
ÆÝÒÔ, 2010, òîì 137, âûï. 3, ñòð. 483�497 

 2010
BCS�BEC CROSSOVER AND QUANTUM HYDRODYNAMICS INp-WAVE SUPERFLUIDS WITH A SYMMETRY OF THE A1 PHASEM. Yu. Kagan a*, D. V. Efremov a;b;
aKapitza Institute for Physi
al Problems119334, Mos
ow, RussiabMax-Plan
k-Institute for Solid State Resear
hD-70569, Stuttgart, Germany
Max-Plan
k-Institut für Physik Komplexer Systeme01187, Dresden, GermanyRe
eived July 14, 2009We solve the Leggett equations for the BCS�BEC 
rossover in a three-dimensional resonan
e p-wave super�uidwith the symmetry of the A1 phase. We 
al
ulate the sound velo
ity, the normal density, and the spe
i�
 heatfor the BCS domain (� > 0), for the BEC domain (� < 0), and 
lose to the important point � = 0 in the 100%polarized 
ase. We �nd the indi
ations of a quantum phase transition 
lose to the point �(T = 0) = 0. Deepin the BCS and BEC domains, the 
rossover ideas of Leggett, Nozieres, and S
hmitt�Rink work quite well. Wedis
uss the spe
trum of orbital waves, the paradox of intrinsi
 angular momentum and the 
ompli
ated problemof 
hiral anomaly in the BCS A1 phase at T = 0. We present two di�erent approa
hes to the 
hiral anomaly,based on supersymmetri
 hydrodynami
s and on the formal analogy with the Dira
 equation in quantum ele
t-rodynami
s. We evaluate the damping of nodal fermions due to di�erent de
ay pro
esses in the super
lean
ase at T = 0 and �nd that a ballisti
 regime !� � 1 o

urs. We propose to use aerogel or nonmagneti
impurities to rea
h the hydrodynami
 regime !� � 1 at T = 0. We dis
uss the 
on
ept of the spe
tral �owand exa
t 
an
elations between time derivatives of anomalous and quasiparti
le 
urrents in the equation forthe total linear momentum 
onservation. We propose to derive and solve the kineti
 equation for the nodalquasiparti
les in both the hydrodynami
 and ballisti
 regimes to demonstrate this 
an
elation expli
itly. Webrie�y dis
uss the role of the other residual intera
tions di�erent from damping and invite experimentalists tomeasure the spe
trum and damping of orbital waves in the A phase of 3He at low temperatures.1. INTRODUCTIONThe �rst experimental results on the p-wave Fesh-ba
h resonan
e [1�3℄ in ultra
old fermioni
 gases 40Kand 6Li make the �eld of quantum gases 
loser to theinteresting physi
s of super�uid 3He and the physi
s ofun
onventional super
ondu
tors su
h as Sr2RuO4. Inthis 
ontext, it is important to bridge the physi
s of ul-tra
old gases and the low-temperature physi
s of quan-tum liquids and anomalous super
ondu
tors and thusto enri
h both 
ommunities with the experien
e andknowledge a

umulated in ea
h of these �elds. The pur-pose of this paper is �rst and foremost to des
ribe thetransition from the weakly bound Cooper pairs with ap-wave symmetry to strongly bound lo
al p-wave pairs(mole
ules) and to try to reveal the nontrivial topo-*E-mail: kagan�kapitza.ras.ru

logi
al e�e
ts related to the presen
e of nodes in thesuper�uid gap of the 100%-polarized p-wave A1 phasein three dimensions. We note that the A1 phase sym-metry is relevant both to ultra
old Fermi gases in the p-wave Feshba
h resonan
e regime and to super�uid 3He-A in the presen
e of a large magneti
 �eld or a largespin polarization. We give a spe
ial attention to thespe
trum of 
olle
tive ex
itations and to the super�uidhydrodynami
s of the A1 phase at T = 0, where topo-logi
al e�e
ts are very pronoun
ed, espe
ially in theBCS domain. We propose an experimental veri�
ationof the di�erent approa
hes related to the 
ompli
atedproblem of 
hiral anomaly and the mass-
urrent non-
onservation in the super�uid A1 phase of 3He in thesuper
lean 
ase and in the presen
e of aerogel as wellas for the A1 p-wave 
ondensates in magneti
 traps inthe presen
e of Josephson tunneling 
urrents.483 5*



M. Yu. Kagan, D. V. Efremov ÆÝÒÔ, òîì 137, âûï. 3, 2010This paper is organized as follows. Se
tion 1 pro-vides an introdu
tion. In Se
. 2, we brie�y 
omment onre
ent experiments on the p-wave Feshba
h resonan
eand des
ribe the global phase diagram for 100%-po-larized p-wave resonan
e super�uids in three dimen-sions. In Se
. 3, we des
ribe the quasiparti
le spe
-trum and nodal points in the A1 phase. In Se
. 4,we solve mean-�eld Leggett equations for triplet super-�uids with the symmetry of the A1 phase at T = 0and study the behavior of the super�uid gap �, the
hemi
al potential �, and the sound velo
ity 
S deepin the BCS (� > 0) and BEC domains (� < 0) aswell as 
lose to the interesting point � = 0. In Se
. 5,we study the temperature behavior of the normal den-sity �n and spe
i�
 heat Cv in the BCS domain, inthe BEC domain, and 
lose to � = 0, where we �ndindi
ations of a quantum phase transition. In Se
. 6,we des
ribe the orbital wave spe
trum in the BCS andBEC domains of the A1 phase and des
ribe the 
ompli-
ated problem of 
hiral anomaly (mass-
urrent non
on-servation) in the super�uid hydrodynami
s of the A1phase in the BCS domain at T ! 0. In Se
s. 7 and 8,we present two di�erent approa
hes to the 
al
ulationof the anomalous 
urrent: based on supersymmetri
hydrodynami
s [4℄ and on the analogy with the Dira
equation in quantum ele
trodynami
s (QED) [5; 6℄. Wenote that both approa
hes are very general. The �rst isbased on the in
lusion of the fermioni
 Goldstone modein the low-frequen
y hydrodynami
 a
tion [4℄. It 
anbe useful for all nodal super�uids and super
ondu
torswith zeros of the super
ondu
tive gap, su
h as 3He-A,Sr2RuO4, UPt3, UNi2Al3, and U1�xThxBe13 [7℄. These
ond approa
h is also very ni
e and general. It is
onne
ted with the appearan
e of the Dira
-like spe
-trum of fermions with a zero mode [5; 6℄, whi
h alsoarises in many 
ondensed-matter systems su
h as 3He-A, 
hiral super
ondu
tor Sr2RuO4, organi
 
