МУЛЬТИСТАБИЛЬНОСТЬ ОПТИЧЕСКОГО ОТКЛИКА СИСТЕМЫ КВАЗИДВУМЕРНЫХ ЭКСИТОННЫХ ПОЛЯРИТОНОВ

С. С. Гаврилов^{а, b*}, Н. А. Гиппиус^{b, c}, С. Г. Тиходеев^b, В. Д. Кулаковский^a

^а Институт физики твердого тела Российской академии наук 142432, Черноголовка, Московская обл., Россия

^b Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

> ^cLASMEA, CNRS, Université Blaise Pascal 63177, Aubière, France

Поступила в редакцию 2 сентября 2009 г.

Исследуются нелинейно-динамические свойства системы поляритонов в планарном полупроводниковом микрорезонаторе в условиях когерентного внешнего фотовозбуждения. Показано, что межчастичное взаимодействие поляритонов с одинаковыми значениями проекции полного момента (J_z) может приводить к мультистабильности отклика возбуждаемого поляритонного состояния. В результате становятся возможными неравновесные переходы между различными ветвями устойчивости, происходящие за счет флуктуаций или сколь угодно плавного изменения параметров возбуждения и сопровождающиеся резкими изменениями интенсивности и оптической поляризации поля в микрорезонаторе. Показано, что сравнительно слабое притяжение между поляритонами с противоположными J_z приводит к возможности спонтанного нарушения симметрии циркулярно поляризованных компонент поля в микрорезонаторе в условиях строго линейной (симметричной) поляризации внешнего возбуждения.

1. ВВЕДЕНИЕ

Квазидвумерные экситонные поляритоны элементарные возбуждения, возникающие в активном слое планарного полупроводникового микрорезонатора за счет сильной связи экситона (электрон-дырочной пары) и резонаторной фотонной моды [1]. Оптически возбуждаемая система экситонов обнаруживает свойства слабонеидеального газа бозе-частиц [2] с отталкивательным взаимодействием, вызванным обменным взаимодействием электронов. Пространственная локализация в плоскости активного слоя приводит к малой эффективной массе поляритонов (порядка 10⁻⁵ массы электрона в вакууме), а дебройлевская длина волны на два порядка превышает длину волны экситона в области гелиевых температур. В связи с этим оказывается возможным создавать макрозаполненные поляритонные состояния с помощью резонансной

накачки сравнительно небольшой интенсивности, такой что приближение слабонеидеального бозе-газа сохраняет силу [3, 4]. Такая возможность, подтвердившаяся в экспериментах по стимулированному рассеянию света в планарных микрорезонаторах (см. [4-7] и более поздние работы [8-10]), вызвала большой интерес к коллективным эффектам в системе квазидвумерных поляритонов. В последние годы сообщалось о наблюдении в такой системе крупномасштабной пространственной и временной когерентности, возникающей пороговым образом [11, 12], и бозе-эйнштейновской конденсации [13]. В настоящей работе исследуется эффект мультистабильности отклика резонансно возбуждаемых состояний, приводящий к возможности управляемых неравновесных переходов в системе планарных поляритонов.

Если в условиях когерентной накачки в системе поляритонов возникают когерентные состояния, их эволюция может быть описана на квазиклассическом языке. В простейшем случае рассматривается

^{*}E-mail: gavr ss@issp.ac.ru

набор классических осцилляторов — волновых гармоник с различными квазиимпульсами, — связанных за счет экситон-экситонного взаимодействия; при этом учитываются только квазидвумерные состояния с конечным временем жизни. Такая (строго говоря, полуфеноменологическая) модель, называемая иногда моделью оптического параметрического осциллятора, позволила объяснить пороговый характер стимулированного поляритон-поляритонного рассеяния [14, 15] и, в целом, оказалась очень полезной для анализа коллективных свойств поляритонов в условиях резонансного возбуждения [16–20]. Такой же подход будет предпринят и в данной работе.

В том случае, когда частота когерентной накачки превышает частоту поляритона, отклик возбуждаемой моды становится бистабильным в конечной области значений мощности возбуждения. Точнее, для этого необходимо, чтобы расстройка частоты накачки была больше, чем $\sqrt{3} \gamma$, где γ — декремент затухания, определяющий ширину резонанса [21]. Эффект бистабильности характерен для нелинейного осциллятора и связан с зависимостью резонансной энергии от амплитуды; отметим, что для экситонного конденсата этот эффект был предсказан в рамках существенно квантового подхода [22].

Бистабильность отклика приводит к резкому усилению поля в активном слое резонатора (и, соответственно, увеличению коэффициента пропускания) по достижении определенной (критической) плотности внешнего возбуждения, для которой исчезает «нижнее» устойчивое решение и осуществляется быстрый переход на «верхнюю» ветвь устойчивости. Этот эффект был обнаружен экспериментально в работе [23], где сообщается также о наблюдении гистерезиса отраженного сигнала в зависимости от плотности возбуждения. Указанные эксперименты проводились в условиях нормального падения возбуждающего импульса ($\theta_p = 0$), причем использовалась методика непрерывной накачки, позволяющая проследить оптический отклик системы лишь с усреднением по макроскопически большим временам. Существенно, однако, что с помощью данной методики нельзя обнаружить скачок пропускания резонатора в случа
е $\theta_p = 10^\circ – 20^\circ$ (т.е. тогда, когда возбуждаемая мода лежит в окрестности точки перегиба нижней поляритонной ветви, см. [10]) вследствие сравнительно быстрого параметрического рассеяния энергии в другие поляритонные состояния [16, 18]. Тем не менее, скачок амплитуды возбуждаемой моды удалось обнаружить и в этом случае: эксперименты, выполненные с малым временны́м разрешением, позволили в деталях проследить процесс развития параметрической неустойчивости [24, 25]. В частности, было установлено, что в случае $\theta_p = 10^{\circ}-20^{\circ}$ бистабильность одномодового решения приводит к критической трансформации состояния существенно многомодовой системы и появлению макроскопического сигнала стимулированного рассеяния в направлении нормали к поверхности.

Подход, предпринятый в работах [14-20] для теоретического анализа пороговых эффектов в системе планарных поляритонов, ограничен скалярным приближением, пренебрегающим различием σ^+ - и σ^- -поляризованных компонент экситонной плотности. Такое упрощение оправдано в случае циркулярно поляризованной накачки с малым планарным квазиимпульсом, когда можно считать, что падающая волна возбуждает экситоны с одинаковым значением проекции полного момента $J_z = 1$ или $J_z = -1$ в плоскости xy однородной двумерной квантовой ямы (экситоны с $|J_z| \neq 1$ оптически не возбуждаются). Однако в общем случае оптическая поляризация поля на квантовой яме весьма сложно зависит от интенсивности и поляризации накачки, даже если полностью пренебречь эффектом взаимодействия экситонов с различающимися J_z. В частности, появляются новые устойчивые решения, отвечающие случаям, когда одна из σ^{\pm} -компонент экситонной плотности находится на нижней ветви устойчивости, а другая — на верхней, и потому переходы между ветвями устойчивости сопровождаются скачками поляризации [26]. Еще более сложная картина возникнет с учетом парного взаимодействия между экситонами с $J_z = 1$ и $J_z = -1$.

Общий вклад экситон-экситонного взаимодействия в гамильтониан системы имеет вид [27]

$$H_{XX}(t) = \frac{1}{2} \sum_{\sigma_1, \sigma_2 = \pm 1} \int_{\mathbb{R}^2} V_{\sigma_1 \sigma_2}(\mathbf{r}) b^{\dagger}_{\sigma_1}(\mathbf{r}, t) \times b^{\dagger}_{\sigma_2}(\mathbf{r}, t) b_{\sigma_2}(\mathbf{r}, t) b_{\sigma_1}(\mathbf{r}, t) d^2 \mathbf{r}, \quad (1)$$

где $\sigma_{1,2}$ — «поляризационные» индексы, отвечающие состояниям с разными $J_z = \pm 1, b^{\dagger}_{\sigma}$ — экситонные операторы рождения, $V_{\sigma_1\sigma_2}$ — константы «контактного» экситон-экситонного взаимодействия; в случае пространственно-однородной системы можно считать, что $V_{\sigma_1\sigma_2}$ не зависят от **r**. Константы $V_{\sigma_1\sigma_2}$ могут быть вычислены в пространстве фермионных состояний электронов и дырок с учетом спиновых степеней свободы. Как показано в прошлых работах, в приближении Хартри-Фока для системы экситонов в основном (1s) состоянии $V_{++} > 0$ и

 $V_{+-} = 0$ [28]; однако же учет высших экситонных возбуждений приводит к появлению сравнительно слабого притяжения между экситонами с разными J_z : $V_{+-} < 0$, при том что $|V_{+-}| < |V_{++}|$ [29–31]. Соотношение $|V_{+-}|/|V_{++}|$ сильно зависит от свойств конкретной структуры [27]; в последующих численных расчетах будем полагать $|V_{+-}|/|V_{++}| = 10^{-1}$. Как отмечалось ранее, в данной работе будет использовано квазиклассическое приближение, предполагающее факторизацию среднего значения полевых операторов (приближение среднего поля) и макрозаполненность возбуждаемой экситонной моды, что позволяет считать средние значения операторов b_{σ} *С*-числами, пропорциональными соответственным компонентам экситонной поляризации на квантовой яме (когерентное приближение). Таким образом, мы не рассматриваем вопрос об исходном возникновении когерентности в накачиваемой системе. Экситон-экситонное взаимодействие (1) приводит к появлению кубичной нелинейности в уравнениях Гейзенберга для b_{σ} ; в согласии с этим, получающиеся квазиклассические уравнения аналогичны уравнениям Гросса-Питаевского для макрозаполненного (конденсатного) состояния системы слабо взаимодействующих бозонов.

