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We propose a scheme for a quantum key distribution (QKD) protocol with dual-rail displaced photon states.
Displaced single-photon states with different amplitudes carry bit values of code that may be extracted, while
coherent states carry nothing and only provide an inconclusive outcome. A real resource of single photons
is used, involving imperfections associated with experimental technique that result in a photon state with an
admixture of the vacuum state. The protocol is robust against the loss of a single photon and the inefficiency
of the detectors. Pulses with large amplitudes, unlike the conventional QKD relying on faint laser pulses, are
used that may approximate it to standard telecommunication and may show resistance to eavesdropping even in
settings with high attenuation. Information leakage to the eavesdropper is determined from comparison of the
output distributions of the outcomes with ideal ones that are defined by two additional parameters accessible
to only those send the pulses. Robustness to some possible eavesdropping attacks is shown.

1. INTRODUCTION

The quantum key distribution (QKD) protocol al-
lows two remote parties (traditionally known as Alice
and Bob) sharing a secure random key by communicat-
ing over an open channel [1-5]. The two users have two
kinds of communication channels at their disposal. One
is a classical public channel that may be eavesdropped
by any unauthorized person but cannot be modified,
and the second is a quantum channel. The quantum
channel is used to transmit the secret key, while the
classical public channel is used to check possible eaves-
dropping and to send the encoded message. Quantum
mechanics ensures that any activities of potential eaves-
droppers can be detected. If Alice and Bob are sure of
the security of their key, they finally process the ob-
tained key (the raw key) to produce a much safer key
(the final key) using classical methods of error correc-
tion and privacy amplification [6, 7].

At present, there is a large collection of variations
of QKD protocols [8]. We mention a few, chosen some-
what arbitrarily. The most famous QKD protocol is the
four-state scheme, usually referred to as the Bennet—
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Brassard 1984 (BB84) protocol. In this protocol, the
transmission of a single photon randomly polarized
along four directions is used [2]. The key idea of the
BB8&4 protocol is that simultaneous measurements of
noncommuting observables for a single photon in two
conjugate bases are forbidden by quantum mechanics.
In other words, the measurement of one observable
made on an eigenstate of another observable inevitably
introduces disturbance to the state. Eve has no knowl-
edge about the state sent by Alice and therefore she
is forced half the time on average to introduce a dis-
turbance into the state, which can be detected as a
bit error. One of possible variations of BB84 consists
in using quantum systems of dimension greater than
2 [9]. Most of the existing schemes use an imperfect
single-photon source because a single-photon resource
is difficult to realize experimentally (weak pulses were
typically used in practice) [10]. Such an implemen-
tation, in the general case, may be vulnerable to the
photon number-splitting attack [11]. To deal with an
imperfect source of single photons, many interesting
methods were proposed [12] involving the decoy state
method [13].

Another possible way to implement secret shar-
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ing coding is based on the use of pairs of Einstein—
Podolsky—Rosen (EPR) correlated photons [3]. A com-
munication protocol based on entangled pairs of qubits
is presented in [14]. A system, which is conceptually the
simplest, involves the use of nonorthogonal quantum
states [5]. Two nonorthogonal states cannot be distin-
guished unambiguously without perturbation only at
the cost of some losses [15]. Initially, the implemen-
tation of a two-state protocol [5] was proposed using
interference of two classical pulses, which is fragile un-
der the influence of decoherence.

Instead of using single photons or weak coherent
pulses, an interesting idea that nonclassical field states
are useful for quantum information processing and
communication was demonstrated with the example of
a QKD with squeezed light [16]. Here, we propose to
use nonclassical properties of the displaced single-pho-
ton states to share secret coding between two sides.
The displacement operator imposes an additional va-
ried degree of freedom on a photon state. According
to the studied QKD model, the inputs are not sing-
le-photon states |1), as in [2], but the dual-rail dis-
placed states. In other words, carriers in the model are
the optical pulses with different large amplitudes, as
in usual classical communication. The developed QKD
protocol is free of problems related with interference.
We also mention that a displaced single-photon state
was experimentally generated in [17]. A possibility to
conditionally generate displaced entangled states via a
nonlinear interaction of a powerful pump beam with a
crystal with the x(®) nonlinearity was proposed in [18].
Another interesting application of the displaced states
is the dense coding protocol [19].