ondu
-tor �-(BEDT-TTF)2I3, 2D semi
ondu
tors, or re
entlydis
overed graphene [7�10℄. In Se
. 9, we evaluate thedamping in the super
lean A1 phase at T = 0 due todi�erent de
ay pro
essed and 
on
lude that the ballis-ti
 regime !� � 1 o

urs at T = 0. We propose touse aerogel or nonmagneti
 impurities to rea
h the hy-drodynami
 regime !� � 1. We dis
uss the 
on
ept ofthe spe
tral �ow and exa
t 
an
elations of anomaliesbetween time derivatives of the anomalous and quasi-parti
le 
urrents in the equation of the total linear mo-mentum 
onservation. We also propose to derive a ki-neti
 equation for nodal quasiparti
les in both hydro-dynami
 and ballisti
 regimes and to demonstrate this
an
elation expli
itly. In Se
. 10, we provide our 
on-
lusions and a
knowledgments. We also invite experi-

mentalists to measure the spe
trum and damping of theorbital waves in the 3He-A phase at low temperaturesT � TC and thus to help resolve the orbital momen-tum paradox. We also propose to extend the measure-ments of the orbital inertia and the orbital vis
osityin nonsingular vortex textures in the 
onservation Aphase [11℄ to low temperatures via 
reating spin pola-rization. Finally, we propose to measure the Josephson
urrent between two two-dimensional �lms of the axialand planar phases with an attempt to dire
tly extra
tthe di�eren
e between topologi
al 
harges �Q = 1 inthese phases.2. FESHBACH RESONANCE AND PHASEDIAGRAM FOR 100%-POLARIZED p-WAVERESONANCE SUPERFLUIDSIn the �rst experiments on the p-wave Feshba
h res-onan
e, experimentalists measured the mole
ule forma-tion in the ultra
old fermioni
 gas of 6Li atoms 
loseto the resonan
e magneti
 �eld B0 [1; 2℄.In the last years, analogous experiments on thep-wave mole
ule formation in the spin-polarizedfermioni
 gas of 40K-atoms were started [3℄. Thelifetime of p-wave mole
ules is still rather short [1�3℄.But the physi
ists working in ultra
old gases havestarted intensively studying the huge bulk of exper-imental and theoreti
al wisdom a

umulated in thephysi
s of super�uid 3He and anomalous 
omplexsuper
ondu
tors (see [12; 13℄).To understand the essen
e of the p-wave Feshba
hresonan
e, we re
all the basi
 formula for the p-waves
attering amplitude in the va
uum (see [14; 15℄)fl=1(E) = pp01Vp + 2mE�r0 + i(2mE)3=2 ; (1)where l = 1 is the orbital momentum in the p-wave
hannel, E is the two-parti
le energy, Vp = r20ap is thes
attering volume, ap is the p-wave s
attering length, r0is the intera
tion range, and p and p0 are the in
omingand outgoing momenta. For the Feshba
h resonan
e infermioni
 systems, p � p0 � pF and usually pF r0 < 1.The s
attering length ap and hen
e the s
attering volu-me Vp diverges in the resonan
e magneti
 �eld B0 (seeFig. 1), 1=Vp = 1=ap = 0. The imaginary part of thes
attering amplitude fp is small and nonzero only forpositive energies E > 0, and hen
e the p-wave Fesh-ba
h resonan
e is intrinsi
ally narrow. We note thatfor negative energies E < 0, there is a mole
ular boundstate: jEbj = �r02mVp = �2mr0ap :484
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Vp

0

B0

BFig. 1. Sket
h of the p-wave Feshba
h resonan
e. Thes
attering volume Vp diverges at B = B0In the unitary limit, the mole
ular binding energyjEbj ! 0.The �rst theoreti
al arti
les on the p-wave Feshba
hresonan
e often deal with a mean-�eld two-
hannel de-s
ription of the resonan
e [15℄. In this paper, we studythe p-wave Feshba
h resonan
e in the framework of aone-
hannel des
ription, whi
h is 
loser to the physi
sof super�uid 3He and 
aptures the essential physi
s ofthe BCS�BEC 
rossover in p-wave super�uids ratherwell.In magneti
 traps (in the absen
e of the so-
alleddipolar splitting), the fully (100%) polarized gas or,more pre
isely, one hyper�ne 
omponent of the gas isusually studied. In the language of 3He, the pairs withStot = Stotz = 1, or j ""i-pairs are studied. In this pa-per, we 
onsider the p-wave triplet A1 phase in threedimensions with Stot = Stotz = 1.A qualitative pi
ture of the global phase diagramof the BCS�BEC 
rossover in the 100%-polarized A1phase is presented in Fig. 2. In its gross features, it re-sembles the phase diagram of the BCS�BEC 
rossoverfor s-wave pairing (see [16℄ for more details). However,there is a very interesting question about the originof the point �(T = 0) = 0 for the three-dimensionalA1 phase. We show in what follows that at the point�(T = 0) = 0, we probably deal with a quantum phasetransition [17; 18℄.On the global phase diagram, the BCS domain withthe 
hemi
al potential � > 0 o

upies the region ofnegative values of the gas parameter �p = Vpp3F < 0(or the negative values of the s
attering length ap). It