Возможность появления нескольких стационарных решений, отвечающих заданной внешней накачке, была продемонстрирована ранее в работе [26]. В настоящей работе представлена классификация ветвей стационарного отклика для разных значений поляризации возбуждения. Специальное внимание уделяется эффектам, возникающим за счет взаимодействия экситонов с различающимися J_z. В частности, установлено, что в случае линейно поляризованной накачки, когда амплитуды σ^{\pm} -компонент падающей волны строго равны друг другу, даже сколь угодно малая величина |V₊₋| может вызвать спонтанный переход к состоянию с высокой циркулярной поляризацией (по достижении «критической» плотности возбуждения). Кроме того, исследуется асимптотическая устойчивость одномодовых стационарных решений и рассматривается вопрос о динамике неравновесных переходов в тех случаях, когда формально существует сразу несколько устойчивых состояний, в которых может оказаться система после перехода. Наконец, представлены примеры численного решения уравнений Гросса-Питаевского, позволяющие проследить явную временную динамику возбуждаемой моды.

В разд. 2 сформулирована модель, позволяющая описать динамику макрозаполненной моды поля на квантовой яме в условиях когерентной на-

8 ЖЭТФ, вып.5

качки, отыскать стационарные решения и исследовать их устойчивость относительно малых флуктуаций. Результаты расчетов и их качественный анализ представлены в разд. 3. Раздел 4 содержит основные выводы, обсуждение нерешенных проблем и заключение.

2. КВАЗИКЛАССИЧЕСКАЯ МОДЕЛЬ ЭКСИТОН-ФОТОННОЙ СИСТЕМЫ В МИКРОРЕЗОНАТОРЕ

Теоретическая модель, позволяющая описать динамику когерентных поляритонных мод в активном слое планарного резонатора, была предложена в связи с задачей о параметрическом рассеянии света в условиях сильной экситон-фотонной связи [16, 18, 19]. В рамках квазиклассического подхода исследуется динамика электрического поля $\mathcal E$ и экситонной поляризации \mathcal{P} в плоскости квантовой ямы xy; магнитное поле в активном слое имеет нулевую амплитуду. Поля ${\mathcal E}$ и ${\mathcal P}$, а также внешняя накачка \mathcal{F} рассматриваются как планарные векторы (например, $\boldsymbol{\mathcal{E}} = \mathcal{E}_x \mathbf{e}_x + \mathcal{E}_y \mathbf{e}_y$), считая что можно полностью пренебречь значением поперечной компоненты \mathcal{E}_z в исследуемой области малых квазиволновых чисел $|{f k}|\equiv \sqrt{k_x^2+k_y^2}.$ Переход к спинору ${\mathcal E}_+ {\mathcal E}_-$ циркулярно поляризованных компонент электрического поля осуществляется по формуле

$$\mathcal{E} \stackrel{\text{def}}{=} \begin{pmatrix} \mathcal{E}_+ \\ \mathcal{E}_- \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix} \begin{pmatrix} \mathcal{E}_x \\ \mathcal{E}_y \end{pmatrix}, \qquad (2)$$

то же относится к полям \mathcal{P} и \mathcal{F} .

Уравнения Максвелла (для \mathcal{E}) и уравнения Гросса-Питаевского (для \mathcal{P}) запишем в базисе циркулярно поляризованных компонент с целью придать наиболее простой вид вкладу экситон-экситонного взаимодействия. Удобнее всего эти уравнения записать в матричном виде:

$$i\frac{d}{dt}\mathcal{E}(\mathbf{k},t) - \hat{E}_{C}(\mathbf{k},t)\mathcal{E}(\mathbf{k},t) =$$
$$= \hat{\alpha}(\mathbf{k})\mathcal{F}(\mathbf{k},t) + \hat{\beta}(\mathbf{k})\mathcal{P}(\mathbf{k},t), \quad (3)$$

$$i\frac{d}{dt}\mathcal{P}(\mathbf{k},t) - \hat{E}_X \mathcal{P}(\mathbf{k},t) =$$

= $\hat{A}\mathcal{E}(\mathbf{k},t) + \eta(\mathbf{k},t) + \xi(\mathbf{k},t),$ (4)

где

$$\eta_{\sigma}(\mathbf{k},t) = \sum_{\sigma'=-1,1} V_{\sigma\sigma'} \sum_{\mathbf{q}_{1},\mathbf{q}_{2}} \mathcal{P}_{\sigma'}^{*}(\mathbf{q}_{1}+\mathbf{q}_{2}-\mathbf{k},t) \times \\ \times \mathcal{P}_{\sigma'}(\mathbf{q}_{1},t) \mathcal{P}_{\sigma}(\mathbf{q}_{2},t), \quad \sigma = \pm 1, \quad (5)$$

и $\xi(\mathbf{k},t)$ — двухкомпонентные столбцы, учитывающие соответственно экситон-экситонное взаимодействие (см. (1)) и ланжевеновский источник (белый шум), который позволяет смоделировать флуктуации поля. Коэффициенты уравнений — матрицы 2×2 , обозначающие энергии фотонной (\hat{E}_C) и экситонной (\hat{E}_X) мод, поляризуемость экситона в свободной квантовой яме (\hat{A}) , а также константы отклика электрического поля на внешнее возбуждение $(\hat{\alpha})$ и экситонную поляризацию ($\hat{\beta}$). Для расчета значений $E_C(\mathbf{k}), \beta(\mathbf{k})$ и α использовался метод матриц переноса; значения этих величин были рассчитаны в базисе линейно поляризованных ТЕ- и ТМ-состояний, являющихся собственными модами электромагнитного поля в пустом резонаторе, после чего был осуществлен переход к базису состояний с левой и правой циркулярными поляризациями. Значения элементов \hat{E}_C , \hat{E}_X и $\hat{\alpha}$ являются комплексными (мнимые части энергий определяют времена жизни «свободных» фотона и экситона в активном слое); таким образом, рассматриваемая система является открытой и диссипативной.

Собственная энергия экситона от поляризации не зависит (в однородной квантовой яме состояния с $J_z = \pm 1$ вырождены), поэтому

$$\hat{E}_X = \begin{pmatrix} E_X & 0\\ 0 & E_X \end{pmatrix}.$$

В согласии с недавней экспериментальной оценкой соотношения констант V₊₊ и V₊₋ [31], полагаем

$$V_{+-} = V_{-+} = -0.1V_{++},\tag{6}$$

тогда как $V_{++} = V_{--} = 1$ по определению (выбор значения V_{++} фиксирует систему относительных единиц для полей \mathcal{E} и \mathcal{P}).

