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The diagram approach proposed many years ago for the strongly correlated Hubbard model is developed with the
aim to analyze the thermodynamic potential properties. A new exact relation between renormalized quantities
such as the thermodynamic potential, the one-particle propagator, and the correlation function is established.
This relation contains an additional integration of the one-particle propagator with respect to an auxiliary
constant. The vacuum skeleton diagrams constructed from the irreducible Green's functions and tunneling
propagator lines are determined and a special functional is introduced. The properties of this functional are
investigated and its relation to the thermodynamic potential is established. The stationarity property of this
functional with respect to first-order variations of the correlation function is demonstrated; as a consequence,
the stationarity property of the thermodynamic potential is proved.

1. INTRODUCTION

The Hubbard model is one of the most important
models for electrons in solids; it describes quantum
mechanical hopping of electrons over lattice sites and
their short-range repulsive Coulomb interaction. This
model was discussed by Hubbard [1] in describing a
narrow-band system of transition metals; it has been
revised to investigate the properties of highly correlated
electron systems such as copper oxide superconductors.

The Hubbard model exhibits various phenomena
including a metal-insulator transition, antiferromag-
netism, ferromagnetism, and superconductivity. This
model assumes that each atom of the crystal lattice has
only one electron orbit and the corresponding orbital
state is nondegenerate.

The Hamiltonian of the Hubbard model is a sum of
two terms,
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H=H+H (1)

where H? is the atomic contribution, which contains
the Coulomb interaction term U and the local electron
energy € in the atom

H° =Y HY,

Z enje + Unipnyy,

a

HO — (2)

1

E=E€— [, MNig = Cit,cim

1 is the chemical potential, H' is the hopping Hamil-
tonian,

H =33 "1i-j)C Co,
ij o

t(0)

(3)

ti—J) =t"G—1), 0,

C;r (Cir) are the creation (annihilation) electron ope-
rators at a local site i and with spin o, and ¢ is the
hopping integral. In the thermodynamic perturbation

theory, we use thermal averages in a grand canonical



V. A. Moskalenko, L. A. Dohotaru, |. D. Cebotari

MIT®, Tom 138, Bemn. 1(7), 2010

ensemble, and therefore the term — ,uNe, with the elec-
tron number operator

Ne = E Nig,
i,o

is added to Hamiltonian (1). The quantities U and
N, are the fundamental parameters of the model. The
large Coulomb repulsion is taken into account in the
zeroth approximation of our theory. The operator H’,
which describes hopping of the electrons between sites
of the crystal lattice, is regarded as a perturbation.

New physical and mathematical concepts and tech-
niques have been elaborated for investigating this
model. We can only mention some of them. There
are many analytic approximations such as the Hub-
bard approximation, the noncrossing approximation,
the slave-boson method, dynamical mean field theory,
and composite and other projection operator methods
and approaches.

Numerical simulations of thermodynamic quantities
and the density of states have also been performed by
various methods. Some exact results for the one- and
two-dimensional Hubbard model are known. Each ap-
proximate method has its advantages and disadvan-
tages. A short and comprehensive review of the me-
thods can be found in papers and books [2-7]. In ad-
dition to these approaches, we also mention the special
diagram techniques elaborated for strongly correlated
electron systems. In Refs. [8-10], a diagram technique
for the Hubbard model was developed based on dis-
entangling the nondiagonal Hubbard operator from ti-
me-ordered products of other such operators. Because
the algebra of the Hubbard transfer operators is more
complicated than that of Fermi operators, the essential
features of this technique remain poorly developed.

Other diagram approaches around the atomic limit
have also been proposed for the Hubbard model in
both normal [11,12] and superconducting [13] states.
The theory introduces the generalized Wick theorem
(GWT) that uses a cumulant expansion of the statis-
tical average values for the products of fermion oper-
ators. The GWT takes into account the fact that the
Hamiltonian H° is nonquadratic in fermion operators
due to the Coulomb interaction. This last circumstance
is responsible for the appearance of the nonvanishing
site cumulants called the irreducible Green’s functions.
These new Green’s functions take all the spin, charge,
and pairing fluctuations of the system into account.
The perturbation formalism around the atomic limit
has the advantage that local (atomic) physical proper-
ties can be evaluated exactly and the transfer of this
local information to neighboring sites due to kinetic

(4)
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mobility of the conduction electrons can be handled
perturbatively in powers of the hopping integral.