2. IMPLEMENTATION OF QKD WITH
DUAL-RAIL DISPLACED STATES

We describe the protocol. Alice prepares two en-
sembles of displaced states with different displacement
amplitudes

1 1
_ = = 1
p=3Pt g0 (1a)
where
p1 = Pile1) (1] + Pilel ) (@l (1b)
p2 = Palpa)(pa2] + Paeh) (s, (1c)

(P + Pl =1and P, + Pj = 1) with the dual-rail dis-
placed states defined as

lp1)12 = |1, )10, )2, (2a)
|99,1>12 = |0,(J4>1|0,i0€>2, (2b)
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Fig.1. Schematic representation of a QKD protocol
based on dual-rail displaced states. Alice prepares her
dual-rail displaced state and sends it to Bob, who has
a chance to extract a bit value if it was the bit state.
Otherwise, Bob obtains an inconclusive outcome and
discards it. Bob announces the number at which he
successfully obtained a bit value. Alice’s input states
are separate and can be injected to the optical fiber one
after another with some delay. Bob has to introduce
the same time delay to receive dual-rail states and try
to extract information from them

lpa)io = |1,ia1)1]0,i001)2, (2¢)

ls)12 = 10,ia1)1]0, 501 )2, (2d)

where @ # a in general. The states |0, ) = D(a)|0)
and |1,a) = D(a)[1) are the displaced vacuum and
one-photon states [17-19] and D(a) is the displacement
operator. Alice’s parameters a, «; and Py, P/, P2, and
P} are hidden from both Bob and Eve. Because the
states |p1)12 and |p2)12 (displaced single-photon states
with different amplitudes) may carry bit values (0 or 1
respectively), we call them bit states, and because the
states |p])12 and |ph)12 do not carry any information
to Bob, we call them disguised states.

This QKD protocol works as follows. Alice injects
light in one of the four states (4a)—(4d) into a com-
munication channel in random sequence. Bob prepares
the measurement system as it is shown in Fig. 1. The
measurement system involves a balanced beam splitter

B; with the matrix
1 1 4
— . 3
V2 { i1 ] )

The outcomes of beam splitter (3) are given by

By =
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Fig.2. An example of how to distinguish between a

coherent state |0,v/2a) (a) and a single photon |1)

(b). The coherent state mainly give two clicks except

for small failure probability to register only one click. A

single photon always gives one click. The greater the

amplitude of the displaced state we use, the lower the
failure probability

Bl|991>12 =

S\

(|1> a>2 +i[0), 2a>2), (42)
Bilgiio = [0):[0.iV20) . (4)

Bl|992>12 = % X
x ( 204>1 10)s + i 204>1 |1>2) . (40)
Bilgi)i> = 0.iv2a) [0)s, (4d)

where we set a = «; to simplify the calcula-
tions below. To unambiguously discriminate out-
comes (4a)—(4d) with off-the-shelf photon counters be-
ing on/off observables per se (presence or absence
of photons), Bob uses the method shown in Fig. 2
for the particular case. The beam splitter in Fig. 2
converts 2a>1 |0)2 — 2a>1 |0,ia)> and
[10)12 — (1/v/2) (|10)12 +[01)12). If both detectors
D, and D, register any photons, Bob knows that he
detected a state 2a). On the contrary, if neither
Dy nor D click, then we cannot unambiguously dis-
criminate such an outcome. It follows from Eqs. (4a)-
(4d) that three simultaneous clicks by detectors D1—Dy
in Fig. 1 are unambiguously identified as bit values of
coding (0 and 1, respectively). All other events with
three clicks less or more are identified as inconclusive
outcomes and are discarded.

Thus, in the proposed detection system (Fig. 1)
triggered on some photon statistics, the presence of
three simultaneous clicks in Bob’s statistics unambigu-
ously heralds the extraction of bit information from
the sent state. The proposed detection scheme is a

test by means of a generalized measurement (known as
POVM [20]) applied to displaced photon states. Bob
cannot determine the displaced photon number state
with certainty and he sometimes fails to extract the
correct outcome unless his POVM system unambigu-
ously gives an evident answer.