T �(T ) = 0
0

ap < 0 ap > 0
�(T = 0) = 0

� < 0� > 0
1�pBCS domain BEC domain

Fig. 2. Qualitative pi
ture of the BCS�BEC 
rossoverin the 100%-polarized A1 phase for p-wave super�uids.We indi
ate the line where �(T ) = 0 and the quantumphase transition point �(T = 0) = 0also stret
hes to small positive values of the inverse gasparameter 1=�p � 1 and is separated from the BECdomain (where � < 0 and the inverse gas parameteris large and positive, 1=�p � 1) by the line �(T ) = 0.In the Feshba
h resonan
e regime, the density of �up�spins n = p3F =6�2 is usually �xed. Deep inside the BCSdomain (for small absolute values of the gas parameterj�pj � 1), we have the standard BCS-like formula forthe 
riti
al temperature of the A1 phase:TCp = 0:1"F e��=2j�pj; (2)where the prefa
tor for the 100% polarized A1 phaseis de�ned by se
ond-order diagrams of the Gor'kovand Melik-Bar
hudarov type [19℄ and is approximatelyequal to 0:1"F [20℄1).Deep in the BEC domain (�p � 1), the well-knownEinstein formula is appli
able in the leading approxi-mation for Bose 
ondensation of p-wave mole
ules withthe density n=2 and mass 2m:TCp = 3:31(n=2)2=32m : (3)In the unitary limit, 1=�p = 0. Hen
e, TCp � 0:1"Fhere, and we are still in BCS regime (see [16℄). Inthe rest of the paper, we 
onsider low temperaturesT � TC , i. e., we work deep in the super�uid parts ofBCS and BEC domains of the A1 phase.1) This 
al
ulation was done for the nonpolarized A phase inthe 
ase where the s-wave s
attering is totally suppressed. The
al
ulation for the 100%-polarized A1 phase yields only a 10%di�eren
e from the result in [20℄ for the prefa
tor 0:1"F .485
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Fig. 3. The topology of the super�uid gap in the A1phase. There are two nodes in the quasiparti
le spe
-trum 
orresponding to the south and north poles3. QUASIPARTICLE ENERGY AND NODALPOINTS IN THE A1 PHASEFor the standard s-wave pairing, the quasiparti
lespe
trum is given byEp =s� p22m � ��2 +�20 : (4)It has no zeros (no nodes) and therefore the topologyof the s-wave pairing problem is trivial. But for thetriplet A1 phase, we haveEp =s� p22m � ��2 + j� � pj2p2F ; (5)where� = �0(ex+iey) is the 
omplex order parameterin the A1 phase and �0 is the magnitude of the super-�uid gap. In fa
t, j� � pj2 = �20p2 sin2 � = �20[p � l℄2,where l = ex � ey is the unit ve
tor of orbital momen-tum (see Fig. 3). We note that pF is �xed by the �xeddensity n. The angle � is between the momentum pand the orbital momentum quantization axis l = ez.For � > 0 (the BCS domain), there are two nodesin the spe
trum for p2=2m = � and � = 0 or �. For� < 0 (the BEC domain), there are no nodes. Theimportant point � = 0 is a boundary between the to-tally gapped BEC domain and the BCS domain withtwo nodes of the quasiparti
le spe
trum 
orrespondingto the south and north poles in Fig. 3. This point forT = 0 is often 
alled the topologi
al quantum phasetransition point [21; 22℄.

4. LEGGETT EQUATIONS FOR THE A1PHASEThe Leggett equations for the 100%-polarized A1phase in three dimension are the evident generaliza-tion of the standard Leggett equations for the s-waveBCS�BEC 
rossover [16; 23℄. The �rst equation isn = p3F6�2 = 1=r0Z0 p2dp2�2 1Z�1 dx2 �1� �pEp� 12 ; (6)where �p = (p2=2m� �),Ep =s�2p + �20p2p2F sin2 �is the quasiparti
le spe
trum, and x = 
os �. Thisequation de�nes the 
hemi
al potential � for a �xeddensity n.The momentum distribution for the fun
tion1=2(1� �p=Ep) in (6) is depi
ted in Fig. 4 for di�erentvalues of � 
orresponding to the BCS and BECdomains.The se
ond self-
onsisten
y equation de�nes themagnitude of the super�uid gap �0. It is given by� �mRe 1fl=1(2�) == 1Z�1 dx2 1=r0Z0 p4dp� 1Ep � 1�p� ; (7)where Re 1fl=1(2�) = � 1Vp + 4m��r0 �is the real part of the inverse s
attering amplitude inthe p-wave 
hannel for the total energy E = 2� of 
ol-liding parti
les. This energy is relevant for the pai-ring problem, and hen
e fl=1(E) must be repla
ed withfl=1(2�) in the Legget equations.Deep in the BCS domain, the solution of the Leggettequations yields�0 � "F e��=2j�pj � TCp; � � "F > 0: (8)In three dimensions, the sound velo
ity is
s = � nm d�dn�1=2 = vFp3 : (9)For 1=j�pj = 0, �0 � "F , and hen
e the unitary limitis still inside the BCS domain.486
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µ = 1 µ = 0.1 µ = −0.1 µ = −1Fig. 4. S
hemati
 momentum distribution of the fun
tion (1 � �p=Ep)=2 entering (6) in the (px; pz) plane for py = 0,�0 = 1, and EF = p2F=2m in the BCS�BEC 
rossover for the three-dimensional A1 phase. The di�erent values of �
orrespond to the situation deep in the BCS domain (� = 1), deep in the BEC domain (� = �1), and in the importantregion 
lose to � = 0 (� = +0:1 and � = �0:1)Deep in the BEC domain,�0 � 2"FppF r0 � "F for pF r0 � 1; (10)and the 
hemi
al potential � = �jEbj=2 + �B=2 < 0,where, as we already noted,jEbj = �2mr0ap (11)is the binding energy of a triplet pair (mole
ule). A
-
ordingly, �B � 4"F3 ppF r0 (12)is a bosoni
 
hemi
al potential that governs the repul-sive intera
tion between two p-wave mole
ules [16℄.The sound velo
ity deep in the BEC domain is givenby 
s = �nB2m d�BdnB�1=2 � vFp3 ppF r0 � vFfor pF r0 � 1; (13)where nB = n=2 is the bosoni
 density.As � ! 0 (more rigorously, for j�j < �20="F ), wehave �0(� = 0) = 2"FppF r0 (14)for the magnitude of the super�uid gap.For the gas parameter �p at the point � = 0, wehave �p(� = 0) = 3�4 > 0: (15)Hen
e, the interesting point � = 0 is e�e
tively in theBEC domain (in the domain of positive p-wave s
at-tering lengths ap > 0). A

ordingly, for � = 0, thebinding energy is jEbj = 43"FpF r0: (16)

