ИССЛЕДОВАНИЕ МУЛЬТИФЕРРОИКА ${ m BiFeO_3}$ МЕТОДОМ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА НА ЯДРАХ ${ m ^{57}Fe}$

В. С. Покатилов^{*}, А. С. Сигов

Московский государственный институт радиотехники, электроники и автоматики (технический университет) 119454, Москва, Россия

Поступила в редакцию 8 сентября 2009 г.

Методом импульсного ядерного магнитного резонанса (ЯМР) исследовано влияние на форму спектра ЯМР концентрации изотопа ⁵⁷ Fe в образце и амплитуды высокочастотного магнитного поля h_1 в мультиферроике $\operatorname{BiFeO_3}$ при T=4.2 K. Обнаружена сильная зависимость формы спектра ЯМР и поперечного времени релаксации T_2 от концентрации изотопа ⁵⁷ Fe и величины h_1 в мультиферроике $\operatorname{BiFeO_3}$ в присутствии пространственной спин-модулированной структуры циклоидного типа. Существенный вклад в T_2 вносит сул-накамуровское взаимодействие в образце с большим содержанием изотопа ⁵⁷ Fe. Учет этих динамических эффектов при анализе формы спектра ЯМР показывает, что в $\operatorname{BiFeO_3}$ присутствует невозмущенная (без эффекта ангармонизма) пространственная спин-модулированная структура циклоидного типа.

1. ВВЕДЕНИЕ

В последнее время материалы, которые называют мультиферроиками (они обладают одновременно электрическим и магнитным упорядочением), вызывают значительный интерес. Особенно вырос интерес исследователей к висмутовому феррату BiFeO₃, имеющему высокие температуры магнитного (точка Нееля $T_N = 640 \text{ K}$) и сегенетоэлектрического (точка Кюри $T_C = 1120$ K) переходов [1]. В тонких пленках этого перовскита обнаружены высокие значения спонтанной электрической и магнитной поляризации [2]. Как известно, BiFeO₃ — это ромбоэдрически искаженный перовскит [3]. Методом магнитной нейтронографии [4] установлено, что этот перовскит обладает пространственной спин-модулированной структурой (ПСМС) циклоидного типа с большим периодом $\lambda = 620 \pm 20$ Å, несоизмеримым с периодом кристаллической решетки. Существование ПСМС в BiFeO₃ теоретически обосновано в работах [5,6] на основе функционала Ландау-Лифшица (описывающего вклад магнитоэлектрического взаимодействия) в свободной энергии, содержащей также неоднородную обменную энергию (представленную обменной жесткостью А) и энергию одноосной анизотропии (представленную константой одноосной анизотропии K_a). В ПСМС магнитные моменты железа, антиферромагнитно упорядоченные по *G*-типу в элементарной решетке (каждый ион железа окружен шестью ионами с противоположной ориентацией спинов), поворачиваются вдоль направления распространения модулированной волны в плоскости, перпендикулярной гексагональной базисной плоскости BiFeO₃. Была определена пространственная зависимость угла θ между вектором антиферромагнетизма **L** и осью **с** вдоль распространения циклоиды (ось *x*) и она описывается эллиптической функцией Якоби

$$\cos\theta(x) = \operatorname{sn}\left(\pm\frac{4K(m)}{\lambda}x, m\right),\tag{1}$$

где $\operatorname{sn}(x,m)$ — эллиптическая функция Якоби, m — ее параметр, K(m) — полный эллиптический интеграл первого рода [5, 6]. Период волны ПСМС λ связан с обменной жесткостью A, константой одноосной анизотропии K_a и параметром m формулой

$$\lambda = 4(A/K_a)^{0.5}K(m)m^{0.5}.$$
 (2)

Так как сверхтонкое поле (СТП) H_0 на ядре ⁵⁷ Fe пропорционально локальному магнитному моменту μ иона Fe, то в соответствии с законом в формуле (1) поворачивается локальное сверхтонкое поле H_0 на ядрах. Экспериментальное подтверждение существования ПСМС в BiFeO₃ было выполнено в работе [7] методом ЯМР на ядрах ⁵⁷ Fe в образце, обо-

^{*}E-mail: pokatilov@mirea.ru

гащенном изотопом ⁵⁷ Fe до 95 %. Спектр резонансных частот ЯМР был обнаружен в полосе $\delta \nu$ (от 74.7 МГц до 75.8 МГц) с двумя пиками разной интенсивности на краях спектра ($\nu_1 = 75.00$ МГц и $\nu_2 = 75.58$ МГц) и прогибом между ними.

