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We solve the Leggett equations for the BCS—-BEC crossover in a three-dimensional resonance p-wave superfluid
with the symmetry of the A1 phase. We calculate the sound velocity, the normal density, and the specific heat
for the BCS domain (i > 0), for the BEC domain (1 < 0), and close to the important point 1 = 0 in the 100 %
polarized case. We find the indications of a quantum phase transition close to the point u(7 = 0) = 0. Deep
in the BCS and BEC domains, the crossover ideas of Leggett, Nozieres, and Schmitt—Rink work quite well. We
discuss the spectrum of orbital waves, the paradox of intrinsic angular momentum and the complicated problem
of chiral anomaly in the BCS A1 phase at T' = 0. We present two different approaches to the chiral anomaly,
based on supersymmetric hydrodynamics and on the formal analogy with the Dirac equation in quantum elect-
rodynamics. We evaluate the damping of nodal fermions due to different decay processes in the superclean
case at T = 0 and find that a ballistic regime w7 > 1 occurs. We propose to use aerogel or nonmagnetic
impurities to reach the hydrodynamic regime wr < 1 at T = 0. We discuss the concept of the spectral flow
and exact cancelations between time derivatives of anomalous and quasiparticle currents in the equation for
the total linear momentum conservation. We propose to derive and solve the kinetic equation for the nodal
quasiparticles in both the hydrodynamic and ballistic regimes to demonstrate this cancelation explicitly. We
briefly discuss the role of the other residual interactions different from damping and invite experimentalists to

measure the spectrum and damping of orbital waves in the A phase of *He at low temperatures.

1. INTRODUCTION

The first experimental results on the p-wave Fesh-
bach resonance [1-3] in ultracold fermionic gases “°K
and 5Li make the field of quantum gases closer to the
interesting physics of superfluid *He and the physics of
unconventional superconductors such as SroRuOy4. In
this context, it is important to bridge the physics of ul-
tracold gases and the low-temperature physics of quan-
tum liquids and anomalous superconductors and thus
to enrich both communities with the experience and
knowledge accumulated in each of these fields. The pur-
pose of this paper is first and foremost to describe the
transition from the weakly bound Cooper pairs with a
p-wave symmetry to strongly bound local p-wave pairs
(molecules) and to try to reveal the nontrivial topo-
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logical effects related to the presence of nodes in the
superfluid gap of the 100 %-polarized p-wave A1 phase
in three dimensions. We note that the A1 phase sym-
metry is relevant both to ultracold Fermi gases in the p-
wave Feshbach resonance regime and to superfluid 3He-
A in the presence of a large magnetic field or a large
spin polarization. We give a special attention to the
spectrum of collective excitations and to the superfluid
hydrodynamics of the A1 phase at T' = 0, where topo-
logical effects are very pronounced, especially in the
BCS domain. We propose an experimental verification
of the different approaches related to the complicated
problem of chiral anomaly and the mass-current non-
conservation in the superfluid A1 phase of *He in the
superclean case and in the presence of aerogel as well
as for the A1 p-wave condensates in magnetic traps in
the presence of Josephson tunneling currents.
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This paper is organized as follows. Section 1 pro-
vides an introduction. In Sec. 2, we briefly comment on
recent experiments on the p-wave Feshbach resonance
and describe the global phase diagram for 100 %-po-
larized p-wave resonance superfluids in three dimen-
sions. In Sec. 3, we describe the quasiparticle spec-
trum and nodal points in the Al phase. In Sec. 4,
we solve mean-field Leggett equations for triplet super-
fluids with the symmetry of the A1 phase at T = 0
and study the behavior of the superfluid gap A, the
chemical potential p, and the sound velocity cg deep
in the BCS (¢ > 0) and BEC domains (u < 0) as
well as close to the interesting point = 0. In Sec. 5,
we study the temperature behavior of the normal den-
sity p, and specific heat C, in the BCS domain, in
the BEC domain, and close to y = 0, where we find
indications of a quantum phase transition. In Sec. 6,
we describe the orbital wave spectrum in the BCS and
BEC domains of the A1 phase and describe the compli-
cated problem of chiral anomaly (mass-current noncon-
servation) in the superfluid hydrodynamics of the A1l
phase in the BCS domain at 7' — 0. In Secs. 7 and 8,
we present two different approaches to the calculation
of the anomalous current: based on supersymmetric
hydrodynamics [4] and on the analogy with the Dirac
equation in quantum electrodynamics (QED) [5, 6]. We
note that both approaches are very general. The first is
based on the inclusion of the fermionic Goldstone mode
in the low-frequency hydrodynamic action [4]. It can
be useful for all nodal superfluids and superconductors
with zeros of the superconductive gap, such as 3He-A,
SI'QRUO4, UPt3, UNiQAlg, and Ul_xTthelg [7] The
second approach is also very nice and general. It is
connected with the appearance of the Dirac-like spec-
trum of fermions with a zero mode [5,6], which also
arises in many condensed-matter systems such as He-
A, chiral superconductor SroRuQy, organic conduc-
tor a-(BEDT-TTF),1I3, 2D semiconductors, or recently
discovered graphene [7-10]. In Sec. 9, we evaluate the
damping in the superclean A1 phase at T = 0 due to
different decay processed and conclude that the ballis-
tic regime wt > 1 occurs at T' = 0. We propose to
use aerogel or nonmagnetic impurities to reach the hy-
drodynamic regime wr < 1. We discuss the concept of
the spectral flow and exact cancelations of anomalies
between time derivatives of the anomalous and quasi-
particle currents in the equation of the total linear mo-
mentum conservation. We also propose to derive a ki-
netic equation for nodal quasiparticles in both hydro-
dynamic and ballistic regimes and to demonstrate this
cancelation explicitly. In Sec. 10, we provide our con-
clusions and acknowledgments. We also invite experi-