The sound velo
ity squared for � = 0 is given by
2s = v2F3 pF r0 (17)and 
oin
ides with (10), obtained deep in the BEC do-main. A 
areful analysis of Leggett equations 
lose to� = 0 shows that the derivative ��=�� also has no sin-gularities at this point. The se
ond derivative �2n=��2is also 
ontinuous at � = 0, and hen
e the anomalyappears only in higher derivatives, in qualitative agree-ment with the numeri
al 
al
ulations in [24℄ in threedimensions.At the same time, the 
areful analysis of 
ompress-ibility in the two-dimensional 
ase [25℄ shows 
ontin-uous behavior but with a kink already developed in�n=�� in the 100%-polarized (px+ipy) phase for � = 0on the level of analyti
 as well as numeri
al 
al
ula-tions [24℄. To be more spe
i�
,�n�� / 1 + �"F�20 [1� sign�℄ (18)and hen
e �n=�� / 1 as � ! +0, and �n=�� / 1 ++ 2�"F =�20 as �! �0.5. SPECIFIC HEAT AND NORMAL DENSITYAT LOW TEMPERATURES T � TCIn this se
tion, we study the thermodynami
 fun
-tions, the normal density �n, and the spe
i�
 heat Cvin three-dimensional resonant p-wave super�uids withthe A1 symmetry at low temperatures T � TC . Ourgoal is to �nd nontrivial 
ontributions to �n and Cvfrom the nodal points on the mean �eld level.487
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i�
 heat in the three-dimensional A1phaseThe fermioni
 (quasiparti
le) 
ontribution to Cv atthe mean-�eld level in three dimensions is (see [26℄)Cv = Z �n0(Ep=T )�T Ep d3p(2�)3 ; (19)where n0(Ep=T ) = (eEp=T + 1)�1 is the quasiparti
ledistribution fun
tion and Ep is the quasiparti
le energygiven by (5).The result of the 
al
ulation isCv � N(0)T 3�20 (20)deep in the BCS domain, where N(0) = mpF =2�2 isthe density of states at the Fermi surfa
e. Deep in theBEC domain, Cv is given by an exponential,Cv � (2mT )3=22�2 Eb4T 2 e�jEbj=2T ; (21)with jEbj in (11).Finally, in the interesting region of small � and lowtemperatures (j�j � T � �20="F and hen
e in the 
las-si
al limit j�j=T ! 0), we have a notrivial temperaturedependen
e for Cv :Cv � (2mT )3=22�2 "FT�20 : (22)We note that in the opposite quantum limit T=j�j ! 0(T � j�j � �20="F ), we haveCv � 12�2 "FT�20 T 2m3=2�1=2 (23)in the BCS domain andCv � (2mT )3=22�2 j�j3T 3 e�j�j=T "FT�20 (24)in the BEC domain. In this limit, Cv behaves verydi�erently in the BCS and BEC domains.For j�j � T , results (23) and (24) 
oin
ide with (22)by the order of magnitude.For small j�j, but intermediate temperaturesj�j � �20="F � T � �0, we re
over a more expe
tedresult: Cv � (2mT )3=22�2 : (25)But the bosoni
 
ontribution (the 
ontribution fromsound waves) prevails at these temperatures and yieldsCBv � T 3
3s 12�2 ; (26)

where the sound velo
ity 
s is given by (9) in the BCSdomain, and by (13) and (17) in the BEC domain and
lose to � = 0.We see that a power-law fermioni
 
ontributionCv / T 5=2 at low temperatures and Cv / T 3=2 atintermediate temperatures 
an be separated from thebosoni
 
ontribution CBv / T 3 
lose to the importantpoint � = 0. We also see very di�erent behaviors of Cvin the BCS and BEC domains in the limit T=j�j ! 0.Analogously, in the two dimensional 100%-polari-zed (px + ipy)-phase in the quantum limit T � j�j �� �20="F (T=j�j ! 0), the quasiparti
le 
ontribution isgiven by Cv � 12� m"F�20 T 2 (27)in the BCS domain for � ! +0. We note that thephonon 
ontribution has the same order of magnitudeas the fermioni
 
ontribution in the BCS domain. Inthe BEC domain for �! �0,Cv � 12� m"F�20 j�j3T e�j�j=T : (28)We note that in both three and two dimensions forT 6= 0, we are e�e
tively always in the 
lassi
allimit j�j=T ! 0, be
ause � is 
ontinuous 
lose to� = 0. Hen
e, the real phase transition o

urs onlyat T = 0 [21; 22℄.5.2. Normal density in the three-dimensionalA1 phaseThe quasiparti
le 
ontribution to the normal den-sity in the three-dimensional A1 phase is (see [26℄)�n = �13 Z p2 �n0(Ep=T )�Ep d3p(2�)3 : (29)Deep in the BCS domain, the evaluation of �n yields�n � � T 2�20 ; (30)where � = mn is the total mass density. We note thatrigorously speaking, Eq. (30) yields the longitudinal
omponent of the normal density tensor �nl. Thereis also a small transverse 
ontribution �nt � T 4 �rstobtained in [21℄.Deep in the BEC domain, the normal density is ex-ponential, �n � m�2 (2mT )3=2e�jEbj=2T : (31)488
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lose to � = 0 at low temperatures (j�j � T �� �20="F and hen
e in the 
lassi
al limit j�j=T ! 0),we have �n � m�2 (2mT )3=2 "FT�20 : (32)In the opposite quantum limit T=j�j ! 0 (T < j�j << �20="F ), we have�n � m�2 "FT�20 2mT (2mj�j)1=2 (33)in the BCS domain and�n � m�2 "FT�20 e�j�j=T 2mj�j(2mT )1=2 (34)in the BEC domain, and therefore the behavior of �nis again very di�erent in the BCS and BEC domains inthe quantum limit.For j�j � T , results (33) and (34) 
oin
ide with (32)by the order of magnitude.At intermediate temperatures j�j � �20="F � T �� �0, the normal density yields�n � m�2 (2mT )3=2; (35)as expe
ted. But the bosoni
 (phonon) 
ontributionfrom the sound waves prevails at these temperaturesand yields (see [26℄) �Bn � T 4
5s ; (36)where 
s is again respe
tively given by (5), (13), and(17) in the BCS and BEC domains and 
lose to � = 0.We 
an again separate the fermioni
 (quasiparti
le)
ontribution to �n (�n / T 5=2 at low temperaturesand �n / T 3=2 at intermediate temperatures) from thebosoni
 
ontribution (�n / T 4) 
lose to � = 0. We alsosee very di�erent behaviors of �n in the BEC and BCSdomains in the quantum limit T=j�j ! 0. The samebehavior holds in the two-dimensional 
ase.6. ORBITAL WAVES, INTRINSIC ANGULARMOMENTUM AND CHIRAL ANOMALY INTHE A1 PHASETopologi
al e�e
ts in the A1 phase are already pro-noun
ed in the spe
trum of orbital waves and in thesuper�uid hydrodynami
s at low temperatures T ! 0,espe
ially in the BCS domain. There, by symmetryrequirements, we 
an write the total mass 
urrent asjtot = jB + jan; (37)

