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Using the Dirac—Bogoliubov—de Gennes equation, we study the electron transport in a graphene-based
superconductor-normal(graphene)—superconductor (SNS) junction. We consider the properties of tunneling
conductance through an undoped strip of graphene with heavily doped superconducting electrodes in the dirty
limit lgef < L < ¢. We find that the spectrum of Andreev bound states is modified in the presence of a
single localized defect in the bulk. The minimum tunneling conductance remains the same, and this result is
independent of the actual location of the imperfection.

1. INTRODUCTION

Graphene — a monolayer of graphite — is formed
by carbon atoms on a two-dimensional honeycomb lat-
tice. In graphene, due to its unique band structure
with the valence and conductance bands touching at
two inequivalent Dirac points (often referred to as K
and K') of the Brillouin zone, the electrons around the
Fermi level obey the massless relativistic Dirac equa-
tion, which results in a linear energy dispersion rela-
tion. Recent exciting developments in transport exper-
iments on graphene have stimulated theoretical stud-
ies of superconductivity phenomena in this material,
which has been recently fabricated [1, 2]. A number
of unusual features of the superconducting state have
been predicted, which are closely related to the Dirac-
like spectrum of normal state excitations [3, 4]. In par-
ticular, the unconventional normal electron dispersion
has been shown to result in a nontrivial modification
of the Andreev reflection and Andreev bound states
in Josephson junctions with superconducting graphene
electrodes [5, 6].

Other interesting consequences of the existence of
Dirac-like quasiparticles can be understood by study-
ing superconductivity in graphene [7-11]. It has been
suggested that superconductivity can be induced in a
graphene layer in the presence of a superconducting
electrode near it via proximity effect [12-14].
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In this work, we study the Josephson effect and find
bound states in graphene for a tunneling SNS junction
in the presence of a single localized defect [15]. We
concentrate on the SNS junction with a normal region
thickness L < &, where £ is the superconducting coher-
ence length, and width W, which has an applied gate
voltage U across the normal region [16, 17]. In the dirty
limit lgep < L < & considered in [18], we investigate
the tunneling conductance in an SNS junction in the
presense of a single localized defect and find that An-
dreev levels are modified, while the minimum tunneling
conductance remains the same [18-20].

2. TUNNELING RESONANT CONDUCTANCE
OF THE GRAPHENE SUPERCONDUC-
TOR/NORMAL/SUPERCONDUCTOR

JUNCTION WITH A SINGLE LOCALIZED
DEFECT

We consider an SNS junction with a single localized
defect in a graphene sheet of width W lying in the zy
plane and extending from x = —L/2 to @ = L/2; the
superconducting region occupies the range |z| > L/2
(see Fig. 1). The SNS junction can then be described
by the Dirac-Bogoliubov—de Gennes (DBAG) equa-

tions [21]
> s = e,

(

A
Er —U - H;

H, —Er+U
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Fig.1. An undoped graphene ribbon is contacted by

two superconducting leads. Charge carriers tunnel from

one lead to another via multiple tunneling states formed

in the graphene strip. A defect is placed inside the
strip

where 1, (Vas, ¥Bs, Vs, —hs) and ¥
(u1,us,v1,v2) are 4-component wave functions
for the electron and hole spinors, the index s ranges
over K or K' for electrons or holes near the K and K’
points, 3 takes the value K(K') for s = K(K'), Ep
denotes the Fermi energy, A and B denote the two
inequivalent sites in the hexagonal lattice of graphene,
and the Hamiltonian Hj is given by

Hg = —ihvp[o,0, + sign(s)o,0,]. (1)
In Eq. (1), vp denotes the Fermi velocity of the quasi-
particles in graphene and sign(s) takes values + for
s = K(K'). The 2 x 2 Pauli matrices o; act on the
sublattice index. The excitation energy € > 0 is mea-
sured relative to the Fermi level (set at zero). The elec-
trostatic potential U and pair potential A have step-
function profiles, as in the case of the semiconducting
two-dimensional electron gas [22—24],

U, =< -L/2,
U(x) =4 0, |z| < L/2,
U, z>1L/2,
Agexp(ig/2), =< -L/2,
A(z) =< 0, |z] < L/2,

Agexp(—i¢/2), = > L/2.