A GWT for chronological averages of products of
electron operators was subsequently formulated also
by Metzner [14]. Metzner did not derive a Dyson-
type equation for the renormalized one-particle Green’s
function, and the role of our correlation function was
not established. In spite of the similarity to our works,
the diagrams in his approach are quite different from
ours. The n-particle cumulant is represented by a 2n-
valent-point vertex with n incoming and n outgoing
lines, whereas in our approach, such a cumulant or ir-
reducible Green’s functions is represented by a rectan-
gle with 2n vertices with n incoming and n outgoing
arrows. The rectangle contains vertices with the same
site index but different time and spin labels. In ad-
dition, Metzner investigated the limit of high lattice
dimensions.

In this paper, we develop the diagram theory pro-
posed previously for the Hubbard model [11,12] with
the aim to demonstrate the existence of a relation be-
tween renormalized values of the thermodynamic po-
tential and the one-particle Green’s function and also to
prove the stationarity properties of this potential. Such
a theorem was first proved by Luttinger and Ward [15]
for uncorrelated systems by using the diagram tech-
nique of weak-coupling field theory.

The strong-coupling diagram theory used by us re-
quires new concepts and new equations to prove the
stationarity properties of the thermodynamic potential
for strongly correlated systems. Such a proof has al-
ready been achieved for the Anderson impurity model
in [16].

This paper is organized as follows. In Sec. 2, we de-
velop the diagram theory in the strong-coupling limit
and introduce the skeleton diagrams. In Sec. 3, we
prove the stationarity theorem for the renormalized
thermodynamic potential. Section 4 contains our con-
clusions.

2. PERTURBATIVE TREATMENT

We use the definition of the one-particle Matsubara
Green’s functions in the interaction representation as
in [11,12],

c
0’

G(zla') = = (TCxo(T)Cxio (TU(B)) (5)
where z stands for (x, 0, 7) and the superscript “¢” de-
notes the connected part of the diagrams that appear
in the right-hand side of Eq. (5). We use a somewhat
generalized series expansion for the evolution operator
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Fig.1. First three orders of the perturbation theory for the one-particle propagator. The solid line depicts the zeroth-order
propagator and the dashed line depicts the tunneling matrix element. The rectangles depict irreducible two-particles Green's
functions G{”"", and dots are the vertices of the diagrams

U(f3) because we introduce an auxiliary constant A and
use A\H' instead of H':

B
Ux(B) = T exp —)\/H'(T) dr (6)
0

In the presence of this constant, we use A as a label for
all dynamic quantities such as Gy (z|z'). At the final
stage of the calculations, this constant it set equal to
unity.
In the zeroth-order approximation, the one-particle
Green’s function G0 (z|z') is local,
GO (2]2') = Ogxr Oger GO (T — 7', (7)

and its Fourier representation is

B

GO (iwy,) = / GO (1) exp (iw,T) dr =
0
1 (exp(=PBEo) + exp(—BE,) n
B Z[) iwn + E[) — Eo'
exp(—f3FEz) + exp(—[FEs)
+ iwn + EE - E2 ’ (8)

where

Zy = exp(—FEy) + exp(—SEy) +
+ exp(—fFEz) + exp(—3E>),

E[):O, Ea: E2:2€+U,

wn = (2n+ 1)/,

with Ey, E,, and Fy being the energies of atomic sites.

As was proved in [11,12], propagator (5) has the
diagram representation depicted in Fig. 1. The order-n
irreducible Green’s functions are shown with rectangles
with 2n vertices. The arrows entering a vertex denote
annihilated electrons, and those that go out, created
electrons.

T — €

o = —0,
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Fig.2. Skeleton diagrams for the correlation func-
tion Ax. Double dashed lines depict the tunneling

Green's functions T\ and rectangles depict the irre-
ducible Green's functions

In [11], we introduced the notion of a correlation
function Zy(z|x") that is the sum of strongly connected
diagrams containing irreducible Green’s functions and
is related to the more convenient function

A (z|2") = GOz|2") + Zy(z]2").

In Fig. 1, the fourth and seventh diagrams in the
right-hand side pertain to the correlation function. Be-
cause irreducible functions are local and tunneling mat-
rix elements have the property that t(x — x) = 0, all
the diagrams containing self-locked tunneling elements
are omitted in Fig. 1.
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As can be seen from Fig. 1, the process of propa-
gator renormalization is accompanied by an analogous
renormalization process for tunneling matrix elements
and by the replacement of the instantaneous quantity

M(z —2') = M(x —x")d(r— 7 —0T)

with the dynamical one

Ta(fa') = M(x = x')3(r — 7' = 0%) +
+ Z A(z — 1)GA(12)At(2 — 2"), (9)

1,2
which in the Fourier representation

1

Hx) = + > e(k)exp (—ik - x),
k

x|x Z ZG)\ (k|iwn) x

X exp [—zk S(x = x") —iwn (T — 7))
becomes

T (Kliwy) = ATy (K|iwn) =
= Xe(K)[1 4+ Xe(k)Gx (Kiw,)].  (10)

The renormalized tunneling matrix element T} is
in fact the tunneling Green’s function and is to be de-
picted as a double dashed line (see Fig. 2). The matrix
element ﬁ\ is represented by such a double dashed line
times A.