where jan = � ~4mC0(l � rot l)l (38)is an anomalous 
urrent. In the BEC domain, C0 = 0and the anomalous 
urrent is absent. This is be
auseN(0)2 Z d�p �1� �pj�pj � = 0in the BEC domain (for "p > 0), while this integral isnonzero and de�nes the total density in the BCS do-main. However, it is a di�
ult question whether C0 = 0in the BCS domain.At the same time, jB in (37) is the total mass 
ur-rent in the BEC domain for p-wave mole
ules. It isgiven by jB = �vs + ~2m rot �l2 ; (39)where L = ~�l=2m is the density of orbital momentumand vs is the super�uid velo
ity.The anomalous 
urrent jan violates the 
onservationlaw for the total mass 
urrent (total linear momentum)jtot be
ause it 
annot be expressed as a divergen
e of amomentum tensor �ik:�jitot�t 6= � ��xk (�ik): (40)Therefore, the presen
e of an anomalous 
urrent de-stroys the super�uid hydrodynami
s of the A1 phaseas T ! 0. Its 
ontribution to the equation for the to-tal linear momentum (to �jitot=�t) 
an be 
ompensatedonly by adding a term with the relative normal velo
i-ty and normal density �n(T = 0)(vn � vs) to the total
urrent jtot already at T = 0 (see [5; 6℄). The anoma-lous 
urrent also signi�
antly 
hanges the spe
trum oforbital waves. This additional Goldstone bran
h of 
ol-le
tive ex
itations in the A1 phase is related to the ro-tation of the l ve
tor around a perpendi
ular axis. Itis quadrati
 at low frequen
ies (the A1 phase is 
alledan orbital ferromagnet; it is also a spin ferromagnet).However, the 
oe�
ient at q2 is drasti
ally di�erent inthe BCS and BEC domains.In the BEC domain for small ! and q, �! � �q2z=mor, equivalently, ! � q2z=m: (41)But in the BCS domain,(�� C0)! � �q2zm ln �0vF jqzj : (42)The most straightforward way to obtain (42) is to usethe diagram te
hnique in [27℄ for the 
olle
tive ex
ita-tion spe
trum in p-wave and d-wave super�uids. The489
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trum of orbital waves in the approa
hin [27℄ involves the Ward identity between the totalvertex � and the self-energy �, whi
h is based on thegenerator of rotations of the l ve
tor around a per-pendi
ular axis. In the general form, for small ! andq = qzez it is given by1Z�1 d 
os �2 
os2 � �� Z p2dp2�2 � !28E3p + !�p4E3p � p2m2 q2z 14E3p � = 0: (43)Deep in the BCS domain (for � � "F > 0), we
an repla
e p2dp=2�2 with N(0) d�p (where N(0) == mpF =2�2) and p2=m2 with v2F 
os2 �. This yieldsN(0) 1Z�1 d 
os �2 
os2 � �� Z d�p � !28E3p + !�p4E3p � v2F q2z 
os2 �4E3p � : (44)Using the estimates1Z�"F d�pE3p = 1�20 sin2 � (45)and 1Z�"F �pd�pE3p � 1"F ; (46)we obtainN(0)� !2�20 ln �0! + !"F � v2F q2z�20 ln �0vF jqzj� = 0: (47)More rigorously, the equation for the spe
trum isbiquadrati
 due to rotation of the l ve
tor, as it shouldbe for bosoni
 ex
itations:� !2�20 ln �0! + !2"2F �2 � �v2F q2z�20 ln �0vF jqzj �2 : (48)For small frequen
ies ! < �20="F , the spe
trum isquadrati
: !�20"F = v2F q2z ln �0vF jqzj (49)or, equivalently, !�20"2F = q2zm ln �0vF jqzj : (50)

Hen
e, 
omparing (50) and (42), we obtain�� C0� = �20"2F � 1; (51)and therefore C0 � � deep in the BCS domain.In super�uid 3He-A, for example, �0="F �� T
="F � 10�3 [12℄, and hen
e (�� C0)=� � 10�6.At the same time, for larger frequen
ies �20="F << ! < �0, the spe
trum is almost linear:!2 ln �0! = v2F q2z ln �0vF jqzj : (52)Deep in the BEC domain for � � �jEbj=2 < 0, it fol-lows from (43) that!2 + j�j! � j�jq2zm : (53)Of 
ourse, the exa
t equation is again biquadrati
 dueto rotation, (!2 + j�j!)2 � (j�jq2z=m)2: (54)Hen
e for ! < j�j: ! � q2z=m in agreement with (41).Moreover, this means that (� � C0)=� = 1 deep in theBEC domain, and thus C0 = 0.The same estimate for the density of the intrinsi
angular momentum yieldsL = ~2m (�� C0)lfor the BCS domain and L = �l~=2m for the BECdomain. We note that even in the BCS 
ase, diffe-rent 
al
ulations yield different results. For l = 
onst,the evaluation in [28; 29℄ yields L = �l~=2m, while thein
lusion of inhomogeneous textures of the l ve
tor re-stores the expressionL = ~2m(�� C0)l:We note that a

ording to Leggett [30℄, the totalN -parti
le Hamiltonian Ĥ exa
tly 
ommutes with thez-proje
tion of the angular momentum L̂z = ~N̂=2.This fa
t is in favor of the result L = �l~=2m forl = 
onst in the BCS domain. Returning to the 
ompli-
ated problem of the 
hiral anomaly, we re
onsider thetwo di�erent approa
hes to this problem worked out inthe late 1980s.7. TWO DIFFERENT APPROACHES TO THECHIRAL ANOMALY PROBLEM IN THE A1PHASEThe �rst approa
h [4℄ is based on supersymmetri
hydrodynami
s of the A1 phase.490
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l

SF

SB

Fig. 5. A qualitative illustration of the fermioni
 (SF )and bosoni
 (SB) 
ontributions to the total hydrody-nami
 a
tion Stot of the A1 phase at T ! 07.1. Supersymmetri
 hydrodynami
s of the A1phaseThe idea in [4℄ was to 
he
k whether the 
hiralanomaly (more pre
isely, the term janvs in the totalenergy) is dire
tly related to the zeros of the gap. Theauthors of [4℄ assumed that in a 
ondensed matter sys-tem at low frequen
ies, the only physi
al reason foran anomaly 
an be related to the infrared singulari-ty. We note that ultraviolet singularities are absentin 
ondensed matter systems, in 
ontrast to quantumele
trodynami
s. Strong (
riti
al) �u
tuations are alsosuppressed in three-dimensional systems. The mainidea in [4℄ was therefore to 
he
k the dangerous in-frared regions where the gap is pra
ti
ally zero. Forthat, the authors of [4℄ 
onsidered the total hydrody-nami
 a
tion Stot of the A1 phase for low frequen
iesand small q ve
tors as a sum of bosoni
 and fermioni

ontributions, Stot = SB + SF ; (55)where SB(�; l; vs) is the bosoni
 a
tion and SF is thefermioni
 a
tion related to the zeros of the super�uidgap (see Fig. 5).Generally speaking, the idea in [4℄ was to use super-symmetri
 hydrodynami
s to des
ribe all the zero-ener-gy Goldstone modes, in
luding the fermioni
 Goldstonemode that 
omes from the zeros of the gap.The authors of [4℄ were motivated by the ni
e pa-