We mention some details of the protocol. All car-
ries sent by Alice are numbered. A one-to-one cor-
respondence between the sent and received pulses is
established. At the point where Bob may unambigu-
ously extract a bit value (three simultaneous clicks),
they obtain perfectly correlated results. Bob has only
to declare the number of the corresponding pulse (but
not its result). All other outcomes are discarded by
Bob. This allows Alice and Bob to share the mutual
information

I(A, B) = logy(Pip1 + Pap2) —

_ Pipilogy(Pip1) + Pap2log, (P2ps)
Pipy + Pyps

, (5)

where p; = py» = 0.5 (1 — Py(a)) are the conditional
probabilities for Bob to obtain a bit result if Alice re-
spectively sent |p1)12 and |¢2)12, and

Py(a) = exp (—2|al?) +2exp (—2]al*) (1—exp (—|a|?))

[19]. This protocol admits the possibility o # «; and,
moreover, Alice may vary the amplitude of each sent
carrier if the phase relations of dual states remain con-
stant to protect the protocol from Eve’s more skilful
eavesdropping attacks, but these possibilities are be-
yond our consideration. It is natural to assume that
Alice delivers states |p1)12 and |p2)12 with equal prob-
abilities P = P, = P, which allows Alice and Bob to
share 1 bit of mutual information (Eq. (5)).

It is well known that quantum cryptography cannot
prevent eavesdropping, but any eavesdropping attempt
can be detected by the legitimate users of a communi-
cation channel. This is because eavesdropping affects
the quantum state of the information carriers and re-
sults in an abnormal error rate. Therefore, before Bob
publicly declares the number (but not the result of his
measurement) at which he successfully extracted a bit
value, Alice and Bob have to test their communication
channel by sacrificing a part of their data sufficient to
estimate the output distributions. Actually, there are
three parameters to judge about a possible eavesdrop-
ping in the channel. The main such parameter is the
output distribution of bit and inconclusive outcomes,
which in the absence of eavesdropping is given by

P =T Py = (1= o)), (6a)

4
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P
PO = 22 (1= Po(an)) =

e~

(1= Po(e)), (6b)

P?(O“t) —1_ PO(Out) _ ]Dl(Out)7 (GC)

where P{O")  plou)

is the probability to extract O
and 1 bit values, respectively and P?(O“t) is a probabili-
ty of inconclusive outcomes. We note that neither Bob
nor malicious Eve know the output distribution of the
bit and inconclusive outcomes because the parameters
P, = P, = P and a are chosen by Alice according to
her own strategy and they are hidden from other par-
ticipants. Eve can only listen to the talk between Alice
and Bob through a public channel but she cannot cor-
rect the output distribution of the outcomes shared by
Alice and Bob. Another important parameter whose
change testifies the presence of Eve in the communica-
tion channel is what we call the disguised probability
Py, the frequency of the appearance of a bit outcome
when Alice has sent one of the disguised states. The
disguised states can give not a bit outcome but only
an inconclusive outcome. The disguised probability Py
must be exactly equal to zero in the ideal case of the
absence of eavesdropping. Finally, Alice and Bob may
also compare bit values of a chosen subset. For exam-
ple, it is evident that a single photon is not detected
in mode 2 if Alice sends a state |p1)12, and vice versa.
Therefore, these parameters may serve as indicators of
the presence or absence of eavesdropping in the com-
munication channel. If the parameters do not coincide
with the ideal ones, then eavesdropping is detected and
transmission is aborted. We note that it is possible to
directly check a communication channel without sac-
rificing any subset of data. Indeed, Bob can call the
corresponding number of his bit outcomes for Alice to
estimate output distributions and compare it with the
ideal ones. After that, they can decide to take the code
or to discard it.