We now introduce the skeleton diagrams that con-
tain only the irreducible Green’s functions and dashed
lines without any renormalization. In such skeleton di-
agrams, simple dashed lines are replaced with double
dashed lines, with the complete renormalization of dy-
namical quantities.

The skeleton diagrams for the correlation function
Ay are shown in Fig. 2. They are of two kinds. The
first four diagrams are local and therefore their Fourier
representation is independent of the momentum. The
last diagram and others with more rectangles are not
local and their Fourier representation depends on the
momentum. Only the first category of diagrams are
taken into account in dynamical mean field theory.

As was proved in [11, 12], the knowledge of Ay per-
mits formulating the following Dyson-type equation for
the one-particle Green’s function:

Ax(k) _

(k) = 9= Xe(k)Ay (k)

(11)

Here, k stands for (k,iw,) with odd Matsubara fre-
quencies. Tt follows from (10) and (11) that

Ty(k) = NTx(k),
e(k) (12)

k) = 1= Xe(K) Ay (k)

Equation (12) has the form of a Dyson equation for the
tunneling Green’s function, and the role of the mass
operator Xy is played by the correlation function times
the auxiliary constant A:

Ea(k) = A (k). (13)

In the Hubbard-I approximation, we neglect the
correlation function Zy(k) and consider Ay (k) equal
to the zeroth-order Green’s function G°(k). In this ap-
proximation,

GOk
1 Xe(k)GO (k)

which describes two Hubbard energy subbands sepa-

rated from each other for U # 0, which cannot describe

the Mott-Hubbard transition.

3. THERMODYNAMIC POTENTIAL
DIAGRAMS

The thermodynamic potential of the system is de-
termined by the connected part of the mean value of
the evolution operator [11, 12]

1 c
F=F - 3 (UB)o - (14)
From the beginning, we consider a more general quan-
tity

1 c
= Iy — 3 (Ux(B))o » (15)
and set A =1 at the final stage.
The first-order diagrams for (Ux(3)); obtained
using the perturbation theory are shown in Fig. 3. To
understand these diagram contributions better, we exa-

F())

mine the expression

D Gl )Mt (x = x)3(r — 7' = 0F)d,0r =

z,x’

) T R

x,x' o

RO D W

k,o0 wn

k)G, (k|iwy) exp(iw,07),  (16)
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Fig.3. The first four orders of the perturbation theory for (Ux(3))g

where summation and integration over repeated indices
is assumed and we have integrated with respect to time.

In terms of diagrams, Eq. (16) implies the proce-
dure of locking the external lines of the G\ propagator
diagrams shown in Fig. 1 with the tunneling matrix el-
ement t(x' — x), which yields diagrams without exter-
nal lines similar to those for (Ux()); shown in Fig. 3.
These two series of diagrams differ by the coefficients
in front of them.

In expression (16), the coefficients 1/n before each
diagram, where n is the order of the perturbation theo-
ry, are absent. These coefficients are present in Fig. 3.
To restore these 1/n coefficients in (16) and obtain the
coincidence with the (Uy(8)); series, it is enough to
integrate (16) with respect to A, which yields

—ZZB/d/\t(x’ —X)Gh (x —x'| = 0%).  (17)

x,x' o

Expression (17) displayed in the diagram representa-
tion exactly coincides with the mean value of the evo-
lution operator:

(UA(B)Yg = = Bt(x' —x) x
X,X .
X /d/\’GXU(x —x'|—0%). (18)

In the Fourier representation, we have
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It follows from (15) and (19) that

A
1
F(\) = F +/d/\' — X
W=rs [y
0 )
X Ze(k)GM,(k|iwn)exp(iwn0+). (20)
Using definition (14), Eq. (20) can be written as
/ X\ 1
F(/\) = Fo + / 7 B X
0 k,o
><ZT)\/(ls)Z})\r(k)exp(iwnOﬂ7 (21)
whence
FO) 1 o
A T kz 3 MZT)\(k)EA(k) exp(iw,07) =
1
=3 Tr(ThX)). (22)

To obtain a full system of equations, we add the
definition of the chemical potential to (21),

N, = Z % Z Gy (k|iwy) exp(iw,07),

k,o

(23)

Wn
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Fig.4. The simplest skeleton diagrams for the functional Y'(\). Double dashed lines are the tunneling functions T (k)

where N, is the number of electrons.