Рассмотрим задачу о стационарном отклике возбуждаемой моды ($\mathbf{k} = \mathbf{k}_p$) поля в активном слое в предположении, что $\mathcal{P}_{\pm}(\mathbf{k},t) \equiv 0$ для всех $\mathbf{k} \neq \mathbf{k}_p$. Полагая в уравнениях (3), (4)

$$\mathcal{F}_{\pm}(\mathbf{k}_{p},t) = \bar{\mathcal{F}}_{\pm} e^{-iE_{p}t/\hbar},$$

$$\mathcal{P}_{\pm}(\mathbf{k}_{p},t) = \bar{\mathcal{P}}_{\pm} e^{-iE_{p}t/\hbar},$$

$$\mathcal{E}_{\pm}(\mathbf{k}_{p},t) = \bar{\mathcal{E}}_{\pm} e^{-iE_{p}t/\hbar},$$
(7)

имеем систему алгебраических уравнений для стационарных амплитуд $\bar{\mathcal{E}}_{\pm}$ и $\bar{\mathcal{P}}_{\pm}$. Исключив $\bar{\mathcal{E}}_{\pm}$ и пренебрегая ξ_{\pm} , получаем уравнения

$$\begin{bmatrix} \hat{E}_{p} - \hat{E}_{X} - \hat{A} \left(\hat{E}_{p} - \hat{E}_{C} \right)^{-1} \hat{\beta} \end{bmatrix} \begin{pmatrix} \mathcal{P}_{+} \\ \bar{\mathcal{P}}_{-} \end{pmatrix} - \\ - \begin{pmatrix} V_{++} \bar{\mathcal{P}}_{+}^{*} \bar{\mathcal{P}}_{+} \bar{\mathcal{P}}_{+} + V_{+-} \bar{\mathcal{P}}_{-}^{*} \bar{\mathcal{P}}_{-} \bar{\mathcal{P}}_{-} \\ V_{-+} \bar{\mathcal{P}}_{+}^{*} \bar{\mathcal{P}}_{+} \bar{\mathcal{P}}_{-} + V_{--} \bar{\mathcal{P}}_{-}^{*} \bar{\mathcal{P}}_{-} \bar{\mathcal{P}}_{-} \end{pmatrix} = \\ = \hat{A} \left(\hat{E}_{p} - \hat{E}_{C} \right)^{-1} \hat{\alpha} \begin{pmatrix} \bar{\mathcal{F}}_{+} \\ \bar{\mathcal{F}}_{-} \end{pmatrix}, \quad (8)$$

позволяющие рассчитать $\bar{\mathcal{P}}_{\pm}$ в зависимости от внешней накачки $\bar{\mathcal{F}}_{\pm}$. Здесь использовано обозначение

$$\hat{E}_p = \begin{pmatrix} E_p & 0\\ 0 & E_p \end{pmatrix};$$

аргумент $\mathbf{k} = \mathbf{k}_p$ опущен для всех переменных. Амплитуды $\bar{\mathcal{F}}_{\pm}$ и $\bar{\mathcal{P}}_{\pm}$ принимают комплексные значения и могут быть представлены в форме

$$\bar{\mathcal{F}}_{\pm} = \sqrt{\frac{I_{ext}}{2} (1 \pm \rho_{ext})} \exp(i\phi_{ext}^{\pm}),$$

$$\bar{\mathcal{P}}_{\pm} = \sqrt{\frac{I_{int}}{2} (1 \pm \rho_{int})} \exp(i\phi_{int}^{\pm}),$$
(9)

где I_{ext} и I_{int} — интенсивности, а ρ_{ext} и ρ_{int} — степени циркулярной поляризации соответственно накачки \mathcal{F} и поля \mathcal{P} , так что

$$I_{ext} = |\bar{\mathcal{F}}_{+}|^{2} + |\bar{\mathcal{F}}_{-}|^{2}, \quad \rho_{ext} = \frac{|\bar{\mathcal{F}}_{+}|^{2} - |\bar{\mathcal{F}}_{-}|^{2}}{|\bar{\mathcal{F}}_{+}|^{2} + |\bar{\mathcal{F}}_{-}|^{2}},$$

$$I_{int} = |\bar{\mathcal{P}}_{+}|^{2} + |\bar{\mathcal{P}}_{-}|^{2}, \quad \rho_{int} = \frac{|\bar{\mathcal{P}}_{+}|^{2} - |\bar{\mathcal{P}}_{-}|^{2}}{|\bar{\mathcal{P}}_{+}|^{2} + |\bar{\mathcal{P}}_{-}|^{2}}.$$
(10)

Индексы «ext» и «int» обозначают «внешние» (external) и «внутренние» (internal) компоненты, относящиеся соответственно к накачке \mathcal{F} и полю \mathcal{P} .

Фазы $\{\phi_{ext}^+, \phi_{ext}^-\}\ \sigma$ -компонент падающей волны определены с точностью до аддитивной постоянной (физический смысл имеет лишь величина разности $\Delta\phi_{ext} \equiv \phi_{ext}^- - \phi_{ext}^+$). С другой стороны, система (8) линейна по фазовым множителям $\exp(i\phi_{int}^{\pm})$ поля в активном слое в зависимости от $\exp(i\phi_{ext}^{\pm})$; следовательно, сдвиг $\phi_{int}^{\pm} \rightarrow \phi_{int}^{\pm}$ + const (одинаковый для обеих фаз) не меняет значений (I_{int}, ρ_{int}), удовлетворяющих уравнениям (8) при заданных $\bar{\mathcal{F}}_{\pm}$. Данные обстоятельства позволяют представить систему (8) в виде трех вещественных уравнений, определяющих стационарный отклик возбуждаемой моды поля на квантовой яме.

Обратимся к задаче анализа устойчивости одномодового ($\mathbf{k} = \mathbf{k}_p$) стационарного состояния, определяемого решением уравнений (8). Для этого нужно линеаризовать систему (3), (4) по малым возмущениям { $\tilde{\mathcal{E}}_{\pm}, \tilde{\mathcal{P}}_{\pm}$ } амплитуд «сигнала» (\mathbf{k}, ω) и «холостого сигнала» ($\mathbf{k}' = 2\mathbf{k}_p - \mathbf{k}, \, \omega' = 2\omega_p - \omega$), удовлетворяющих правилам сохранения энергии и планарного квазиимпульса, в предположении, что для всех \mathbf{k}

$$\mathcal{E}_{\pm}(\mathbf{k},t) = \tilde{\mathcal{E}}_{\pm}(\mathbf{k}) e^{-i\omega(\mathbf{k})t} + \delta_{\mathbf{k},\mathbf{k}_{p}} \bar{\mathcal{E}}_{\pm} e^{-i\omega_{p}t}, \qquad (11)$$

$$\mathcal{P}_{\pm}(\mathbf{k},t) = \tilde{\mathcal{P}}_{\pm}(\mathbf{k}) e^{-i\omega(\mathbf{k})t} + \delta_{\mathbf{k},\mathbf{k}_{p}} \bar{\mathcal{P}}_{\pm} e^{-i\omega_{p}t}, \quad (12)$$

$$\tilde{\mathcal{E}}_{\pm}(\mathbf{k})| \ll |\bar{\mathcal{E}}_{\pm}|,\tag{13}$$

$$|\tilde{\mathcal{P}}_{\pm}(\mathbf{k})| \ll |\bar{\mathcal{P}}_{\pm}|,\tag{14}$$

$$\omega(\mathbf{k}) + \omega(2\mathbf{k}_p - \mathbf{k}) = 2\omega_p \tag{15}$$

(см. также работы [16, 19]). Если рассматривать стационарные амплитуды $\bar{\mathcal{P}}_{\pm}$ возбуждаемой моды в качестве управляющих параметров, то имеем замкнутую линейную систему

$$\hbar\omega X(\mathbf{k}) = \hat{L}(\mathbf{k}; \bar{\mathcal{P}}_{\pm}) X(\mathbf{k})$$
(16)

для

$$X(\mathbf{k}) = \left(\tilde{\mathcal{E}}_{+}(\mathbf{k}), \, \tilde{\mathcal{E}}_{-}(\mathbf{k}), \, \tilde{\mathcal{P}}_{+}(\mathbf{k}), \, \tilde{\mathcal{P}}_{-}(\mathbf{k}), \\ \tilde{\mathcal{E}}_{+}^{'*}(2\mathbf{k}_{p}-\mathbf{k}), \, \tilde{\mathcal{E}}_{-}^{'*}(2\mathbf{k}_{p}-\mathbf{k}), \\ \tilde{\mathcal{P}}_{+}^{'*}(2\mathbf{k}_{p}-\mathbf{k}), \, \tilde{\mathcal{P}}_{-}^{'*}(2\mathbf{k}_{p}-\mathbf{k})\right)^{\mathrm{T}},$$
(17)

где Т — символ транспонирования (так что $X(\mathbf{k})$ является вектор-столбцом), а

$$\left[\hat{L}(\mathbf{k};\bar{\mathcal{P}}_{\pm})\right]_{ab} = \frac{\partial^2 H\left[\left(X(\mathbf{k}), X^*(\mathbf{k}); \bar{\mathcal{P}}_{\pm}\right]\right]}{\partial (X_a)^* \partial X_b}$$
(18)