We compare the protocol with the well-known
B92 one. An infinite set of displaced number states
with definite amplitudes |n,a) = D(a)n), n =
=0,1,2,..., composes a complete set of basis states,
I =% In,a)(n,al, where I is the identity opera-
tor. This means that any displaced photon state with
some amplitude can be represented in terms of dis-
placed states but with a different amplitude. We then
have the decomposition

|1,7) = exp <— B + " = Ba*) X

2
‘3 = (E-5) e @

k=0

where a + § = v. Applying it to carries (2a) and (2c),
we have 8 = «a(i — 1). In other words, we deal with
the special case where the state is known to be one
of the two possible pure states, either |1,a) or super-
position (7). We imagine that we have some “optical
scissors” to snip off only two terms of superposition
(7). Then we have two functions |¢1) = |1,a) and
|1/12> = A0|0,a> + A1|1,a> (|A0|2 + |A1|2 = ].) in the
two-level system that corresponds to a communication
channel known as the binary erasure channel with pos-
sible outcomes 0, 1, and 7 (? means an inconclusive
result) or the B92 protocol [5]. Our case is therefore a
generalization of the B92 protocol to an infinite set of
basis vectors realized on displaced photon states. The
coherent states provide inconclusive outcomes and the
scheme in Fig. 1 is the POVM for the input displaced
states p1 and py (Egs. (1b) and (1c)).

It is interesting to note that the input states p;
and po (Egs. (1b) and (1c)) were generated experimen-
tally [17] using a biphoton generated via parametric
down conversion. Tt was discussed in [17] that imperfec-
tions associated with the experimental technique result
in the photon being prepared with a substantial admix-
ture of the vacuum state ps4 = n|1)(1] + (1 —7)|0)(0],
where 7 is the preparation efficiency. The preparation
efficiency may account for the spontaneous paramet-
ric converter dark-count events. In such an event, the
quantum state in the output mode is not conditioned
on that in the converter channel. Alice only needs to
estimate the preparation efficiency of her experimen-
tal setting for the conditional preparation of a single
photon. After that she uses a beam splitter

T R
—-R* T

B' =

with arbitrary parameters 7' and R known only to her
(T and R are transmittance and reflectance) to overlap
her state p4 with a coherent field |0, as) at an auxiliary
mode. The final state to be sent is obtained by taking
the trace over states in the auxiliary mode. The beam
splitter acts on the incident single-photon state simply
as a lossy reflector, reducing its efficiency by the factor
|R|?. Also, the beam splitter causes the displacement
of the state p4, which gives a final statistical mixture
of displaced Fock states as

p's = n|RI> (|1, a1 T)11 (1, 0 TY) (0,04 )22 (1, a}|) +
+(MITP +1—=n) (10,01T)11(0,a1T1) (0,0 )22 (1, 4 ) -

The state py is the state p; in Eq. (1b) if P, = n|RJ?,
P, =n|T?+1-n, a=a1T, and ia = o). The same
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applies to the generation of the py state (Eq. (1c)).
We therefore do not need an ideal resource of single
photons, which is presently impossible due to techni-
cal imperfections of modern detectors. The resource of
single photons experimentally realized in [17] is suit-
able for our protocol. We note that any unauthorized
observer may estimate the preparation efficiency 1 but
it is hardly possible for him to guess the reduction fac-
tor |R|* and, all the more, the amplitudes of the states
that are initially known only to Alice (additional secret
parameters).

3. ROBUSTNESS TO EAVESDROPPING

We now analyze some eavesdropping strategies.
We note that direct measurement of the incoming
pulse does not answer which of the four states was
sent. If Eve prefers to measure the dependence of
the falling field on the relative phase, she may use
a scheme that involves homodyning the signal field
with a reference signal, known as the local oscilla-
tor, before the photodetection. Homodyning with a
reference signal of a fixed phase gives the phase sen-
sitivity necessary to yield the quadrature variances.
Calculations show that the statistical characteristics
(0,la|0, o) = (1,ala|l, ) = « are equal and, conse-
quently, (0,|X1[0,a) = (1,a|X|1,a). Then, Eve may
not be aware of the type of state (bit or disguised) she
has if she measured a definite value of the quadrature
component.