per [31℄, where the massless fermioni
 neutrino wasfor the �rst time in
luded in the e�e
tive infrared La-grangian for ele
troweak intera
tions.After the integration over fermioni
 variables, theauthors of [4℄ obtained the e�e
tive bosoni
 a
tion and
he
ked what infrared anomalies were present in it. Asa result, they obtainedSeffB = SB +�SB ; (56)where the nodal 
ontribution to the liquid-
rystal-likepart of the e�e
tive a
tion [32℄, whi
h is related to thegradient orbital energy, is�SB = � p2F vl32�2 Z d4x���[l� rot l℄2 + v2tv2l (l � rot l)2��ln l2MFr2 � : (57)Here, x = (r; t), lMF is the mean free path, and�0 < r < lMF (�0 � vF =�0 is the 
oheren
e length).Expression (57) for �SB has a general 
hara
terand is valid in both weak-
oupling and strong-
ouplinglimits.We note that vt � vF�0="F � vF , and vl � vFin the weak-
oupling 
ase. It follows that only weaklogarithmi
 singularities are present in �SB .However, we do not observe any sign of a strongsingularity (whi
h should a
tually be Æ-fun
tional be-
ause the fermioni
 density �F 
oming from the nodalregions in SF is small in 
omparison with the total den-sity �). In the other words, we do not see any tra
e ofthe anomalous 
ontributionjan � vs = � ~4mC0(l � rot l)(l � vs) (58)in �SB .Hen
e, even if the 
hiral anomaly exists in the BCSdomain of the A1 phase, it is not dire
tly 
onne
tedwith the dangerous regions of momentum spa
e nearzeros of the gap (it does not have an infrared 
hara
-ter).8. THE DIFFERENT APPROACH BASED ONA FORMAL ANALOGY WITH QUANTUMELECTRODYNAMICSThe authors of [5; 6℄ proposed a di�erent, and alsorather ni
e approa
h based on a formal analogy bet-ween the anomalous 
urrent in 3He-A and the 
hiralanomaly in QED. They assume that the anomalous
urrent with the 
oe�
ient C0 � � in the BCS domainof the A1 phase is not dire
tly related to the zeros of491
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e is not 
ontained even in the super-symmetri
 hydrodynami
s). They believe that it is re-lated to global topologi
al 
onsiderations, and thereforea topologi
al term must be added to the supersymmet-ri
 hydrodynami
s. To illustrate this point, they solvethe mi
ros
opi
 Bogoliubov�de Gennes (BdG) equa-tions for fermioni
 quasiparti
les in a given twisted tex-ture (l k rot l) of the l ve
tor. To be more spe
i�
, they
onsider the 
ase l = l0 + Æl (59)with lz = l0z = ex; ly = Æly = Bx; lx = 0; (60)where ez is the dire
tion of a nonperturbed l ve
tor. Inthis 
ase, l � rot l = lx �ly�x = B = 
onst (61)and, a

ordingly, jan = � ~4m C0Bez : (62)After linearization, the BdG equations be
ome equiva-lent to the Dira
 equation in the homogeneousmagneti
�eld B = (l � rot l). Solving the Dira
 equation yieldsthe level stru
ture for fermioni
 quasiparti
lesEn(pz) = �q�2(pz) + ~�2n ; (63)where �(pz) = p2z=2m � �, e = pz=pF = �1 is theele
tri
 
harge, and~�2n = 2nv2t pF jeBj (64)is the gap squared, with vt � vF�0="F .For n 6= 0 (see Fig. 6), all the levels are gapped,~�n 6= 0, and are doubly degenerate with respe
t topz ! �pz. Their 
ontribution to the total mass 
ur-rent is zero as T ! 0.For n = 0, there is no gap ( ~�0 = 0), and we havean asymmetri
 
hiral bran
h that exists only for pz < 0or, more pre
isely, for one sign of eB (see [5℄ for moredetails). The energy spe
trum for n = 0 is given byE0 = �(pz): (65)We 
an say that there is no gap for the zeroth Lan-dau level. Moreover, in the BCS domain, E0 = 0 forjpzj = pF , whi
h means that the 
hiral level 
rosses theorigin in Fig. 6 and we have a zero mode.We note that in the BEC domain, E0 � j�j and thezeroth Landau level does not 
ross the origin. The ab-sen
e of a zero mode in the BEC domain is the physi
alreason why C0 = 0 there.

n = 0pz < 0 En n = 2n = 1
n = 1n = 20E � �e�t �(pz)

Fig. 6. Level stru
ture of the Dira
 equation in themagneti
 �eld B = l � rot l. All the levels with n 6= 0are doubly degenerate. The zeroth level is 
hiral. It
rosses the origin at jpzj = pF in the BCS domain(� > 0). We also illustrate the 
on
ept of the spe
tral�ow, whi
h is to be dis
ussed in Se
. 9
0

−kF

l = e

Fig. 7. The 
ontribution to the 
oe�
ient C0 is gov-erned by a narrow 
ylindri
al tube of the length pF andwidth hp2yi � pF jeBj inside the Fermi sphereThe zeroth Landau level gives an anomalous 
ontri-bution to the total 
urrent in the BCS domain:jan(r = 0) = �ez(l � rot l) Zpz<0 pz2�2 d�(pz) == �~C04m (l � rot l)l; (66)where (l � rot l)pz2�2pF = eB2�2 = Z jf0j2 dpy2� ; (67)and hen
e C0 � mp3F6�2 � � (68)in the BCS domain.492
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rossover and quantum hydrodynami
s : : :We note that f0(x � py=eB) in (67) is an eigen-fun
tion for the zeroth Landau level. It is easy to seethat the integral for C0 in (66) and (67) is governedby the narrow 
ylindri
al tube inside the Fermi sphere(see Fig. 7) with the length pF parallel to the l ve
torand with the radius of the 
ylinder squared given byhp2yi � pF jeBj: (69)A

ording to the ideas in [5, 18℄, this tube plays therole of a vortex in momentum spa
e, thus providing anormal 
ore and anomalous 
urrent at T = 0.We note that a key result in [5, 6℄ related to theabsen
e of the gap for the energy of the zeroth Lan-dau level (see Eq. (65)) is quite stable with respe
t tosmall modi�
ations of the texture of the l ve
tor inEq. (60). Our 
areful analysis shows that the a