— матрица 8 × 8, соответствующая билинейной форме

$$H\left[(X(\mathbf{k}), X^{*}(\mathbf{k}); \bar{\mathcal{P}}_{\pm}\right] = \sum_{\sigma_{1},\sigma_{2}} \left\{ \left[\hat{E}_{C}(\mathbf{k})\right]_{\sigma_{1}\sigma_{2}} \times \\ \times \tilde{\mathcal{E}}_{\sigma_{1}}^{*}(\mathbf{k}) \tilde{\mathcal{E}}_{\sigma_{2}}(\mathbf{k}) + \left[\hat{E}_{X}\right]_{\sigma_{1}\sigma_{2}} \tilde{\mathcal{P}}_{\sigma_{1}}^{*}(\mathbf{k}) \tilde{\mathcal{P}}_{\sigma_{2}}(\mathbf{k}) + \\ + \left[\hat{\beta}(\mathbf{k})\right]_{\sigma_{1}\sigma_{2}} \tilde{\mathcal{E}}_{\sigma_{1}}^{*}(\mathbf{k}) \tilde{\mathcal{P}}_{\sigma_{2}}(\mathbf{k}) + \hat{A}_{\sigma_{1}\sigma_{2}} \tilde{\mathcal{P}}_{\sigma_{1}}^{*}(\mathbf{k}) \tilde{\mathcal{E}}_{\sigma_{2}}(\mathbf{k}) + \\ + \left[2\hat{E}_{p} - \hat{E}_{C}^{*}(2\mathbf{k}_{p} - \mathbf{k})\right]_{\sigma_{1}\sigma_{2}} \tilde{\mathcal{E}}_{\sigma_{1}}^{*}(2\mathbf{k}_{p} - \mathbf{k}) \tilde{\mathcal{E}}_{\sigma_{2}}^{'}(2\mathbf{k}_{p} - \mathbf{k}) + \\ + \left[2\hat{E}_{p} - \hat{E}_{X}^{*}\right]_{\sigma_{1}\sigma_{2}} \tilde{\mathcal{P}}_{\sigma_{1}}^{'}(2\mathbf{k}_{p} - \mathbf{k}) \tilde{\mathcal{P}}_{\sigma_{2}}^{'}(2\mathbf{k}_{p} - \mathbf{k}) - \\ - \left[\hat{\beta}^{*}(2\mathbf{k}_{p} - \mathbf{k})\right]_{\sigma_{1}\sigma_{2}} \tilde{\mathcal{E}}_{\sigma_{1}}^{'}(2\mathbf{k}_{p} - \mathbf{k}) \tilde{\mathcal{P}}_{\sigma_{2}}^{'}(2\mathbf{k}_{p} - \mathbf{k}) - \\ - \hat{A}_{\sigma_{1}\sigma_{2}}^{*} \tilde{\mathcal{P}}_{\sigma_{1}}^{'}(2\mathbf{k}_{p} - \mathbf{k}) \tilde{\mathcal{E}}_{\sigma_{2}}^{'}(2\mathbf{k}_{p} - \mathbf{k}) + \\ + \hat{\mathcal{V}}_{\sigma_{1}\sigma_{2}} \tilde{\mathcal{P}}_{\sigma_{1}}^{*} \tilde{\mathcal{P}}_{\sigma_{2}} \left[\tilde{\mathcal{P}}_{\sigma_{2}}^{*}(\mathbf{k}) \tilde{\mathcal{P}}_{\sigma_{1}}(\mathbf{k}) + \\ + \tilde{\mathcal{P}}_{\sigma_{2}}^{'}(2\mathbf{k}_{p} - \mathbf{k})\right] + \\ + \hat{\mathcal{V}}_{\sigma_{1}\sigma_{2}} \left[\tilde{\mathcal{P}}_{\sigma_{1}}^{*} \tilde{\mathcal{P}}_{\sigma_{2}}^{*} \tilde{\mathcal{P}}_{\sigma_{2}}(\mathbf{k}) \tilde{\mathcal{P}}_{\sigma_{1}}^{'}(2\mathbf{k}_{p} - \mathbf{k}) + \mathrm{c.c.}\right] \right\}.$$
(19)

Собственные значения $\Omega(\mathbf{k}; \bar{\mathcal{P}}_{\pm})$ линейной задачи (16)–(19) отвечают комплексным энергиям двухкомпонентных (с учетом поляризации) состояний на нижней и верхней поляритонных ветвях, при том что каждой из этих четырех компонент соответствуют моды «сигнала» и «холостого сигнала». Инкремент нарастания (показатель Ляпунова) волновой моды \mathbf{k} в зависимости от $\bar{\mathcal{P}}_{\pm}$ определяется значением наибольшей мнимой части $\Omega(\mathbf{k}; \bar{\mathcal{P}}_{\pm})$:

$$\Gamma(\mathbf{k}; \bar{\mathcal{P}}_{\pm}) = \max\{\operatorname{Im}\Omega_l(\mathbf{k}; \bar{\mathcal{P}}_{\pm}) | l = 1, 2, \dots, 8\}.$$
(20)

Вычисление Г позволяет проанализировать устойчивость одномодового решения с заданными значениями $\bar{\mathcal{P}}_{\pm}(\bar{\mathcal{F}}_{\pm})$. С увеличением $|\mathcal{F}|$ неустойчивость $[\Gamma(\mathbf{k};\bar{\mathcal{P}}_{\pm})>0]$ может возникнуть как вследствие параметрического распада в другие моды $[(\mathbf{k}_p,\mathbf{k}_p) \rightarrow (\mathbf{k},\mathbf{k}'), \mathbf{k}\neq\mathbf{k}_p]$, так и в само́й возбуждаемой моде $[\mathbf{k}=\mathbf{k}'=\mathbf{k}_p$, но $\omega\neq\omega']$ в условиях положительной отстройки частоты внешнего возбуждения от частоты поляритонного резонанса.

В следующем разделе рассматривается вопрос об устойчивости строго одномодовых $[\mathcal{P}_{\pm}(\mathbf{k}\neq\mathbf{k}_{p},t)\equiv 0]$ стационарных состояний системы.

3. МУЛЬТИСТАБИЛЬНОСТЬ ОТКЛИКА ВОЗБУЖДАЕМОЙ МОДЫ ПОЛЯ В АКТИВНОМ СЛОЕ

В предшествующих работах [16, 18, 19, 22] показано, что в случае положительной расстройки частоты накачки,

$$D = E_p - \operatorname{Re} E_{LP}(\mathbf{k}_p) > \sqrt{3} |\operatorname{Im} E_{LP}(\mathbf{k}_p)|,$$

функция стационарного отклика возбуждаемой моды $I_{int}(I_{ext})$ принимает вид S-образной кривой, что приводит к бистабильности отклика и возможности резкого усиления поля в активном слое по достижении критической интенсивности возбуждения $|\mathcal{F}^{(crit)}|^2$ (точки, в которой функция $I_{int}(I_{ext})$ характеризуется вертикальной касательной). Фактически исследовался случай циркулярной поляризации накачки $|\rho_{ext}| = 1$ (см. рис. 1a), когда в пренебрежении эффектом ТЕ-ТМ-расщепления предполагалось, что падающая волна возбуждает экситоны с одинаковыми значениями проекции полного момента J_z. В данной работе рассматривается случай произвольного ρ_{ext} в рамках одномодового (по **k**) приближения. Сначала будут описаны общие свойства функции стационарного отклика $I_{int}(I_{ext})$ для разных ρ_{ext} от нуля до единицы (разд. 3.1). В области $\rho_{ext} \neq 0$ взаимодействие $V_{+-} < 0$ достаточно слабо влияет на свойства системы, если $|V_{+-}| \ll |V_{++}|$, однако если накачка поляризована линейно ($\rho_{ext} = 0$), даже сколь угодно малая величина $|V_{+-}|$ может

Рис.1. Функции стационарного отклика возбуждаемой моды поля на квантовой яме: зависимости $I_{int}(I_{ext})$, рассчитанные для разных значений $\rho_{ext} = (|\mathcal{F}_+|^2 - |\mathcal{F}_-|^2)/(|\mathcal{F}_+|^2 + |\mathcal{F}_-|^2)$ при фиксированном $\Delta \phi_{ext} \equiv \arg(\mathcal{F}_+^*\mathcal{F}_-) = 0$. Расстройка накачки $D = E_p - \operatorname{Re} E_{LP}(\mathbf{k}_p)$ составляет 0.5 мэВ для $\mathbf{k}_p = 0$. Значение V_{+-}/V_{++} равно -0.1. Добротность микрорезонатора $Q \approx 4.2 \cdot 10^3$, коэффициент затухания экситона $|\operatorname{Im}(E_X)| = 0.04$ мэВ

приводить к существенно новым нелинейным эффектам; их анализу посвящен разд. 3.2. Наконец, в разд. 3.3 проанализирована динамика неравновесных переходов между различными ветвями устойчивости в наиболее интересных случаях.