The most practical eavesdropping strategy may be
an intercept-resend attack. Eve intercepts the quan-
tum carrier on its way from Alice to Bob and performs
the same measurement as Bob does, namely, using the
beam splitter By (Eq. (3)). After the measurement,
Eve sends another quantum carrier to Bob in one of
the four states (2a)—(2d), dependening on her outcome
and following some chosen strategy. Eve’s strategy may
be as follows. If Eve obtains a bit value, then she
again sends the corresponding bit state, either |p;)12
or |¢2)12. If Eve detects an inconclusive outcome, then
she tries to guess Alice’s possible signal and to mas-
querade as Alice. We consider this in detail in example
of the state p;. We assume that Eve resends a state
|p1)12 with a probability P/" and |¢])12 with a proba-
bility Py’ (P{" + Py = 1) in the case of her inconclusive
output. Then Eve affects the output of the Alice—-Bob
probability distribution as

plow _ ROL+P) PPy
oOF - ) 4 )

where we neglect Py(a’) and ' is the amplitude of

the displaced states that Eve creates. In general, Eve

may choose P/" such that Po(gm) is almost similar to

Po(om) (Eq. (6a)) due to the contribution P{P|"/4 (she
may sometimes guess the correct distribution PO(O“t)).
But this happens at the expense of a nonzero disguised
probability Py = P{P{'/4 # 0, thus betraying Eve’s
presence. The greater P/’ Eve chooses, the greater dis-
guised probability Py is observed.

Eve may choose more tricky strategy of eavesdrop-
ping. We assume that Eve resends a corresponding dis-
guised state, either |p] )12 or [@h)12, if she has obtained
a corresponding inconclusive output, but she resends
the respective states

1
Uy)p = — %
| 1>12 \/5
X (|1aa,>1|07ial>2 - Z|07 al>1|1aial>2) ) (8&)
1
v =— X
| 2>12 \/§

x (=il1,a1)1]0, a1 )2 +10,ia))1]1,a1)2),  (8b)

instead of |¢1)12 or |@2)12 if she obtains a bit outcome.
This strategy gives the correct output distribution be-
tween Alice and Bob, Egs. (6a)—(6c), because

0,@'\/50/>2,
o,z\/ﬁa'>1 1),

except for the difference between Py(«), Po(a1), Po(a'),
and Py(af). Then Eve may share bit of information
with Alice and Bob. Nevertheless, this method of
eavesdropping has a weak point. The states |¥;)15 and
|¥s)12 are sensitive to the influence of decoherence. It
is impossible to keep the phase relation in the states
|¥;)12 and |¥a)15 stable when Eve and Bob are sep-
arated by a long distance because quantum coherence
is fragile under the unavoidable interaction with the
environment. The decoherence effects for the density
operator can be induced by solving the master equation
when it is possible to exactly calculate the coherence
parameter and the amplitude damping. Calculations of
the parameters for states (8a) and (8b) are beyond our
consideration. Nevertheless, we hypothesize that Bob
obtains a mixture of states with the density matrix

é1|W1>12 =|1)1

B1|‘I’2>12 =

p1=0.5((|1,")11(1,a']) @ (|0,ia')22(0, ia']) +
+(10,2")11(0, &) @ (|1, ia)22(1,ia’|))
by analogy with coherent states with different ampli-

tudes. Such a density matrix introduces error in the
output distribution,
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P (1 - Py(a'))
8

P?(gut) —1_ Po(gut) _ Pl(gut)

P(1—PFy(ay))

Out
9 Pl(EU): 8 9

Out
PO(E =

b

compared with Eqgs. (6a)—(6¢), which can be observed.
It is possible to show that when Eve eavesdrops a frac-
tion n < 1 of the transmissions, the final Alice-Bob
distribution

Out Out n\ 1 - Py(a)
rg =g = (1- ) L)

and
PIZU) =1~ PO _ (2

b

if Py(a) = Po(a’) = Py(a)) is performed, may ap-
proach the ideal distribution given by Eqs. (6a)—(6c¢)
at the expense of 1 bit less of mutual information
(I(A,E)=I(E,B) =1).