The reduction of the order parameter A(z) in the su-
perconducting region on approaching the SN interface
is neglected; that is, we approximate the parameter
A(z) as is indicated above. As discussed in [25], this
approximation is justified if the length and width of
the weak link are much smaller than £ There is no
lattice mismatch at the NS interface, and hence the
honeycomb lattice of graphene is unperturbed at the
boundary, the interface is smooth and impurity free.
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Fig.2. Normal region Il is divided into three areas

a,b,c. The DBdG equations are solved for area b

with the “infinite mass” boundary conditions induced
by V(r) — oo in areas a and ¢

Solving the DBAG equations, we obtain the wave
functions in the superconducting and the normal re-
gions. In region I (III), for the DBAG quasiparticles
moving in the +z direction with a transverse momen-
tum k, = ¢ and energy ¢, the wave functions are given
by

Ut = exp(iqy + iksw + kma) X

exp(—impf3)
exp(iy — im)
exp(—imo/2)
exp (i — ime/2)

i

U~ =exp(iqy — iksx + kma) x
exp(imf3)
exp(—iy + imf3)
exp(—img/2)
exp(—iy — img/2)

The parameters are defined by f = arccos(e/Ap),

v = arcsinfhivpq/(Uy + Er)], ks =
= V(Uo + Er)?2/(hvr)? — ¢2, and &k =
= (Up + Er)Agsin(B)/(h*v%ks); m = =+ denotes

region I (III), with m = 4+ for I and m — for
III. We also assume that the Fermi wavelength A}
in the superconducting region is much smaller than
the wavelength Ap in the normal region and that
Uy > Ep,e. Because |¢q| < Ep/hvp, this regime of a
heavily doped superconductor corresponds to the limit
v =0, ks = Up/hvp, k = (Ao /hvp)sin .

Region II consists of three areas: a, b, ¢ (see Fig. 2).
We solve the DBAG equations for area b; area c is
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where we place the defect and area a is to be extended
and matched with the superconducting regions. The
two valleys s+ decouple, and we can solve the equa-
tions separately for each valley, Hst)s = (€ + sEp)s,
Hs; = Hy + sV (r)o,. The term proportional to ¢, in
the Hamiltonian is a mass term confining the Dirac
electrons to area b.

We rewrite the Hamiltonian in cylindrical coordi-
nates. Because Hy; commutes with J, = [, + %az, its
electron eigenspinors v, are eigenstates of J. [26],

U (r,a) = (

with eigenvalues n, where n is a half-odd integer,
n=dg,d3,... and Jy,_1 /2 (k(e)r) is the Bessel func-
tion of the order n—1/2. In the zy plane, d denotes the
moving direction of the corresponding quasiparticle,
d = + for the quasiparticle moving toward z = L/2 and
d = — for the quasiparticle moving toward = —L/2.

In what follows, we are interested in finding ze-
ro-energy states [14]. In this case, the DBdG equations
have a general symmetry under changing the sign of
energy,

exp(id(n —1/2)a) Jy(n—1/2)(k(€)r)
exp(id(n + 1/2)a) Jg(nq1/2) (k(e)r)

~

€— —€, 10,u" =0, i0,0" — —u,

(2)
where we set @ = (u1,u2) and © = (vy,vs). Therefore,

for a set of zero modes (7;,0;) labeled by a certain index
1, we should have

P P
uj, :

i}\i = Z&y ’I/IZ = —iﬁyv]

(3)

In the same manner as for electrons, the hole spinors
have the form

(4)

—exp(id(n + 1/2)a") Jynt1/2) (k' (€)r)
exp(id(n —1/2)a’) Jyn—1/2)(K'(e)r)

U, (r, @)

g

where

a(e) = arcsin[lwpq/(e + Er)],
a'(e) = arcsin[hvrq/(e — EF)],

k(e) = (hwr) ™' (e + EF) cosa,

oy 4 (5)
E'(e) = (hwp) " (e — Ep) cosa.