3.1. Стационарные решения для возбуждаемой поляритонной моды в зависимости от поляризации накачки

На рис. 1 представлена серия графиков $I_{int}(I_{ext})$, рассчитанных для разных значений степени циркулярной поляризации внешнего поля ρ_{ext} от единицы до нуля и $V_{+-}/V_{++} = -0.1$. Качественный характер трансформации зависимости $I_{int}(I_{ext})$ с изменением ρ_{ext} можно пояснить без учета взаимодействия экситонов с разными J_z (т.е. полагая $V_{+-} = 0$). Другими словами, можно принять, что σ^+ - и σ^- -компоненты стационарного поля в активном слое не связаны между собой и потому характеризуются одинаковыми S-контурами отклика на соответствующие σ^{\pm} -компоненты накачки, $|\mathcal{P}^2_+|(|\mathcal{F}^2_+|)$ и $|\mathcal{P}^2_-|(|\mathcal{F}^2_-|)$. В таком случае критические значения σ -компонент внешнего поля ($|\mathcal{F}^{(crit)}_+|^2$ и $|\mathcal{F}^{(crit)}_-|^2$) совпадают, но если $\rho_{ext} \neq 0$, то по мере «включения» накачки эти значения достигаются неодновременно.

Иначе говоря, совпадающим $|\mathcal{F}^{(crit)}_{+}|^2$ и $|\mathcal{F}^{(crit)}_{-}|^2$ отвечают разные значения полной интенсивности возбуждения

$$I_{\pm}^{(crit)} = \frac{2\left|\mathcal{F}^{(crit)}\right|^2}{1 \pm \rho_{ext}} \tag{21}$$

(см. (10)). Если $\rho_{ext} = 1$, то существует лишь одна критическая точка $I_{+}^{(crit)}$, отвечающая скачку σ^+ -компоненты поля в активном слое. Сколь угодно малое отклонение ρ_{ext} от единицы приводит к появлению второй критической точки $I_{-}^{(crit)} > I_{+}^{(crit)}$, отвечающей скачку σ^- -компоненты в ходе дальнейшего увеличения I_{ext}, при этом второй скачок полной интенсивности I_{int} сопровождается уменьшением степени циркулярной поляризации ρ_{int} . Для $\rho_{ext} = 0$ значения $I_{+}^{(crit)}$ и $I_{-}^{(crit)}$ совпадают, если V₊₋ = 0, но в общем случае такого совпадения нет; характер влияния σ^{\pm} -взаимодействия будет рассмотрен отдельно.

Рисунок 1 позволяет проследить плавную трансформацию функции $I_{int}(I_{ext})$ в целом с уменьшением ρ_{ext} от единицы до нуля. Отметим, что начиная с определенного конечного значения разности $1 - \rho_{ext}$ возникает дополнительная ветвь отображения $I_{ext} \mapsto I_{int}$, имеющая форму восьмерки и не связанная с «дважды S-образной» ветвью при $\rho_{ext} > 0$ (см. рис. 1*в*). Обозначим, для определенности, замкнутую 8-образную ветвь буквой Υ , а дважды S-образную ветвь — буквой **Σ**. С увеличением I_{ext} ветвь Υ возникает тогда, когда величина $|\mathcal{F}_{-}|^{2} \equiv I_{ext}(1-\rho_{ext})/2$ достигает области, в которой отображение $|\mathcal{F}_{-}|^{2} \mapsto |\mathcal{P}_{-}|^{2}$ неоднозначно, и исчезает тогда, когда $|\mathcal{F}_{+}|^{2} \equiv I_{ext}(1+\rho_{ext})/2$ выходит из области неоднозначности отображения $|\mathcal{F}_+|^2 \mapsto |\mathcal{P}_+|^2$ по достижени
и $I_{ext}\,=\,I_{+}^{(crit)}.$ Отсюда следует, что в случае $V_{+-} = 0$ состояния ветви Υ недостижимы как по мере увеличения I_{ext} от нуля до бесконечности, так и в процессе обратного уменьшения I_{ext} при $\rho_{ext} = \text{const} (\text{см. рис. } 2).$

Таким образом, максимальное значение числа возможных I_{int}, соответствующих определенной накачке $(I_{ext}, \rho_{ext}, \Delta \phi_{ext})$, составляет $3 \times 3 = 9$, поскольку максимальное число состояний для каждой из двух σ^{\pm} -компонент поля в активном слое равно трем. При этом одно из трех состояний (как для \mathcal{P}_+ , так и для \mathcal{P}_{-}) неустойчиво. Следовательно, в общем случае существует не более четырех устойчивых значений I_{int} для заданной внешней накачки.

Приведенные соображения позволяют проанализировать зависимость оптической поляризации стационарного поля в активном слое ρ_{int} от интенсив-

Рис.2. Функция $I_{int}(I_{ext})$ для $ho_{ext}=0.2$ в приближении $V_{+-}=0.$ Если σ^\pm -компоненты поля не взаимодействуют, состояния ветви Υ недостижимы по мере плавного изменения I_{ext} от нуля до бесконечности и обратно при $\rho_{ext} = \text{const}$

Рис. 3. Зависимость степени циркулярной поляризации ho_{int} поля ${\cal P}$ от интенсивности $|{\cal F}|^2$ внешней накачки при $\rho_{ext} = 0.2$ в стационарном одномодовом приближении. Стрелками указаны скачки ρ_{int} , ожидаемые в предположении об устойчивости решения при плавном изменении $|\mathcal{F}|^2$ от нуля до бесконечности (сплошные стрелки) и от бесконечности

до нуля (штриховые стрелки)

Рис.4. Зависимость $\rho_{int}(\rho_{ext})$, рассчитанная при фиксированной интенсивности внешнего поля $I_{ext} \approx I_0$ в стационарном одномодовом приближении. Значение I_0 отмечено на рис. 5. Стрелками указаны скачки ρ_{int} , ожидаемые в предположении устойчивости решения при плавном изменении ρ_{ext} от -1 до 1 (сплошные стрелки) и от 1 до -1 (штриховые стрелки)

ности и поляризации накачки (соответственно рис. 3 и 4).

Для примера рассмотрим функцию $\left. \rho_{int}(I_{ext}) \right|_{
ho_{ext}=\mathrm{const}}$ при ho_{ext} = 0.2 (рис. 3). Очевидно, что в области малых I_{ext} должно быть $\rho_{int} \approx \rho_{ext}$, однако с ростом I_{ext} «преимущество» σ^+ -компоненты усиливается за счет нелинейности отклика и потому величина ρ_{int} нарастает. Достижение критической интенсивности $I_{ext} = I_{+}^{(crit)}$ приводит к скачку $|\mathcal{P}_+|$ и, следовательно, скачку $\rho_{int}(I_{ext})$, поскольку «отстающая» компонента $|\mathcal{P}_{-}|$ меняется относительно слабо. Наконец, последующее увеличение накачки до $I_{ext} = I_{-}^{(crit)} > I_{+}^{(crit)}$ приводит к скачку σ^{-} -компоненты, в результате чего поле в активном слое становится поляризованным почти строго линейно ($\rho_{int} \approx 0$) при больших I_{ext} . Обратное изменение $\mathcal{P}_{\pm}(I_{ext})$ в процессе уменьшения Iext от бесконечности до нуля происходит вдоль верхних ветвей устойчивости $|\mathcal{P}^2_+|(|\mathcal{F}^2_+|),$ и потому поле в активном слое сравнительно долго остается линейно поляризованным (соответствующая траектория $\rho_{int}(I_{ext})$ указана штриховыми стрелками). Поскольку же $|\mathcal{P}_{-}(I_{ext})| < |\mathcal{P}_{+}(I_{ext})|,$ компонента σ^- раньше, чем σ^+ , достигает точки обратного перехода, чем и вызван скачок ρ_{int} в области малых плотностей возбуждения.

Рассмотрим теперь зависимость ρ_{int} от ρ_{ext} при $I_{ext} = \text{const}$ (рис. 4). Если, как в данном примере, $I_{ext} > |\mathcal{F}^{(crit)}|^2$, то в окрестности $\rho_{ext} = -1$ амплитуда \mathcal{P}_- находится на верхней ветви устойчивости S-контура $|\mathcal{P}_-^2|(|\mathcal{F}_-^2|)$, тогда как $\mathcal{P}_+ \sim 0$ находится на нижней ветви $|\mathcal{P}_+^2|(|\mathcal{F}_+^2|)$. С увеличением ρ_{ext} значение $|\mathcal{P}_-^2|$ уменьшается, а $|\mathcal{P}_+^2|$ увеличивается, и в ходе изменения ρ_{ext} от -1 до 1 происходят два последовательных скачка: $|\mathcal{P}_+^2|$ — на верхнюю ветвь, а затем $|\mathcal{P}_-^2|$ — на нижнюю, причем ρ_{int} увеличивается в обоих случаях. В процессе обратного изменения ρ_{ext} от 1 к -1 скачки σ^{\pm} -компонент происходят аналогично, что приводит к выраженному гистерезису в зависимости $\rho_{int}(\rho_{ext})|_{I_{ext}=\text{const}}$.