We next consider another realistic strategy, a beam
splitting attack, where Eve tries to eavesdrop the trans-
mitted signals without observing. We assume that Eve
splits both states using her two beam splitters, both
described by the matrix

T R

Br =
Po0 _pe T

b

where T and R satisfy the condition |T|*> + |R|* = 1.
Then the output states are

U (|1,0)1]0,ia),) =
= Bur, (Lah[0)r,) Bir, (0, i) [0)r,) =
=T|1,aT)1]0,iaT)2|0,aR) g, |0,iaR) g, +
+ R|0,aT)|0,iaT)s|1,aR) g, |0,iaR),, (9a)

U (|0,a)10,iar)s) =

= ElEl (|0,O€>1|0>E1) élEz (|0,ZC¥>1|0>E2) =
=|0,aT)|0,iaT)2|0,aR) g, |0,iaR)Yp,, (9b)

where F; and E5 are Eve’s modes. The same is appli-
cable to the components of p». The best that Eve can
do in this case is to choose the parameters of her beam
splitters such that the condition |T'| > | R| be satisfied.
For |R| < 1, Eve may neglect the contribution of the
second term in Eq. (9a) for her estimations. Then the
output Alice—Bob statistics

1 - Py(aT
Out 1— Py(aT)
11(E ) =1 |T|274 )

Out Out Out
PO =1 P - PG

approaches to the ideal in (6a)—(6c¢) sufficiently close,
because |T'|> ~ 1. Alice and Bob compare their statis-
tics and take it as correct, after which Bob announces
the corresponding number at which he received the bit
value. Eve also listens to their talk, and she needs
only to distinguish two states |0, aR) g, |0,iaR) g, and
|0,i01 R) g, |0, @1 RY g, from each other to have an ac-
cess to the coding. This can be done as Bob does with
the help of balanced beam splitter (3),

By (10,aR) 5, |0, iaR)p,) = [0)1 [0,ivZaR)

and

Bl (|07ia1R>E1|0aa1R>E2) =

o,ix/ialR>1 10)s.

Nevertheless, this strategy does not give Eve a sufficient
access to coding because the probability

P, = exp (—2|oz|2 (1 — |T|2)) ~1

not to register any photons and distinguish between
|0, aR) g, |0,iaR) g, and |0,i01 R) g, |0, a1 RYp, is high.
Eve registers nothing and she loses any information
about coding shared by Alice and Bob. Therefore, she
can only have access to 7 = 1 — P, & 0 bits of mutual
information. Moreover, Eve does not know the values
of a exactly, to try to define optimal parameters for
her beam-splitting attack. This consideration gives an
estimate of Alice’s amplitude a to satisfy the condition
|a|?(1 = |T)?) ~ 0 for |T|? ~ 1.

We now consider the case where Eve attempts to
gain some information on each signal sent by Alice,
while minimizing the damage to the state. This strat-
egy can be realized by making the information carrier
interact unitarily with a probe, and then letting the
signal proceed to Bob, in a slightly modified state. Eve
may store her probe and decide which type of measure-
ment to perform on her probe only after Alice and Bob
share their coding. For this, Eve supplies her probe in
a known initial state |g), and then the combined system
may evolve as

U (lp)lg) = lerm)ler), (10a)
U (I¢1)lg)) = It m)le2),
U (|p2)l9)) = lam)les), (10b)

-,

(le2)19)) = l¢o)lea),

where
loie)i2 = |1, ap)1|0,iag)s,
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It p)12 =10, ap)1]0,iag)s,
lp2E)12 = |1,900E)1(|0, a1 E)2,
lpse)1z = 10,i01£)1]0, a1g)s.

The evolution is unitary (Eve can construct some
Hamiltonian that generates it) and the scalar product
is conserved. This then imposes the condition

(erles) = exp (= (laf” —larl*) = (laf* —|aiel))
1— (ia—a)?

1-— (iozlE — O%E)2

, (11a)

(erlea) = exp (= (laf* —larl?) = (laf® —|aiel?))

