respe
t to �. Using stationarity property(29), we obtaindY (�)d� =Xk ÆY (�)Æ��(k) Æ��(k)Æ� + �Y (�)�� ������ == �Y 0(�)�� ������ (30)be
ause Y1(�) in (28) has no expli
it dependen
e on �.112



ÆÝÒÔ, òîì 138, âûï. 1 (7), 2010 Diagram analysis of the Hubbard model : : :Using Fig. 4 for Y 0(�) and the de�nition of �� inFig. 2, it is easy to establish the property��Y 0(�)�� ������ = 1� Xk;� X!n T�(k)���(k) exp(i!n0+) == 1� Tr(T���): (31)It therefore follows from (30) and (31) that�dY (�)d� = 1� Xk;� X!n T�(k)��(k) = 1� Tr(T���): (32)From Eqs. (22) and (32), we have�dF (�)d� = �dY (�)d� ; (33)and hen
e F (�) = Y (�) + 
onst: (34)Be
ause the perturbation is absent for � = 0 andF (0) = F0 and Y (0) = 0, we haveF (�) = Y (�) + F0: (35)We 
an now set � = 1 to obtainF (1) = Y (1) + F0 (36)with the stationarity propertyÆFÆ� = 0: (37)4. CONCLUSIONSWe have developed the diagram theory proposed forthe Hubbard model many years ago, and introdu
edthe notion of the renormalized tunneling Green's fun
-tion T in addition to those known previously. We havede�ned the 
orrelation fun
tion � and the mass op-erator � for the tunneling fun
tion, and have estab-lished Dyson equations for them. The mass operatorwas found in (13) to be equal to the 
orrelation fun
tionfor � = 1.We have obtained a diagram representation of the
orrelation fun
tion in terms of the skeleton diagramsthat 
ontain the many-parti
le irredu
ible Green'sfun
tions G(0)ir2n with all possible values of n (the per-turbation theory order) and the renormalized tunnelingGreen's fun
tions.We have established a relation between renorma-lized values of the thermodynami
 potential and the

one-parti
le Green's fun
tion. This last fun
tion hasan additional dependen
e on the auxiliary 
onstant �and must be integrated over it. We have shown thatit is possible to avoid su
h an integration over � andto introdu
e the spe
ial fun
tional Y (�) 
onstru
tedfrom skeleton diagrams. We have proved the stationar-ity property of this fun
tional and found its relation tothe stationarity of the thermodynami
 potential withrespe
t to a variation of the mass operator or the fulltunneling fun
tion. This theorem is a generalizationof the known Luttinger and Ward theorem [15℄ provedfor weakly 
orrelated systems to the 
ase of strongly
orrelated systems des
ribed by the Hubbard model.As regards the diagrams for the 
orrelation fun
-tion � in Fig. 2 and for the fun
tional Y 0 in Fig. 4,we emphasize that a part of the skeleton diagramsare lo
al, and they are the only ones asso
iated withthe dynami
al mean �eld theory. The other diagramsare nonlo
al, 
ontain spa
e and time �u
tuations, andare omitted in this theory. The generalization of thedynami
al mean �eld theory is related to taking thesespa
e �u
tuations into a

ount together with time �u
-tuations.Two of us (V. A. M and L. A. D) thank N. M. Pla-kida and S. Cojo
aru for a very helpful dis
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