Профиль линии поглощения ЯМР $P(\nu, m)$ (ν текущая частота) в присутствии ПСМС был рассчитан в работе [7] для случая аппроксимации локальной формы линии б-функцией. Заметим, что в этом случае форма спектра $P(\nu, m)$ [6,7] позволяет судить не только о существовании ПСМС в исследуемом соединении, но и о степени ангармоничности (возмущения) циклоиды и физических параметрах соединения. Из профиля линии $P(\nu, m)$, содержащего параметр *m*, который входит в функцию Якоби (формула (1)), следует, что при $m \to 0$ циклоида становится синусоидальной. Это означает, что спектр ЯМР будет иметь симметричную форму с равными по высоте пиками по краям спектра и минимумом посередине. Если $m \rightarrow 1$, то возмущение (ангармоничность) циклоиды увеличивается, отношение интенсивности высокочастотного максимума на частоте ν_{\parallel} (ν_{2}) к интенсивности низкочастотного максимума на частоте ν_{\perp} (ν_1) возрастает. В последнем случае спектр ЯМР свидетельствует об ангармонизме ПСМС в $BiFeO_3$ [7,8].

Полоса частот $\delta\nu$, в которой наблюдается спектр ЯМР, обусловлена анизотропным вкладом в СТП H_0 на ядрах ⁵⁷ Fe за счет поворота спинов от $\theta = 0$ к $\theta = \pi/2$ [9]. Этот вклад составляет почти 1 % от среднего СТП. Анизотропная часть СТП описывается формулой

$$\nu \approx \nu_{\parallel} \cos^2 \theta + \nu_{\perp} \sin^2 \theta = \nu_{\parallel} - \delta \nu \sin^2 \theta, \quad (3)$$

где ν — текущая частота в спектре ЯМР (и связана с СТП $\gamma H_0 = 2\pi\nu$, γ — гиромагнитное отношение для ядер ⁵⁷Fe). Пространственное распределение угла θ определяется формулой (1), ν_{\parallel} и ν_{\perp} — значения резонансных частот при **L** \parallel **c** ($\theta = 0$) и **L** \perp **c** ($\theta = \pi/2$), $\delta\nu = \nu_{\parallel} - \nu_{\perp}$ [7].

В работе [8] спектр ЯМР на ядрах ⁵⁷ Fe в перовските BiFeO₃, обогащенном до 95 % изотопом ⁵⁷ Fe, проанализирован по модели [7] и асимметрия в распределениях амплитуды сигнала эха по спектру объяснялась присутствием ангармонизма в ПСМС. Был определен параметр ангармонизма m при T = 77 K и он равен m = 0.83. Однако недавние исследования методом магнитной нейтронографии показали, что в BiFeO₃ ПСМС не является ангармонической в области температур 4–295 K [10]. Мы полагаем, что противоречие между данными ЯМР и нейтронографии обусловлены тем, что в работах [7–9] не рассматривались детальные динамические эффекты, которые могли бы влиять на форму спектра ЯМР, полученного при разных экспериментальных условиях измерения амплитуд эха в каждой точке спектра, и, соответственно, на интерпретацию измеренных спектров в рамках модели [7], в том числе и на величину параметра ангармонизма *m* ПСМС.

В работах [7-9] при анализе спектра ЯМР с помощью линии поглощения $P(\nu, m)$ предполагалось, что отсутствуют или очень малы динамические эффекты, обусловленные 1) зависимостью поперечных времен релаксации от амплитуды высокочастотного (ВЧ) магнитного поля и распределением этих времен по частоте ν в спектре ЯМР; 2) коэффициентом усиления η сигнала ЯМР (т. е. предполагалось, что $\eta = 1$, что не характерно для магнитоупорядоченных веществ, где обычно $\eta \gg 1$; 3) другими динамическими процессами. Целью данной работы является изучение в мультиферроике BiFeO₃ 1) влияния на форму спектра ЯМР количественного содержания изотопа ⁵⁷ Fe в образце и поперечного (спин-спинового) времени релаксации T_2 на ядрах $^{57}{
m Fe};~2)$ зависимости T_2 от частоты u (в спектре SMP); 3) зависимости амплитуды эха и T_2 от амплитуды высокочастотного магнитного поля h_1 и оценка коэффициента усиления η .