Equation (20) establishes the relation between
the thermodynamic potential and the renormalized
one-particle propagator. This last quantity depends on
the auxiliary parameter A\, and Eq. (20) contains an ad-
ditional integration over it, which makes this equation
inconvenient.

We obtain a more convenient equation for the ther-
modynamic potential without such an integration over
A. For this, we introduce the special functional [15]

Y(N) =11(\) +Y'(N), (24)
where
=-3 Z In(e(k)AAx (k) — 1) +
It
+ Ta (k)M (k)] exp(iwn07),  (25)

and Y’ () is constructed from skeleton diagrams with-
out external lines as shown in Fig. 4.

Our observation about two kinds of skeleton dia-
grams for the A(k) function can be repeated in relation
to the vacuum skeleton diagrams in Fig. 4.

The dependence on A in the functional Y'()\) is
twofold: through the dependence of the renormalized
Green’s function Gy, Ty, Ay, and ¥, and through the
explicit factors A™ in front of each diagram of Y'(\).

Using the above definitions, we can prove the equa-
tions
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IBY1(N) _
5pY'(A) _ _
STNR) A (R) = Za(F).
As a result, we obtain the stationarity property
5pY (A) _
TN 0. (27)

Using definition (13) of the mass operator Xy (k), we
can rewrite the functional Y7 () in the form

ZZID

ko’ Wn

+ T (k) S (k)] exp(iwn07),

—1)+

(28)
and prove the second form of the stationarity property

V(N

0T (k) (2)

if we take the Dyson equation for the tunneling func-
tion T\ (k) into account.

We now discuss the derivative of the functional
Y (\) with respect to A. Using stationarity property
(29), we obtain

Z 5Y ( A 52A )+ oY\ |

63 (k N |y,
_OY'()\)
Ny, (30)

because Y7 (\) in (28) has no explicit dependence on \.
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Using Fig. 4 for Y'(\) and the definition of Ay in
Fig. 2, it is easy to establish the property

aY"(\)

)‘8/\

- % S 3 T (k)M (k) exp(iwn0F) =

PN k,o wn

= % TI‘(T)\A)\). (31)

It therefore follows from (30) and (31) that

Ade—S) - %ZZT)\U")EAU") = %Tr(TAEA), (32)

k,o wn

From Eqs. (22) and (32), we have

g
and hence
F(\) =Y (\) + const. (34)
Because the perturbation is absent for A = 0 and
F(0) = Fy and Y (0) = 0, we have
F\)=Y(\) + Fo. (35)
We can now set A =1 to obtain
F(1)=Y()+ F (36)
with the stationarity property
g—g =0. (37)

4. CONCLUSIONS

We have developed the diagram theory proposed for
the Hubbard model many years ago, and introduced
the notion of the renormalized tunneling Green’s func-
tion 7" in addition to those known previously. We have
defined the correlation function A and the mass op-
erator ¥ for the tunneling function, and have estab-
lished Dyson equations for them. The mass operator
was found in (13) to be equal to the correlation function
for A = 1.

We have obtained a diagram representation of the
correlation function in terms of the skeleton diagrams
that contain the many-particle irreducible Green’s
functions Gg;)ir with all possible values of n (the per-
turbation theory order) and the renormalized tunneling
Green’s functions.

We have established a relation between renorma-
lized values of the thermodynamic potential and the

8 ZKOT®, Bem. 1(7)

one-particle Green’s function. This last function has
an additional dependence on the auxiliary constant A
and must be integrated over it. We have shown that
it is possible to avoid such an integration over A and
to introduce the special functional Y (\) constructed
from skeleton diagrams. We have proved the stationar-
ity property of this functional and found its relation to
the stationarity of the thermodynamic potential with
respect to a variation of the mass operator or the full
tunneling function. This theorem is a generalization
of the known Luttinger and Ward theorem [15] proved
for weakly correlated systems to the case of strongly
correlated systems described by the Hubbard model.

As regards the diagrams for the correlation func-
tion A in Fig. 2 and for the functional Y’ in Fig. 4,
we emphasize that a part of the skeleton diagrams
are local, and they are the only ones associated with
the dynamical mean field theory. The other diagrams
are nonlocal, contain space and time fluctuations, and
are omitted in this theory. The generalization of the
dynamical mean field theory is related to taking these
space fluctuations into account together with time fluc-
tuations.

Two of us (V. A. M and L. A. D) thank N. M. Pla-
kida and S. Cojocaru for a very helpful discussion.
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