X ,  (11b)

i(J{lE — Qo

(esle2) = exp (= (la]* = |arl?) = (la]? = |ais]?)) x
a—ia
70@ o (11c)

(eale2) = exp (= (la]* —|arl?) —

— (|af? = |e1gl?)). (11d)

The composite system is a direct product of the
corresponding states if overlaps [(e;le;)|> < 1
(i,j = 1,...,4). After sending the modified carrier
to Bob, Eve remains with her probe. The probes are
not orthogonal to each other. The idea of Eve is to
cause minimal damage to the information carrier and
to obtain as much information as possible. To hide
her presence, Eve may try to guess Alice’s parameters
a ~ ap and a & aig to provide performance of the
condition Py(a) ~ Py(ag) ~ Py(ayg). But the over-
lap (e1]es) in Eq. (11a) becomes almost equal to unity
({e1]es) =~ 1) in the case where a ~ ap and a ~ a;p.
Because the states |e;) and |es) are not orthogonal and,
moreover, their overlap is sufficiently large, Eve cannot
distinguish them exactly and, as consequence, she can
share only 1 bit less of mutual information.

~
~

~
~
~

4. DISCUSSION AND CONCLUSION

Optical quantum cryptography is based on the use
of single-photon states. Unfortunately, these states are
difficult to realize experimentally. At present, practical
implementations rely on faint laser pulses in which the
photon number distribution obeys the Poisson statis-
tics, or on entangled photon pairs. Both possibilities
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suffer from a small probability of generating more than
one photon. For large losses in the quantum channel,
small fractions of these multiphotons can have impor-
tant consequences for the security of the key. We pro-
pose a QKD protocol that can use the actually existing
resources of single photons. The way to create pseudo-
single-photon states is to generate photon pairs and use
one photon as a trigger for the conditional generation
of the other. Imperfections associated with the experi-
mental technique lead to only a mixture of the single-
photon and the vacuum states [17]. Nevertheless, if we
modulate such a statistical mixture by a coherent state
on a beam splitter, we produce a mixture of the dis-
placed photon states with coherent states that are ap-
plicable for the proposed QKD protocol. We emphasize
that the modulation of the mixture is the main feature
for the protocol to work. As is well known, the phase of
a Fock number state is random. If we modulate a pho-
ton number state |n) (or, equivalently, apply a displace-
ment operator), we impose a phase on the state |n, «)
that is definitely determined. This allows having dif-
ferent outcomes (Eqs. (4a) and (4c)) for the input dis-
placed single-photon states, with only their phase vary-
ing. We emphasize that the protocol in not applicable
for a single photon or a pair of photons without dis-
placement because the phase of photon number states
is not definitive. This feature mainly distinguishes this
protocol from others. Also, such a modulation allows
Alice to use two additional parameters accessible to
nobody, namely, the initial distributions of her input
states and the amplitudes of her fields that she may
change. Our QKD deals with optical pulses as carri-
ers, unlike the quantum QKD with a single photon that
approximates it to standard telecommunication. With
the availability of the sources of quantum states for the
communication, the success of quantum cryptography
also essentially depends on the ability to detect sin-
gle photons. In principle, this can be achieved using
a variety of techniques, for instance, photomultipliers,
avalanche photodiodes, multichannel plates, and super-
conducting Josephson junctions. In our case, commer-
cial detectors (the usual on-off observables) are used.
We consider an optical fiber version of a Mach—
Zehnder interferometer made out of two symmetric
beam splitters connected to each other, with one phase
modulator in each arm. This interferometer combined
with a single-photon source and photon-counting detec-
tors can be used for quantum cryptography if the phase
shift is kept constant. Although such a scheme may be
perfect on an optical table, it is impossible to keep the
path difference between two modes stable for a longer
distance. To avoid this, Alice can introduce some delay
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between the pulses in the input modes and send them
one after another through the same optical fiber, where
they may experience the same phase shift in the envi-
ronmentally sensitive part of the system. This can be
done because the input states are separate. This allows
preserving phase relations of the incoming pulses at the
output on Bob’s side if he also makes the same delay
for the first pulse before combining two pulses (dual-rail
output) in the beam splitter. A detailed analysis of the
influence of decoherence on the displaced single photon
state is the subject of future investigation. Remark-
ably, this protocol is robust against the loss of a single
photon and the inefficiency of the detectors. Those
factors would cause the corresponding detectors to be
silent, and such cases can simply be discarded. There-
fore, this only affects the output distributions and has
to be taken into account in realistic cases. We only
express idea that use of pulses with large amplitudes,
in contrast to conventional schemes of quantum cryp-
tography, may show resistance to eavesdropping even
in settings with high attenuation.