2. ОБРАЗЦЫ И МЕТОДЫ ИЗМЕРЕНИЙ

Исследования проводились на двух образцах соединения BiFeO₃ с относительным содержанием стабильного изотопа ⁵⁷ Fe 95 % (образец № 1) и 10 % (образец №2). Поликристаллические образцы BiFeO₃ были приготовлены методом обычной керамической технологии. Смесь оксидных порошков компонентов соединения в соответствующей пропорции прессовалась в таблетки, которые отжигались одни сутки при температуре 700-1000 °С на воздухе (с промежуточным трехкратным размолом и прессованием в таблетки). При T = 830 °C проводился окончательный отжиг и затем быстрое охлаждение образца на воздухе. Полученные образцы BiFeO₃, как показали рентгеновские измерения, имели ромбоэдрическую структуру с параметрами (a = 3.963 Å и $\alpha = 89.43^{\circ}$). В образце №1 присутствовала вторая фаза в количестве не более 2-3 %.

Измерения сверхтонких параметров (спектра ЯМР на ядрах 57 Fe, сверхтонких полей, коэффициентов усиления η и поперечного времени релаксации T_2) были выполнены методом импульсного ЯМР

Рис. 1. Спектры ЯМР на ядрах ⁵⁷ Fe в перовските BiFeO₃ (образец № 1) при T = 4.2 K. Для измерения спектра использовались последовательности из двух ВЧ-импульсов 10-100-12 мкс и амплитудами ВЧ-импульсов $h_1 = 0.5 \ni (1)$ и $2.5 \ni (2)$

(ядерного спинового эха) при T = 4.2 К. Амплитуда эха возбуждалась двумя ВЧ-импульсами в последовательности t_1-t-t_2 , где t_1 и t_2 — длительности ВЧ-импульсов, а t — интервал между ними. Значения t_1 , t_2 и t варьировались в широких пределах. Спектры измерялись по точкам в области частот 74-76 МГц. В каждой точке спектра амплитуда h_1 магнитного ВЧ-поля поддерживалась постоянной и могла изменяться в широких пределах (до 10 Э). Амплитуда поля h_1 , действующего на образец в радиочастотной катушке, измерялась по убыванию магнитной индукции ядер водорода H^1 (одноимпульсное 90°- и 180°-возбуждение) в водном растворе CuSO₄. Точность измерения поля h_1 составляет 15-20 %.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 и 2 представлены спектры ЯМР при разных значениях амплитуды h_1 ВЧ-поля для образцов № 1 и № 2. Спектры состоят из двух пиков разной интенсивности и плато между ними. При T = 4.2 К максимумы первого пика (пик 1) лежат при 74.92 ± 0.01 МГц, а максимумы второго пика (пик 2) — при 75.55 ± 0.01 МГц. Ширины пиков $\Delta \nu$ в образце № 2 на уровне полувысоты не пре-

Рис.2. Спектры ЯМР на ядрах 57 Fe перовскита BiFeO₃ образца № 2 при T = 4.2 К. Для измерения спектра использовались последовательности из двух ВЧ-импульсов: 1 - 10-100-10 мкс $(h_1 = 0.9 \exists), 2 - 10-100-22$ мкс $(h_1 = 2.5 \exists), 3 - 10.4-100-22.6$ мкс $(h_1 = 3 \exists)$