3.2. Спонтанное нарушение симметрии σ^{\pm} -компонент поля на квантовой яме в случае $\rho_{ext}=0$ и $V_{+-}<0$

Обратимся теперь к анализу некоторых специальных эффектов, отсутствующих в приближении $V_{+-} = 0$ и возникающих за счет ненулевого взаимодействия σ^+ - и σ^- -компонент поля экситонной поляризации; вообще говоря, оказывается, что в определенном диапазоне параметров накачки сравнительно слабое σ^{\pm} -взаимодействие приводит к качественной трансформации свойств отклика системы по сравнению со случаем $V_{+-} = 0$.

Ранее отмечалось, что если $V_{+-} = 0$, то состояния Ү-ветви функции стационарного отклика $\left. I_{int}(I_{ext}) \right|_{\rho_{ext}=\mathrm{const}}$ недостижимы по мере плавного изменения I_{ext} от нуля до бесконечности и обратно (рис. 2). Здесь мы, по сути, предполагали, что скачки σ^+ - и σ^- -компонент поля в активном слое могут происходить независимо. Но коль скоро $V_{+-} \neq 0$, всякое изменение одной из компонент \mathcal{P}_{\pm} приведет к изменению второй компоненты, зависящему от полной интенсивности поля $\mathcal P$ в силу нелинейности отклика. Отсюда следует, что разность критических значений интенсивности внешнего поля $I_{+}^{(crit)}$ остается конечной даже при $\rho_{ext} \to 0$, поскольку соответствующие значения $|\mathcal{P}(I_{\pm}^{(crit)})|^2$ отличаются достаточно сильно и потому первый и следующий за ним переходы в этом смысле неравноценны. Знак разности $I_{\perp}^{(crit)} - I_{-}^{(crit)}$ (указывающий на то, скачок какой из двух компонент произойдет вначале) определяется знаком ρ_{ext} , так что формально

$$\lim_{P_{ext}\to+0} \left(I_{+}^{(crit)} - I_{-}^{(crit)} \right) = \\ = -\lim_{\rho_{ext}\to-0} \left(I_{+}^{(crit)} - I_{-}^{(crit)} \right) \neq 0.$$
(22)

f

Рис. 5. Функция $I_{int}(I_{ext})$ в случае строго линейной поляризации внешнего поля ($\rho_{ext} = 0$). Участки, являющиеся устойчивыми в одномодовом приближении, выделены жирной линией. Пунктирная прямая $I_{ext} = I_0$ соответствует точке A, в которой система теряет устойчивость по мере плавного «включения» накачки. Кружка́ми и буквами A, B, \ldots, E отмечены все решения системы (8) для заданной накачки ($I_{ext} = I_0, \rho_{ext} = 0, \Delta \phi_{ext} = 0$)

Случай, когда ρ_{ext} строго равно нулю, является особым. Как будет показано далее, в случае строго линейной поляризации внешнего поля может произойти спонтанное нарушение симметрии σ^{\pm} -компонент поля на квантовой яме, т.е. появление значительной циркулярной поляризации поля в микрорезонаторе. Возможность таких переходов открывается начиная с некоторого определенного значения расстройки $D \equiv E_p - \text{Re} E_{LP}(\mathbf{k}_p)$, зависящего от величины V_{+-} (поскольку, вообще говоря, рост частотной расстройки накачки усиливает нелинейность отклика). С этим тесно связан вопрос об устойчивости состояния возбуждаемой моды в фазовом пространстве ($\text{Re} \mathcal{P}_+, \text{Im} \mathcal{P}_+, \text{Re} \mathcal{P}_-, \text{Im} \mathcal{P}_-$).

В скалярном приближении, отвечающем условию $|\rho_{ext}| = 1$, устойчивость стационарного состояния возбуждаемой моды определяется наклоном касательной к ветви $|\mathcal{P}^2|(|\mathcal{F}^2|)$: состояния, принадлежащие ветви с отрицательной производной dI_{ext}/dI_{int} , параметрически неустойчивы. Как хорошо известно, такое соотношение определяет поведение строго одномерного осциллятора с кубическим самодействием [21]; таким образом, фаза возбуждаемой моды [arg($\mathcal{F}^*\mathcal{P}$)] никак не влияет на состояние устойчивости. Если $|\rho_{ext}| \neq 1$, но $V_{+-} = 0$, такие же

Рис. 6. Фазовая плоскость $(|\mathcal{P}_+|^2, |\mathcal{P}_-|^2)$, на которой указаны положения решений A, B, \ldots, E (см. рис. 5), отвечающих заданной накачке ($I_{ext} = I_0$, ho_{ext} = 0, $\Delta \phi_{ext}$ = 0). Значения функции $ho_{ext}(|\mathcal{P}_{+}|^{2},|\mathcal{P}_{-}|^{2})$ представлены оттенками серого цвета. Сплошная линия показывает решение уравнения $I_{ext}(|\mathcal{P}_{+}|^{2},|\mathcal{P}_{-}|^{2}) = I_{0}$, штриховая линия решение $ho_{ext}(|\mathcal{P}_{+}|^{2},|\mathcal{P}_{-}|^{2})=0.$ Пунктирные линии $\Gamma(|\mathcal{P}_{+}|^{2},|\mathcal{P}_{-}|^{2})=0$ соответствуют границам областей устойчивости в одномодовом приближении; неустойчивые решения B, D_1, D_2 отмечены символами \otimes . По мере плавного увеличения интенсивности накачки I_{ext} при $ho_{ext} = 0$ система теряет устойчивость в точке А, после чего осуществляется быстрая трансформация состояния. Равновероятные переходы в состояния $C_{1,2}$ указаны стрелками. Стационарное состояние Е устойчиво, но динамически недостижимо при $I_{ext} \rightarrow I_0$

соотношения выполняются для σ^{\pm} -компонент по отдельности и вне зависимости от величин $\arg(\mathcal{F}^*_+\mathcal{P}_+)$ и $\arg(\mathcal{P}_{+}^{*}\mathcal{P}_{-})$, в связи с тем что система (8) линейна по $\exp(i\phi_{ext}^{\pm})$ и $\exp(i\phi_{int}^{\pm})$. Состояния, в которых одна из компонент σ^{\pm} устойчива, а другая нет, принадлежат ветви Υ и потому не достигаются в процессе плавного увеличения I_{ext} при ρ_{ext} = const. Но если $V_{+-} < 0$, может оказаться, что Υ -состояние возникает на нижней ветви стационарных решений $I_{int}(I_{ext})|_{\rho_{ext}=0}$ с положительной производной dI_{ext}/dI_{int} , и с ростом I_{ext} возбуждаемая система теряет устойчивость вблизи нижней точки пересечения ветвей Υ и Σ (точка А на рис. 5). Зададимся вопросом о том, как именно изменится состояние системы по достижении этой точки потери устойчивости.

Возможные значения интенсивности $I_{int} \equiv |\mathcal{P}_+|^2 + |\mathcal{P}_-|^2$, определяемые решением системы (8) для $\rho_{ext} = 0$ и «пороговой» накачки $I_{ext} = I_0$, обозначены буквами A, B, \ldots, E на рис. 5. На рис. 6 эти же решения указаны в координатах $(|\mathcal{P}_+^2|, |\mathcal{P}_-^2|)$ как точки пересечения кривых

$$I_{ext} (|\mathcal{P}_{+}|^{2}, |\mathcal{P}_{-}|^{2}) = I_{0},$$

$$\rho_{ext} (|\mathcal{P}_{+}|^{2}, |\mathcal{P}_{-}|^{2}) = 0,$$

рассчитанных с использованием дополнительного условия $\Delta \phi_{ext}(\mathcal{P}_{\pm}) = 0$. В условиях строго линейной накачки состояния C и D, в которых $\rho_{int} \neq 0$, двукратно вырождены по степени циркулярной поляризации. Состояния В и $D_{1,2}$, принадлежащие ветвям с отрицательным наклоном dI_{int}/dI_{ext} , параметрически неустойчивы. Таким образом, существует три абсолютно устойчивых ($\Gamma < 0$) состояния поля в активном слое (C_1, C_2, E) , отвечающих заданной внешней накачке $(I_{ext} = I_0, \rho_{ext} = 0, \Delta \phi_{ext} = 0)$. Переходы из точки A в состояния C_1 и C_2 равновероятны в силу строгой симметрии, откуда следует, что в том или ином случае динамика перехода определяется случайными флуктуациями, которые, будучи сколь угодно малыми в пороговой точке, усиливаются со временем.