ountof small bending 
orre
tions with [l � rot l℄ 6= 0 (smalltilting of the magneti
 �eld with respe
t to the (x; y)plane B = B0ez + B1ex) as well as of small inhomo-geneties of a magneti
 �eld B = B0 +B1x, whi
h leadto a double-well e�e
tive potential, does not suppressthe zero mode in the spe
trum of the BdG equation(does not lead to the appearan
e of a gap ~�n=0 for thezeroth Landau level).9. HOW TO REACH THE HYDRODYNAMICREGIME !� � 1In spite of the zero-mode stability, the authors of [4℄expressed their doubts regarding the 
al
ulation of C0based on the Dira
 equation in the homogeneous mag-neti
 �eld B = l � rot l. From their standpoint, the
al
ulation of C0 from (66) and (67) is an oversimpli�-
ation of a 
ompli
ated many-parti
le problem. In par-ti
ular, they emphasized the role of the �nite damping
 = 1=� and of the other residual intera
tions in de-stroying the 
hiral anomaly, whi
h is 
onne
ted withthe states inside the Fermi sphere, thus restoring thesuper�uid hydrodynami
s (without the normal velo
ityvn and the normal density �n). Indeed, if the damping
 is larger than the level spa
ing of the Dira
 equation,we have !0 = vtpFs jl � rot ljpF (70)in the 
ase where �(pz) = 0, and then the 
ontributionfrom the zeroth Landau level should be washed out bythe damping (see Fig. 8) and the hydrodynami
 regimeis established. The damping 
 for the 
hiral fermions(for fermions living 
lose to the nodes), in a very 
leanA1 phase without impurities, it is de�ned at T = 0 bythe di�erent de
ay pro
esses (see [26℄).

E1E0
Fig. 8. The possible role of damping in rea
hing thehydrodynami
 limit for low frequen
ies and small k ve
-tors for 
 > !0 (!0 = E1 �E0 is the level spa
ing)
Fig. 9. Di�erent de
ay pro
esses for damping of 
hiralfermions at T = 0: the standard three-fermion de
aypro
ess and a de
ay pro
ess with an orbital wave emis-sionIt is natural to assume that the only parameterthat determines 
 at T = 0 for 
hiral fermions is�0h�i = �0hp?i=pF . The leading term in de
ay pro-
esses is given by the emission of an orbital wave (seeFig. 9). It is given by
 / ��20p2?=p2F + v2F (pz � pF )2"F � : (71)For pz = pF (�(pz) = 0), we have
 � �20"F p2?p2F : (72)We note that for the 
hiral fermions on the zeroth Lan-dau level, we havehp?ipF = � jl � rot ljpF �1=2 (73)and the level spa
ing for �(pz) = 0 is!0 � �0 hp?ipF : (74)Hen
e, 
=!0 � 1 
lose to the zero mode for these twode
ay pro
esses, and a ballisti
 regime is established. It493
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ult to wash out the 
ontribution formthe zeroth Landau level by the di�erent de
ay pro
essesin the super
lean 3He-A1 phase at T = 0. We notethat the hydrodynami
 regime !� � 1 
ould be easilyrea
hed in the presen
e of nonmagneti
 impurities orin the presen
e of aerogel [33�35℄.9.1. The 
on
ept of the spe
tral �ow and theexa
t anomaly 
an
elationIf the anomalous 
urrent exists in a super
lean A1phase at T = 0, it should be 
ompensated somehow.A

ording to [5℄, the de�
it in the equation for the
onservation of the total linear momentum due to thepresen
e of an anomalous 
urrent,�jian�t + ��ik�xk = I; (75)where I = 3~4m C0l � �rot l� �l�t� ;is exa
tly 
ompensated by the quasiparti
le 
ontribu-tion Pquas: �Piquas�t + ��ik�xk = �I; (76)where Pquas = �n(T = 0)(vn � vs) in the hydrody-nami
 regime.We note that �n(T = 0) � jl � rot lj=�0 is a non-analyti
 fun
tion and is related to the nonzero bending.The arguments in [5℄ are 
onne
ted with the non
onser-vation of the axial 
urrent j5 in QED, whi
h just 
om-pensates I via the S
hwinger term E �B � �l=�t � rot l.Physi
ally, a

ording to [5, 36℄, this 
an
elation is dueto the spe
tral �ow from the negative to the positiveenergy values along the anomalous bran
h with nL = 0in Fig. 6 and then to the quasiparti
le bath in the pres-en
e of an ele
tri
 �eld E � �l=�t (of a time-dependenttexture of the l ve
tor).We note that there is one anomalous level that
rosses the zero energy in the physi
s of a vortex 
orein the 
ase of 
ylindri
al symmetry (see Fig. 10). AtT = 0, as a fun
tion of the generalized angular mo-mentum Q, it represents the set of dis
rete points sep-arated by a minigap !0 � �20="F . Therefore, at T = 0and in the super
lean 
ase 
 = 1=� ! 0, the spe
tral�ow from negative to positive energies is totally sup-pressed. Thus the Thouless result [37℄ for the Berryphase without the anomaly is restored for the physi
sof the vortex fri
tion. An in
lusion of a large number ofimpurities or a �nite temperature leads to the revivalof the anomaly in the hydrodynami
 regime !0� � 1

E(pz = 0, Q)

Q

Chiral branch

Fig. 10. The level stru
ture in the vortex 
ore of 3He-A.All the bran
hes are even in the generalized angularmomentumQ, but one bran
h E(pz = 0; Q) = �!0Q,whi
h 
rosses zero energy at Q = 0, is 
hiral (oddin Q). It parti
ipates in the momentum ex
hange be-tween the fermions in the vortex 
ore and the heat bathfermions in the hydrodynami
 limit !� � 1 a

ordingto [21℄in the 
ase of vorti
es. We 
ould therefore assume thatthe 
hiral anomaly and the spe
tral �ow are ine�e
tiveat T = 0 for both vorti
es and the bulk A phase of thesuper�uid 3He in the super
lean limit. Hen
e, the ques-tion of how the total linear momentum is 
onserved inthis 
ase in an in�nite system (without walls) is verynontrivial and unresolved so far.We think that the exa
t 
an
elation between thetime derivatives of the anomalous and quasiparti
le
urrents should be demonstrated expli
itly by deri-ving and solving the kineti
 equations for the nodalquasiparti
les in both the ballisti
 and hydrodynami
regimes. We note that if T 6= 0 (as we alwayshave in real experiments), and for low frequen
ies!�(T 6= 0) � 1 (�(T 6= 0) � �T�n), the relativenormal velo
ity vn�vs = �"0=�Pquas be
omes an ad-ditional hydrodynami
 variable, and hen
e the 
an
e-lation of the linear momentum de�
it is to o