вышают 100 кГц. Значения резонансных частот в максимумах пиков спектра приводятся для образца № 2, так как спектр этого образца содержит более острые пики. Было замечено, что условия эксперимента сильно влияют на форму спектра ЯМР. Исследования показали, что в зависимости от уровня возбуждения эха (величины h_1) и длительности ВЧ-импульсов t_1 и t_2 , а также интервала t между двумя ВЧ-импульсами, спектр ЯМР может иметь разную форму и разные соотношения между интенсивностями пиков в максимумах, при этом значения резонансных частот для первого и второго пиков практически не изменяются. Из сравнения спектров ЯМР на рис. 1 и 2 видно, что уменьшение содержания стабильного изотопа ⁵⁷ Fe приводит к улучшению разрешения в спектре ЯМР. Сравнение этих рисунков также показывает, что при большом содержании изотопа ⁵⁷ Fe всегда существует сильная асимметрия в распределении интенсивностей, тогда как при малом содержании изотопа ⁵⁷Fe и амплитудах магнитного ВЧ-поля h_1 , соответствующих максимуму сигнала эха в каждой точке спектра, наблюдаются практически равные амплитуды эха в максимумах спектра ЯМР при небольших задержках между ВЧ-импульсами.

На рис. 3 для образца №1 представлены зависимости амплитуд эха A_{e1} и A_{e2} от интервала t между

Рис. 3. Зависимость интенсивности эха A_e от интервала t между двумя высокочастотными импульсами, возбуждающими сигнал эха, в максимумах A_e спектра ЯМР при 75.53 МГц (1) и 74.95 МГц (2) для последовательности 10-t-14 мкс и $h_1 = 3$ Э в образце № 1

двумя ВЧ-импульсами при амплитудах магнитного ВЧ-поля h_1 , создающих максимальные значения эха в пиках 1 и 2 спектра ЯМР. Эти данные объясняют асимметрию распределения амплитуд эха в спектре ЯМР. При увеличении t интенсивность первого пика A_{e1} относительно второго A_{e2} существенно уменьшается, а при экстраполяции этих интенсивностей к t = 0 интенсивности A_{e1} и A_{e2} почти сравниваются. Как видно на рис. 3, этот эффект обусловлен разными временами поперечной релаксации T_2 (разные наклоны зависимостей A_{e1} и A_{e2}) в области частот первого и второго пиков. Таким образом, полученные данные показывают, что имеется существенный вклад поперечного времени релаксации в форму спектра ЯМР, а именно, в величину отношения амплитуд эха в максимумах спектра ЯМР. Эти данные также показывают, что анализ спектра ЯМР с помощью профиля линии $P(\nu, m)$ [7], не учитывающий динамические эффекты, искажающие форму спектра, для определения ангармонизма ПСМС, не является достаточно корректным. Форма спектра ЯМР при экстраполяции амплитуд эха на t = 0 в образцах, обогащенных изотопом ⁵⁷ Fe, и малом содержании изотопа в исследуемом образце является симметричной. Это означает, что в теоретической форме спектра ЯМР $P(\nu, m)$ параметр m равен нулю и ангармонизм ПСМС отсутствует. Данные настоящей работы также показывают, что в BiFeO₃ при T = 4.2 К присутствует пространственная спин-модулированная магнитная структура циклоидного типа, а не ангармоническая (возмущенная) циклоидная спин-модулированная структура. Наши данные полностью согласуются с результатами нейтронографических исследований [10], которые показали, что возмущение (ангармонизм) ПСМС в BiFeO₃ в области температур 4.2–295 К отсутствует.

В настоящем исследовании были измерены времена поперечной релаксации T₂ и их зависимость от h_1 для двух образцов, обогащенных стабильным изотопом ⁵⁷Fe в разной концентрации. Зависимость T_2 от h_1 измерялась на двух частотах, при которых наблюдаются максимумы в спектре ЯМР. Измерялись амплитуды эха A_e в зависимости от интервала t между двумя ВЧ-импульсами при разных значениях $h_1 = (0.1-6)$ Э. Амплитуды эха $A_e(t)$ убывали согласно зависимости, близкой к экспоненциальной, со слабым увеличением скорости уменьшения амплитуды при увеличении h_1 . В данной работе этот процесс описывался экспоненциальной зависимостью $A_e(t) = A_0 [\exp(-2t/T_2)]$, из которой были определены времена поперечной релаксации T_2 и их зависимость от h_1 для двух образцов. Оказалось, что для образцов № 1 и № 2 с ростом h_1 время T_2 сначала растет, затем насыщается при $h_1 \ge 3$ Э, причем для образца №1 при $f_{\perp} = 75.05$ МГц насыщение наступает при $T_2 = 450 \pm 50$ мкс, а при $f_{\parallel} = 75.55 \text{ M}$ Гц — при $T_2 = 870 \pm 60$ мкс, для образца же № 2 $T_2 = 1060 \pm 90$ мкс при $f_\perp = 74.93~{\rm M}\Gamma$ ц и $T_2 = 2040 \pm 120$ мкс при $f_{\parallel} = 75.56$ МГц. Времена релаксации *T*² в BiFeO₃ для образца № 1 при частотах, соответствующих максимумам спектра ЯМР только при фиксированном значении h_1 , создающем максимум сигнала эха в пиках спектра ЯМР, были также измерены в работе [9] и с данными этой работы имеется хорошее согласие.