The proposed QKD protocol is a generalization of
the B92 protocol [5] applied to the displaced photon
number states. Our protocol works as a binary erasure
channel as the B92 protocol does [5]. We note that
the optical scheme of a two-state protocol [5] can be
implemented using the interference between a macro-
scopic bright pulse and a dim pulse with less than one
photon on average [5]. The proposed optical scheme
is not that of a Mach—Zehnder interferometer and, as
consequence, it is free of the interference effect and of
attendant problems. Our analysis involves the study
of only a restricted number of possible eavesdropping
attacks and shows that the protocol is secure. The
consideration of other aspect of our protocol deserves
separate investigations.

This work was partially supported by the IT R&D
program of MKE/ITTA (2008-F-035-01).

REFERENCES

[y

. S. Wiesner, SIGAST Newa 15, 78 (1983).

[V

. C. H. Bennett and G. Brassard, in Proc. of IEEE Int.
Conf. on Computers, Systems, and Signal Processing,
Bangalore, India, 175 (1984).

. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

I’y

. C. H. Bennett, G. Brassard, and N. D. Mermin, Phys.
Rev. Lett. 68, 557 (1992).

663

. C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).

. C. H. Bennett, G. Brassard, C. Crepeau, and M. Mau-
rer, IEEE Trans. Inf. Theory 41, 1915 (1995).

C. H. Bennett, F. Bessette, G. Brassard, I. Salvail, and
J. Smolin, J. Cryptology 5, 2 (1992).

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev.
Mod. Phys. 74, 145 (2002).

. H. Bechmann-Pasquinucci and A. Peres, Phys. Rev.
Lett. 85, 3313 (2000); H. Bechmann-Pasquinucci and
W. Tittel, Phys. Rev. A 61, 062308 (2000); M. Bouren-
nane, A. Karlsson, and G. Bjorn, Phys. Rev. A 64,
012306 (2001).

10. P. D. Townsend, J. G. Rarity, and P. R. Tapster, Elec-
tron. Lett. 29, 1291 (1993); A. Muller, J. Breguet, and

N. Gisin, Europhys. Lett. 23, 383 (1993).

11. B. Huttner, N. Imoto, N. Gisin, and T. Mor, Phys.
Rev. A 51, 1863 (1995); H. P. Yuen, Quant. Semi-
class. Opt. 8, 939 (1996); G. Brassard, N. Liitkenhaus,
T. Mor, and B. C. Sanders, Phys. Rev. Lett. 85, 1330
(2000); N. Liitkenhaus and M. Jahma, New J. Phys.
4, 44 (2002).

12. V. Scarani, A. Acin, G. Ribordy, and N. Gisin, Phys.
Rev. Lett. 92, 057901 (2004); M. Koashi, Phys. Rev.
Lett. 93, 120501 (2004); D. A. R. Dalvit, R. L. de
Matos Filho, and F. Toscano, New J. Phys. 8, 276
(2006).

13. X.-B. Wang, T. Hiroshima, A. Tomita, and M. Haya-
shi, Phys. Rep. 448, 1 (2007); W.-Y. Hwang, Phys.
Rev. Lett. 91, 057901 (2003); H.-K. Lo, X. Ma, and
K. Chen, Phys. Rev. Lett. 94, 230504 (2005).

14. K. Bostrom and T. Felbinger, Phys. Rev. Lett. 89,

187902 (2002).

15. 1. D. Ivanovic, Phys. Lett. A 123, 257 (1987).

16. M. Hillery, Phys. Rev. A 61, 022309 (2000).

17. A. 1. Lvovsky and S. A. Babischev, Phys. Rev. A 66,

11801 (2002).

18. S. A. Podoshvedov and J. Kim, Phys. Rev. A 74,

033810 (2006).

19. S. A. Podoshvedov, Phys. Rev. A 79, 012319 (2009).

20. M. A. Nielsen and I. L. Chuang, Quantum Compu-
tation and Quantum Information, Cambridge Univ.

Press, Cambridge (2000).