ur auto-mati
ally.Thus, the problem of the exa
t anomaly 
ompensa-tion exists only for T = 0. We note that an approa
hbased on the kineti
 equation for quasiparti
les at dif-ferent temperatures and the impurity 
on
entrationsin a vortex 
ore of the s-wave super
ondu
tors and thesuper�uid 3He was worked out in [38℄ in the 
ase of asingular vortex.In the 
ase of nonsingular vortex stru
tures in3He-A, we also note papers [36℄, where the authors 
on-sider the s
attering of quasiparti
les on the walls of the
ontainer for a �nite systems to obtain a �nite 
 at494
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rossover and quantum hydrodynami
s : : :T = 0. The importan
e of the prehistory of the orbitaltexture with the spe
tral �ow 
on
ept was also stressedin these papers.10. CONCLUSIONS ANDACKNOWLEDGMENTSWe solved the Leggett equations and 
onstru
tedthe phase diagram of the BCS�BEC 
rossover at lowtemperatures T � TC for the 100%-polarized three-di-mensional A1 phase. From the evaluation of thelow-temperature spe
i�
 heat and the normal density,we see the indi
ations of a quantum phase transition
lose to the point �(T = 0) = 0. At the same time, deepin the BCS and BEC domains, the 
rossover ideas ofLeggett, Nozieres, and S
hmitt�Rink work quite well.In these regions, the phase diagram for the p-wave re-sembles the s-wave 
ase in gross features. We dis
ussedthe 
ompli
ated problem of the 
hiral anomaly and themass 
urrent non
onservation in the BCS A1 phase atT = 0. We presented two di�erent approa
hes to thisproblem, based on the supersymmetri
 hydrodynami
sand on the formal analogy with the Dira
 equationin QED. We evaluated the damping 
 = 1=� due tothe di�erent de
ay pro
esses in the super
lean BCS A1phase at T = 0, and found that 
 is small in 
ompar-ison with the level spa
ing !0 of the BdG equation.To rea
h the hydrodynami
 regime !� � 1, we needa su�
ient amount of aerogel or nonmagneti
 impuri-ties at T = 0. We assumed that in both the hydro-dynami
 and ballisti
 regimes at T = 0, we have toderive a reliable kineti
 equation to expli
itly demon-strate the exa
t 
an
elation between time derivativesof the anomalous 
urrent jan = �~=4mC0l(l � rot l) andof the quasiparti
le 
ontribution Pquas in the 
onserva-tion equation for the total linear momentum jtot. Wenote that for the full theoreti
al analysis of the prob-lem, other residual intera
tions di�erent from dampingare also important for the nodal fermions. To 
he
kwhether a 
hiral anomaly has an infrared manifesta-tion (whi
h was not 
aptured in the approa
h basedon the supersymmetri
 hydrodynami
s in [4℄), it willbe useful to derive a 
omplete set of Ward identitiesbetween the self-energies of 
hiral fermions � and the
orresponding verti
es �. The idea in this approa
h isto �nd either a strong infrared singularity or a powerfulreexpansion of the quasiparti
le spe
trum as !, k! 0.We note that the importan
e of the residual Fer-mi-liquid-like intera
tions for the analysis of a half-in-teger vortex in the three-dimensional A phase of 3Hewas re
ently emphasized in [39℄.We invite the experimentalists to enter this very in-

teresting problem. It will be ni
e to measure the spe
-trum and damping of orbital waves in the super�uid Aphase of 3He at the low temperatures T � TC . As wehave already dis
ussed, the spe
trum is quadrati
 forlow frequen
ies ! < �20="F and 
ontains the intrinsi
angular momentum density as a 
oe�
ient of the termlinear in frequen
y (see (50) and (51)).The damping of orbital waves provides an evalua-tion of the orbital vis
osity in 3He-A at low tempera-tures T � TC . We note that even in this 
ase, it is aninteresting possibility to derive the overdamped (dif-fusive) 
hara
ter of the spe
trum. This possibility issupported theoreti
ally in [40℄, where the author ob-tained several overdamped modes in the partially po-larized A1 phase via the fun
tional integral te
hniquein the hydrodynami
 limit of small ! and k.Another possibility of an overdamped di�usive spe
-trum was 
onsidered in [41℄ in the impurity diagramte
hnique [42; 43℄ for the hydrodynami
 regime !� � 1of spin waves in a frustrated two-dimensional AFM. Wenote that in the opposite high-frequen
y regime, thespe
trum of spin waves is linear.Here, it is possible to extend the experiments ofthe orbital inertia and orbital vis
osity for nonsingularvorti
es in the A phase of 3He to the low temperaturesT � TC . Of 
ourse, to have the A phase at low tem-peratures, we need a strong spin polarization.We also note that a 
rossover from the ballisti
 tothe hydrodynami
 regime !� � 1 
ould o

ur due toboth the aerogel (the nonmagneti
 impurities) or a �-nite temperature T 6= 0, whi
h is always present in areal experiment. In the last 
ase, the damping 
 / Tnis temperature dependent.Finally, to measure the nontrivial topologi
al e�e
tsin two dimensions, we propose to perform experimentswith a Josephson 
urrent between two thin �lms or twomagneti
 taps: one with a two-dimensional axial phaseand the topologi
al 
harge Q = 1 [44℄ and the otherwith the planar two-dimensional phase with Q = 0.We hope that it will be possible to dire
tly measure�Q = 1 in this type of experiments.We note that in the two-dimensional axial phase,the l ve
tor l = [ex � ey℄ = ez is perpendi
ular to theplane of 2D �lms. Hen
e, the orbital waves, 
onne
ted,as we dis
ussed, with the rotation of the l ve
tor arounda perpendi
ular axis, are gapped. The sound wave isthe only Goldstone mode in the gauge orbital se
tor.Moreover, l ? rot l (it is impossible to 
reate a twistedtexture in two dimensions). Therefore, the anomalous
urrent jan = �~=4mC0(l � rot l)l = 0. Hen
e, there isno problem with the mass 
urrent non
onservation atT = 0 [25℄.495
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al e�e
ts possibly exist in thespin se
tor [44℄.Here, the anomalous spin 
urrent was predi
ted inthe presen
e of an inhomogeneous magneti
 �eld H(r)for an 3He-A �lm (the BCS phase)jspin�i � Q"izklz�kH?� ; (77)whereH? �d = 0 and d is the spin ve
tor in the two-di-mensional 3He �lm.Another possibility is to measure the 
ontributionof the massless Majorana fermions for the edge stateson the surfa
e of super�uid 3He-B and a rough wall(or on the surfa
e of a vibrating wire in the Lan
asterexperiments) [45℄.The authors a
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