Одним из вкладов в экспериментально измеренную скорость поперечной релаксации $(T_2)^{-1}$ является сул-накамуровский (SN) вклад $(T_2^{SN})^{-1}$. Согласно модели сул-накамуровского косвенного взаимодействия [11, 12] этот вклад обусловлен косвенным взаимодействием спинов двух резонансных ядер с переворотом (спин-флопом) спина ядра при испускании (поглощении) виртуального магнона с последующим поглощением (испусканием) его другим ядром. Скорость спин-спиновой релаксации $(T_2^{SN})^{-1}$ пропорциональна концентрации с ядер, на которых наблюдается ЯМР [11, 12]:

$$(T_2^{SN})^{-1} \sim H_0^{-4} cg(H) J^{-2},$$
 (4)

где H_0 — сверхтонкое поле, соответствующее резонансной частоте пиков 1 и 2, с — концентрация резо-

ЖЭТФ, том **137**, вып. 3, 2010

нансных ядер, J — обменный интеграл, g(H) — спектральная плотность. Для образцов № 1 и № 2 исследуемого перовскита BiFeO₃ значения H_0 для ионов железа, магнитные моменты которых параллельны и перпендикулярны оси распространения циклоиды, почти совпадают, а параметры g(H) и J^{-2} одни и те же.

Экспериментальные значения $(T_2)^{-1}$, полученные в представленной работе, качественно согласуются с рассматриваемой теорией спин-спиновой релаксации. Однако отношение экспериментальных скоростей поперечной релаксации для двух образцов количественно не совпадает с тем, которое следовало бы ожидать из теории [11, 12]. Так, эксперимент дает отношение скоростей релаксации равное примерно 2.5, тогда как отношение концентраций составляет 9.5. Это может быть обусловлено тем, что имеются другие механизмы поперечной релаксации $(T_2^a)^{-1}$, которые дают вклад в экспериментальную скорость релаксации $(T_2)^{-1}$. Так как в магнитоупорядоченных веществах при ЯМР вклады в скорости поперечной релаксации от различных механизмов аддитивны [12, 13], представим экспериментальную скорость поперечной релаксации в виде

$$(T_2)^{-1} = (T_2^{SN})^{-1} + (T_2^a)^{-1}.$$
 (5)

Из концентрационной зависимости экспериментальных скоростей поперечных релаксаций $(T_2)^{-1}(c)$ для двух образцов в предположении, что другой механизм релаксации не зависит от концентрации резонансных ядер, были выделены значения $(T_2^{SN})^{-1}$ и $(T_2^a)^{-1}$ в каждом образце, и они приведены в таблице. Точность измерения скорости релаксации составляет 15 %.

Из таблицы следует: 1) вклад $(T_2^a)^{-1}$ почти в два раза меньше вклада в скорость релаксации от SN-взаимодействия в образце №1 и эти вклады различаются для ионов, магнитные моменты которых параллельны или перпендикулярны оси циклоиды; 2) в образце №2 с малым содержанием изотопа вклад механизма поперечной релаксации $(T_2^a)^{-1}$, наоборот, является основным. Природа дополнительного поперечного времени релаксации не ясна. В литературе отсутствуют расчеты для поперечного времени релаксации в магнитных оксидах в присутствии ПСМС. Однако качественно дополнительный механизм поперечной релаксации в перовските BiFeO₃ может быть обусловлен следующими эффектами. Существование ПСМС в перовските BiFeO₃ создает локальную магнитную неоднородность. В работе [14] рассматривалась релаксация ядер в магнитных гетерогенных системах. Мульти-