Допустим для определенности, что в точке А разность $|\mathcal{P}_{+}| - |\mathcal{P}_{-}|$ положительна. Поскольку $V_{++} > 0$, эффективная энергия σ^+ -компоненты (E_+) несколько сдвинута в синюю область относительно Е_ и потому характеризуется меньшей, чем Е_, расстройкой D с энергией внешнего поля; в результате $|\mathcal{P}_+|$ входит в режим положительной обратной связи с Е₊ и продолжает увеличиваться. С другой стороны, в связи с тем что $V_{+-} < 0$, рост $|\mathcal{P}_+|$ приводит к красному сдвигу компоненты σ^- , которая, таким образом, отдаляется от резонанса с накачкой и становится уже нечувствительной к флуктуациям (возникает отрицательная обратная связь между $|\mathcal{P}_+|$ и $|\mathcal{P}_{-}|)$. Значение $|\mathcal{P}_{-}|^2$ в точке C_1 оказывается даже меньше, чем в точке А. Если же исходное (формально, сколь угодно малое) преимущество имеет компонента \mathcal{P}_{-} , ситуация оказывается ровно противоположной и в результате система переходит в состояние C_2 .

3.3. Численное решение динамических уравнений для возбуждаемой моды

Рассмотрим динамику возбуждаемого состояния по достижении критической точки A в случае $\rho_{ext} = 0$ и $V_{+-}/V_{++} = -0.1$ (рис. 5). Результат расчета представлен на рис. 7.

Рис. 7. Решение системы (3), (4) в предположении $\mathcal{P}_+(\mathbf{k}\neq\mathbf{k}_p,t)\equiv 0$: временны́е зависимости величин $|\mathcal{P}_+|^2$ и $|\mathcal{P}_-|^2$ (рис. a) и соответствующих линейных компонент $|\mathcal{P}_{x,y}|^2$ вблизи точки перехода (рис. б). Поляризация накачки фиксирована $(
ho_{ext}=0,\,\Delta\phi_{ext}=0)$, а интенсивность $I_{ext}(t)$ плавно увеличивается от 0 до $1.005I_0$ (см. рис. 5) за время 200 пс, после чего остается постоянной; временной профиль $I_{ext}(t)$ показан пунктирной кривой на рис. а. Стационарное состояние, устанавливающееся после критической трансформации решения, соответствует точке C_1 на рис. 6. Серия последовательных расчетов, проведенных с идентичными параметрами системы (3), (4), показывает, что переходы в состояния C_1 и C_2 являются равновероятными (в том или ином случае динамика системы определяется случайными флуктуациями поля в критической точке)

Форма возбуждающего импульса $I_{ext}(t)$ (см. рис. 7*a*) была выбрана так, чтобы по мере «включения» накачки система не отклонялась от нижней ветви устойчивости $I_{int}(I_{ext})$. За время порядка 200 пс I_{ext} увеличивается от 0 до 1.005 I_0 , после чего остается постоянным; небольшое превышение порога (I_0) нужно затем, чтобы войти в область положительных Г. В этой области малые отклонения системы от стационарного решения $I_{int} = I_{int}(I_0)$, вызванные флуктуациями, начинают экспоненциально возрастать $[\tilde{\mathcal{P}}(t) \propto e^{\Gamma t}]$. В рамках модели (3), (4) флуктуации определяются слагаемым $\xi(\mathbf{k}, t)$, задающим амплитуду случайной ланжевеновской силы, при этом $\langle \xi_+(t) \rangle = 0$,

 $\sqrt{\langle \xi^*_{\sigma'}(t')\,\xi_{\sigma''}(t'')
angle}$ = $K\delta_{\sigma',\sigma''}\delta_{t',t''}$ для \mathbf{k} = \mathbf{k}_p и $\xi_{\pm}(\mathbf{k},t) \equiv 0$ для всех остальных мод $\mathbf{k} \neq \mathbf{k}_p$, которые нами не учитываются. Мы рассматриваем случай, когда флуктуации пренебрежимо малы в сравнении с амплитудой поля на квантовой яме; в описанных ниже расчетах выбрано значение $K \approx 10^{-3} |\operatorname{Im}(E_X)| |\bar{\mathcal{P}}_{\pm}(I_0)|$. Значения $\xi_{\pm}(t)$ задавались в узлах дискретной сетки с шагом $\tau \approx 7 \cdot 10^{-3}$ пс, что составляет порядка 10^{-3} времени жизни возбуждаемого поляритонного состояния, тогда как абсолютная погрешность решения на отрезке $[n\tau, (n+1)\tau]$ не превышала $10^{-1}K\tau$ для всякого п. Следует заметить, что противоположный случай сравнительно больших флуктуаций $(K \gtrsim |\operatorname{Im}(E_X)||\overline{\mathcal{P}}_{\pm}(I_0)|)$ привел бы к качественно иному, чем рассмотренное в нашей работе, поведению системы.

Интересующий нас переход осуществляется при $t \approx 550$ пс, спустя примерно 400 пс после «включения» внешнего поля: происходит резкое увеличение $|\mathcal{P}_+|$, тогда как величина $|\mathcal{P}_-|$ отклоняется в сторону меньших значений. Установление решения имеет вид затухающих колебаний $|\mathcal{P}_+(t)|^2$ и $|\mathcal{P}_-(t)|^2$. В результате система переходит в точку C, в строгом соответствии с оценкой, сделанной в стационарном приближении.

Нами была проведена серия расчетов с идентичными исходными параметрами системы (3), (4), в которых отличались только случайные реализации «шума» $\xi_{\pm}(t)$. Было найдено, что спонтанные переходы в состояния C_1 и C_2 являются равновероятными, тогда как строго симметричные переходы в состояние E динамически неосуществимы (для данных параметров возбуждения). Характерное время перехода (время, проходящее от включения накачки до установления решения) оставалось в этих расчетах практически неизменным, но, как и следовало ожидать, оказалось, что оно достаточно сильно зависит от амплитуды шума, возрастая с уменьшением K.

Таким образом, строго линейная накачка ($\rho_{ext} = 0$) вызывает отклик, характеризующийся значительной циркулярной поляризацией поля в микрорезонаторе ($|\rho_{int}| > 0$). Как следует из рис. 5, данный эффект должен иметь место на некотором конечном отрезке значений интенсивности возбуждения [I_0, I_1]. Разность $I_1 - I_0$ определяется величиной частотной расстройки $E_p - \text{Re} E_{LP}(\mathbf{k}_p)$; с другой стороны, «критическая» расстройка, начиная с которой спонтанное нарушение σ^{\pm} -симметрии при $\rho_{ext} = 0$ вообще возможно, определяется величиной V_{+-}/V_{++} .

Рис. 8. Сплошная кривая: функция $\rho_{int}(\rho_{ext})|_{I_{ext}=const}$ для $I_{ext} = 1.6I_0$. Участки, являющиеся устойчивыми в одномодовом приближении, выделены жирной линией; о — стационарные состояния, рассчитанные путем решения исходной системы (3), (4) с зависящей от времени интенсивностью накачки I_{ext} , которая для каждой расчетной точки плавно «включалась» от 0 до $1.6I_0$

Если I_{ext} превышает предельное значение I_1 (на рис. 5 $I_1 \approx 1.0$), поле в активном слое может быть лишь строго линейно поляризованным. Рассмотрим, для определенности, случай, когда $I_{ext} = 1.6I_0 > I_1$, а поляризация ρ_{ext} может меняться. При $\rho_{ext} = 0$ есть лишь одно стационарное состояние поля в активном слое, и в нем $\rho_{int} = 0$. Если теперь увеличивать ρ_{ext} в сторону +1, то при некотором $\rho_{ext} = \rho_{ext}^{(crit)}$ снова появится ветвь, отвечающая состояниям с большой циркулярной поляризацией. На рис. 8 представлена серия решений системы (3), (4) с разными ρ_{ext} ; для каждой из точек накачка плавно «включалась» от 0 до 1.6*I*₀. Видно, что несмотря на существование двух абсолютно устойчивых ветвей стационарного отклика при $\rho_{ext} > \rho_{ext}^{(crit)} \approx 0.2,$ происходящие скачки приводят к состояниям с возможно бо́льшей циркулярной поляризацией, и потому зависимость $\rho_{int}(\rho_{ext})$ имеет разрыв в точке $\rho_{ext}^{(crit)}$. Эти расчеты отвечают серии экспериментов с непрерывной накачкой, в которых для каждого ρ_{ext} происходит независимое «включение» внешнего поля. Полученный нами результат обнаруживает хорошее соответствие с данными работы [8], где сообщается о резком скачке поляризации сигнала люминесценции при $\rho_{ext} \approx 0.2$.