The angle a € (—7n/2,7/2) is the incidence angle of
the electron (with a longitudinal wave vector k), and
o' is the reflection angle of the hole (with a longitudinal
wave vector k') [27, 28]. To obtain an analytic appro-
ximation of the spectrum, we use the asymptotic form
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of the Bessel functions for large r. This is indeed the
desired limit because rk(e) = rgerk(e) x reep/L < 1,
where rger is the defect radius (the radius of area c),
for all eigenvalues n = d/2. In this limit, we impose
the “infinite mass” boundary conditions at y = 0, W,
for which ¢, = (n+1/2)7/W in area b with V(r) — 0o
in areas a and c. Half-odd integer values of n reflect
the Berry phase m of a closed size of a single localized
defect in graphene.

To obtain the subgap (¢ < Ap) Andreev bound
states, we now impose the boundary conditions at
graphene. The wave functions in the superconducting
and normal regions can be constructed as

Uy = artyf + bioy,

Ui = asy + by, (6)

Ui = afit +byf + et + dgp, (7)
where a1 (b1) and a2 (b2) are the amplitudes of right and
left-moving DBAG quasiparticles in region I (IIT), and
a(b) and ¢(d) are the amplitudes of right (left) mov-
ing electrons and holes in the normal region [5]. These
wave functions must satisfy the boundary conditions

Uilo=—r/2 = Vnt|o=—1/2, (8)

Untlo=r/2 = itlo=1/2-

Because the wave vector k, parallel to the NS interface
and different wave vectors in the y-direction are not
coupled, we can solve the problem for a given k, = ¢
and consider each transverse mode separately. In the
leading order in the small parameter AgL/hvp, we can
substitute a(a’) — «(0), k(e)(k'(e)) — k(0). After
some algebra, we obtain the equation

cos(kL)sin(kL)sina |
cos?(kL)cos>a —1 | cos¢. (9)

sin?(kL) — cos?(kL) sin’® a
cos?(kL)cos? a — 1

cos2(3 {

—gin 26{

It differs from the equation obtained for an SNS junc-
tion without a single defect. Dropping the second term
in Eq. (9) immediately yields a reduction of the equa-
tion applicable in the case of weak SNS junctions [14].
The solution of Eq. (9) is a single bound state per mode,

2
A? + B?

x (—20A2—B2+B\/W(0+1))]1/2, (10)

Gn:Ao[ X
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Fig.3. Tunneling conductance of the graphene SNS junctions with a single localized defect versus Fermi energy, calculated
from Eq. (13). The tunneling conductance exhibits oscillatory behavior

where
sin?(k, L) — cos?(k,L)sin® a
cos?(kpL)cos2a—1 '
cos(k, L) sin(k, L) sin a
cos?(kpL)cos2a—1 "’
— —sin® =

(3-3).

B cos?(k,L) cos® v — 1
" cos?(kpL) cos? a — cos(2k, L)’

A=
(11)

1 1
C=—-+—
2+Tn

I .29
(12)

We do not have a simple analytic expression for the
¢-dependence, but we obtained modified Andreev lev-
els in the presense of a single localized defect in the
bulk. The conductance of a graphene strip is expressed
through the transmission probability by the Landauer
formula,

n(u) 42
ngogﬂu 90277 (13)
where n(u) > 1 is given by
kW 1

s 2

n(u) = Int ( ) .
Substituting the transmission probability in Eq. (13)
gives the conductance versus the Fermi energy (see
Fig. 3). The result for the minimal conductivity agrees
with other calculations [29-31], which start from an un-
bounded disordered system and then take the limit of
infinite mean free path [. There is no geometry depen-
dence if the limits are taken in that order.
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3. SUMMARY

We have shown that the tunneling conductance
of the graphene SNS junction with a single localized
defect has a nonzero minimal value if the Fermi level
is tuned to the point of zero carrier concentration. We
have demonstrated that the tunneling conductance
exhibits oscillatory behavior. The Andreev levels are
modified, the minimum tunneling conductance remains
the same, and this result is independent of the actual
location of the imperfection. The analysis of tunneling
conductance of SNS junctions with multiple defects
will be considered elsewhere.

Authors thank Prof. H. H. Lin for the fruitful dis-
cussions. We acknowledge support from the National
Center for Theoretical Sciences in Taiwan.
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