ферроик BiFeO₃ еще содержит ядра ²⁰⁹Bi, количество которых в естественной смеси изотопов в образцах №1 и №2 составляет 100%. В работе [14] отмечается, что в магнитных гетерогенных системах существуют не только косвенные взаимодействия через виртуальный магнон (SN-взаимодействие) среди резонансных ядер, но и дипольные взаимодействия среди резонансных и нерезонансных ядер (ядер ⁵⁷ Fe в нашем случае), а также дипольное взаимодействие резонансных ядер ⁵⁷Fe с другими ядрами с большим относительным содержанием в образце. Для исследуемого образца BiFeO3 с большим содержанием изотопа ⁵⁷Fe в рассматриваемом диапазоне частот основными резонансными ядрами являются ядра ⁵⁷ Fe. При измерении спектра ЯМР сигналы эха возбуждались в полосе частот меньше 0.01 МГц, что составляет только незначительную часть от всего спектра ЯМР. Поэтому, кроме взаимодействия резонансных ядер ⁵⁷Fe по механизму SN присутствует, вероятно, и дипольное взаимодействие резонансных и нерезонансных ядер ⁵⁷Fe. Кроме того, спектр ЯМР для ядер ²⁰⁹Ві, который наблюдается при сравнительно больших уровнях возбуждения эха $(h_1 \ge 3 \ \Im)$, лежит в области частот 40–120 МГц и пересекает спектр ⁵⁷Fe [15]. В рассматриваемом диапазоне частот для ядер⁵⁷ Fe резонансными ядрами являются как ядра ⁵⁷Fe, так и, вероятно, частично ядра ²⁰⁹Ві. В образце перовскита ВіFeO₃, высоко обогащенном изотопом ⁵⁷Fe, мы, вероятно, имеем ситуацию, когда существует SN-взаимодействие между резонансными ядрами ⁵⁷Fe, а также, вероятно, то, что совмещение резонансных спектров ядер ²⁰⁹Ві и ядер ⁵⁷Fe создает дополнительный вклад $(T_2^a)^{-1}$ в $(T_2)^{-1}$ от дипольного взаимодействия (или SN-взаимодействия) ядер ⁵⁷ Fe и ²⁰⁹ Bi. В образце № 2, вероятно, этот вклад является определяющим, так как количество изотопа ⁵⁷ Fe в этом образце сравнительно мало. Заметим, что теоретическое рассмотрение процессов совместной релаксации двух резонансных ядер, в том числе в таких неоднородных магнитных системах, как BiFeO₃ в литературе отсутствует.

Исследование зависимости амплитуды эха A_e от величины амплитуды высокочастотного поля h_1 (рис. 4) показывает, что величины h_1 , при которых A_e достигают максимальных значений, слегка различны для первого и второго максимумов в спектре ЯМР. Этот эффект наблюдался нами в образцах № 1 и № 2. Так как точность измерения h_1 составляет около 15 %, полагаем, что значения h_1 , соответствующие максимумам в зависимости $A_e(h_1)$, равны. Коэффициент η определялся из зависимости

<i>ν</i> , ΜΓц	Образец № 1 (95 %)			Образец № 2 (10 %)		
	$(T_2)^{-1} \cdot 10^{-2},$	$(T_2^{SN})^{-1} \cdot 10^{-2},$	$(T_2^a)^{-1} \cdot 10^{-2},$	$(T_2)^{-1} \cdot 10^{-2},$	$(T_2^{SN})^{-1} \cdot 10^{-2},$	$(T_2^a)^{-1} \cdot 10^{-2},$
	c^{-1}	c^{-1}	c^{-1}	c^{-1}	c^{-1}	c^{-1}
74.95	22.2	14.1	8.1	9.4	1.4	8.0
75.55	11.5	7.3	4.2	4.9	0.7	4.2

Таблица. Зависимость скорости поперечной релаксации $(T_2)^{-1}$ от частоты ν в спектре ЯМР и вклады сул-накамуровской $(T_2^{SN})^{-1}$ и дополнительной $(T_2^a)^{-1}$ скоростей релаксаций при 4.2 К