4. ЗАКЛЮЧЕНИЕ

В данной работе исследовались свойства оптического отклика макрозаполненных поляритонных мод в условиях когерентной накачки. Был проведен качественный анализ устойчивости стационарных решений в широком диапазоне внешних параметров (интенсивности, частоты и оптической поляризации фотовозбуждения).

Показано, что поляритон-поляритонное взаимодействие приводит к неоднозначности отклика поля в активном слое микрорезонатора; число различных решений, определяющих устойчивые стационарные состояния возбуждаемой моды, зависит от поляризации накачки и в общем случае может достигать четырех. В точках бифуркации, где меняется количество и/или устойчивость стационарных решений, сколь угодно плавное изменение параметров накачки может привести к скачку амплитуды возбуждаемой моды. Были проанализированы неравновесные переходы, осуществляющиеся за счет изменения интенсивности и поляризации возбуждения. В частности, найдено, что даже малое отклонение поляризации накачки от строго линейной может привести к значительной циркулярной поляризации поля в микрорезонаторе.

Ради простоты в данной работе не учитывалась возможность параметрического распада возбуждаемой моды (\mathbf{k}_p) в другие k-состояния. В соответствующих расчетах, связанных с анализом решений системы (8), положение \mathbf{k}_p не имеет специального значения и, следовательно, может быть выбрано в близкой окрестности $\mathbf{k} = 0$, где такого распада не происходит (см. [26]). Таким образом, мы ожидаем, что приведенные результаты — в частности, характер зависимости поля в активном слое от интенсивности и поляризации накачки — будут проверены экспериментально. С другой стороны, известно, что в случае возбуждения в области точки перегиба дисперсионной кривой ($\mathbf{k}_p = 1-2 \,\mathrm{MKM}^{-1}$) характер трансформации возбуждаемой моды с ростом накачки имеет определяющее значение для перехода в режим стимулированного рассеяния — несмотря на то, что, вообще говоря, такая трансформация уже не может рассматриваться как строго одномодовая [20, 24]. Возникающие здесь задачи анализа обратного влияния рассеянного сигнала на состояние возбуждаемой моды (см. [25]) представляют широкое поле дальнейших исследований. Мы ожидаем, в частности, что коллективные состояния системы взаимодействующих поляритонов обнаружат примечательные нелинейные свойства, связанные с оптической поляризацией.

Следующий результат обнаруживает качественную зависимость состояний поля в резонаторе от интенсивности взаимодействия правои лево-циркулярно поляризованных компонент экситонной плотности. Мы нашли, что в случае $V_{+-} < 0$ такое взаимодействие может приводить к спонтанному нарушению симметрии σ^{\pm} -компонент в условиях строго линейной (симметричной) поляризации когерентной накачки в определенном диапазоне частот.

Возможность такого эффекта установлена путем исследования стационарных решений (8), а также анализа их асимптотической устойчивости в приближении (11)-(15). Вслед за этим мы рассмотрели динамику трансформации возбуждаемой моды, решив уравнения (3), (4), и нашли, что спонтанное усиление σ^+ - или σ^- -компоненты поля в активном слое происходит с равной вероятностью. Таким образом, в этом случае «выбор» конечного состояния определяется малыми флуктуациями поля в критической точке. Ясно, однако, что в определенных условиях такие переходы могут быть сделаны управляемыми, например, с помощью магнитного поля, снимающего вырождение σ^{\pm} -состояний экситона в квантовой яме. Более последовательный анализ роли флуктуаций, определяющих, в частности, характерные времена трансформации как в классическом, так и в существенно квантовом описаниях [32] является предметом отдельного рассмотрения.

Авторы выражают признательность Манфреду Байеру (Manfred Bayer), Дитмару Фрёлиху (Dietmar Fröhlich), Гийому Малпешу (Guillaume Malpuech) и А. Деменеву за плодотворные дискуссии. Работа выполнена при финансовой поддержке РФФИ, а также в рамках программ РАН.

ЛИТЕРАТУРА

- C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).
- 2. Л. В. Келдыш, А. Н. Козлов, ЖЭТФ 54, 978 (1968).
- S. Pau, H. Cao, J. Jacobson, G. Björk, Y. Yamamoto, and A. Imamoğlu, Phys. Rev. A 54, R1789 (1996).
- V. D. Kulakovskii, A. I. Tartakovskii, D. N. Krizhanovskii, N. A. Gippius, M. S. Skolnick, and J. S. Roberts, Nanotechnology 12, 475 (2001).

- P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, Phys. Rev. Lett. 84, 1547 (2000).
- A. I. Tartakovskii, D. N. Krizhanovskii, and V. D. Kulakovskii, Phys. Rev. B 62, R13298 (2000).
- R. M. Stevenson, V. N. Astartov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, Phys. Rev. Lett. 85, 3680 (2000).
- A. I. Tartakovskii, D. N. Krizhanovskii, D. A. Kurysh, V. D. Kulakovskii, M. S. Skolnick, and J. S. Roberts, Phys. Rev. B 65, 081308(R) (2002).
- R. Butté, M. S. Skolnick, D. M. Whittaker, D. Bajoni, and J. S. Roberts, Phys. Rev. B 68, 115325 (2003).
- В. Д. Кулаковский, Д. Н. Крижановский, М. Н. Махонин, А. А. Деменев, Н. А. Гиппиус, С. Г. Тиходеев, УФН 175, 334 (2005).
- D. N. Krizhanovskii, D. Sanvitto, A. P. D. Love, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, Phys. Rev. Lett. 97, 097402 (2006).
- A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, Nature Lett. 457, 291 (2009).
- J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, Nature 443, 409 (2006).
- 14. C. Ciuti, P. Schwendimann, B. Deveaud, and A. Quattropani, Phys. Rev. B 62, R4825 (2000).
- 15. D. M. Whittaker, Phys. Rev. B 63, 193305 (2001).
- 16. N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. N. Krizhanovskii, and A. I. Tartakovskii, Europhys. Lett. 67, 997 (2004); N. A. Gippius and S. G. Tikhodeev, J. Phys.: Condens. Matter 16, S3653 (2004).
- 17. D. M. Whittaker, Phys. Rev. B 71, 115301 (2005).

- Н. А. Гиппиус, С. Г. Тиходеев, Л. В. Келдыш, В. Д. Кулаковский, УФН 175, 334 (2005).
- 19. С. С. Гаврилов, Н. А. Гиппиус, В. Д. Кулаковский, С. Г. Тиходеев, ЖЭТФ 131, 819 (2007).
- 20. D. N. Krizhanovskii, S. S. Gavrilov, A. P. D. Love, D. Sanvitto, N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. M. Whittaker, M. S. Skolnick, and J. S. Roberts, Phys. Rev. B 77, 115336 (2008).
- Н. Н. Боголюбов, Ю. А. Митропольский, Асимптотические методы в теории нелинейных колебаний, Наука, Москва (1974).
- 22. В. Ф. Елесин, Ю. В. Копаев, ЖЭТФ 63, 1447 (1972).
- 23. A. Baas, J. P. Karr, H. Eleuch, and E. Giacobino, Phys. Rev. A 69, 023809 (2004).
- 24. A. A. Demenev, A. A. Shchekin, A. V. Larionov, S. S. Gavrilov, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, Phys. Rev. Lett. 101, 136401 (2008).
- A. A. Demenev, A. A. Shchekin, A. V. Larionov, S. S. Gavrilov, and V. D. Kulakovskii, Phys. Rev. B 79, 165308 (2009).
- 26. N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yu. G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, Phys. Rev. Lett. 98, 236401 (2007).
- 27. Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics, Springer, Berlin (2000).
- 28. C. Ciuti, V. Savona, C. Piermarocchi, and A. Quattropani, Phys. Rev. B 58, 7926 (1998).
- 29. J. Inoue, T. Brandes, and A. Shimizu, J. Phys. Soc. Jpn. 67, 3384 (1998).
- 30. J. Inoue, T. Brandes, and A. Shimizu, Phys. Rev. B 61, 2863 (2000).
- P. Renucci, T. Amand, X. Marie, P. Senellart, J. Bloch,
 B. Sermage, and K. V. Kavokin, Phys. Rev. B 72, 075317 (2005).
- **32**. N. S. Maslova, R. Johne, and N. A. Gippius, Письма в ЖЭТФ **86**, 135 (2007).