Рис. 4. Зависимость амплитуды эха A_e от амплитуды магнитного ВЧ-поля h_1 в образце № 2. Использовалась комбинация ВЧ-импульсов 10-100-10 мкс при 75.05 МГц (1) и 75.55 МГц (2)

 $A_e(h_1)$ (рис. 4) для образца № 2. Как известно, максимумы в $A_e(h_1)$ наблюдаются при угле поворота намагниченности, равном $\theta = 2\pi/3$ [12, 13] и $\theta = \eta h_1 t \gamma$ $(t - длительность ВЧ-импульса, <math>\gamma -$ гиромагнитное отношение для ядер ⁵⁷ Fe). Оценка локальных коэффициентов η дает значение $\eta = 20 \pm 4$. Исследование этой зависимости $A_e(h_1)$ в образцах № 1 и № 2 указывает, что значения локальных коэффициентов усиления η в этих двух образцах почти одинаковы, не зависят от количества стабильного изотопа. Однако их значения много больше единицы и сравнимы с величинами η в доменах магнитоупорядоченных оксидов (например, [12]).

4. ЗАКЛЮЧЕНИЕ

Исследование динамических эффектов на ядрах ⁵⁷ Fe в условиях ЯМР в мультиферроике BiFeO₃ показали сильное влияние содержания стабильного

изотопа 57 Fe и поперечных времен T_2 релаксации на форму спектра ЯМР. В образце, обогащенном изотопом $^{57}\mathrm{Fe}$ до 95 %, существенный вклад в наблюдаемое время $(T_2)^{-1}$ вносит сул-накамуровское косвенное взаимодействие, которое определяется концентрацией резонансных ядер ⁵⁷Fe в исследуемых образцах мультиферроика BiFeO₃. Обнаружен дополнительный вклад в экспериментальную скорость релаксации, обусловленный, вероятно, локальной магнитной гетерогенностью перовскита BiFeO₃ и совмещением резонансных спектров ядер ⁵⁷ Fe и ядер ²⁰⁹ Bi. Этот дополнительный механизм поперечной релаксации, вероятно, ответствен за значения поперечной скорости релаксации в образце с малым содержанием изотопа ⁵⁷Fe. Учет этих динамических эффектов в форме спектра ЯМР показывает, что в BiFeO3 присутствует невозмущенная пространственная спин-модулированная структура циклоидного типа.

Работа выполнена при финансовой поддержке РФФИ (грант № 09-02-00072).

ЛИТЕРАТУРА

- 1. Ю. Н. Веневцев, В. В. Гагулин, В. Н. Любимов, *Се*енетомагнетики, Наука, Москва (1982).
- J. Wang, J. B. Neaton, H. Nagarajan et al., Science 299, 1719 (2003).
- 3. F. Kuvel and H. Schmid, Acta Cryst. B 46, 698 (1990).
- I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C: Sol. St. Phys. 15, 4835 (1982).
- I. Sosnowska and A. K. Zvezdin, J. Magn. Magn. Mater. 140-144, 167 (1995).
- 6. А. К. Звездин, А. П. Пятаков, УФН 174, 465 (2004).

- A. V. Zalessky, A. A. Frolov, T. A. Khimich et al., Europhys. Lett. 50, 547 (2000).
- А. В. Залесский, А. К. Звездин, А. А. Фролов, А. А. Буш, Письма в ЖЭТФ 71, 682 (2000).
- А. В. Залесский, А. А. Фролов, А. К. Звездин и др., ЖЭТФ 122, 116 (2002).
- R. Pzernioslo, A. Palewicz, M. Regulski et al., J. Phys.: Condens. Matter. 18, 2069 (2006).

- D. Hone, V. Jaccarino, T. Ngwe et al., Phys. Rev. 186, 292 (1969).
- 12. Е. А. Туров, М. П. Петров, Ядерный магнитный резонанс в ферро-антиферромагнетиках, Наука, Москва (1969).
- 13. M. B. Stearns, Phys. Rev. 187, 648 (1969).
- 14. D. Welz, Physica 141B, 121 (1986).
- 15. А. А. Gippius, D. E. Khozeev, E. N. Morozova и др., Phys. Stat. Sol. (a) 196, 221 (2003).