mentalists to measure the spectrum and damping of the
orbital waves in the 3He-A phase at low temperatures
T <« T and thus to help resolve the orbital momen-
tum paradox. We also propose to extend the measure-
ments of the orbital inertia and the orbital viscosity
in nonsingular vortex textures in the conservation A
phase [11] to low temperatures via creating spin pola-
rization. Finally, we propose to measure the Josephson
current between two two-dimensional films of the axial
and planar phases with an attempt to directly extract
the difference between topological charges AQ = 1 in
these phases.

2. FESHBACH RESONANCE AND PHASE
DIAGRAM FOR 100 %-POLARIZED p-WAVE
RESONANCE SUPERFLUIDS

In the first experiments on the p-wave Feshbach res-
onance, experimentalists measured the molecule forma-
tion in the ultracold fermionic gas of SLi atoms close
to the resonance magnetic field By [1,2].

In the last years, analogous experiments on the
p-wave molecule formation in the spin-polarized
fermionic gas of 4°K-atoms were started [3]. The
lifetime of p-wave molecules is still rather short [1-3].
But the physicists working in ultracold gases have
started intensively studying the huge bulk of exper-
imental and theoretical wisdom accumulated in the
physics of superfluid *He and anomalous complex
superconductors (see [12,13]).

To understand the essence of the p-wave Feshbach
resonance, we recall the basic formula for the p-wave
scattering amplitude in the vacuum (see [14,15])

fior (B) = 5 G

SmE
— + 2 L i2mE)3/?
Vp T7ro

where [ = 1 is the orbital momentum in the p-wave
channel, E is the two-particle energy, V,, = rja, is the
scattering volume, a, is the p-wave scattering length, ro
is the interaction range, and p and p’ are the incoming
and outgoing momenta. For the Feshbach resonance in
fermionic systems, p ~ p’ ~ pr and usually prro < 1.
The scattering length a, and hence the scattering volu-
me V), diverges in the resonance magnetic field By (see
Fig. 1), 1/V,, = 1/a, = 0. The imaginary part of the
scattering amplitude f, is small and nonzero only for
positive energies £ > 0, and hence the p-wave Fesh-
bach resonance is intrinsically narrow. We note that
for negative energies E < 0, there is a molecular bound

state:
Tro s

Ey| = = .
3| 2mV,  2mroa,
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Fig.1. Sketch of the p-wave Feshbach resonance. The
scattering volume V), diverges at B = By

In the unitary limit, the molecular binding energy

The first theoretical articles on the p-wave Feshbach
resonance often deal with a mean-field two-channel de-
scription of the resonance [15]. In this paper, we study
the p-wave Feshbach resonance in the framework of a
one-channel description, which is closer to the physics
of superfluid *He and captures the essential physics of
the BCS-BEC crossover in p-wave superfluids rather
well.

In magnetic traps (in the absence of the so-called
dipolar splitting), the fully (100 %) polarized gas or,
more precisely, one hyperfine component of the gas is
usually studied. In the language of 3He, the pairs with
Siot = St =1, or | t1)-pairs are studied. In this pa-
per, we consider the p-wave triplet A1 phase in three
dimensions with Sy, = St = 1.

A qualitative picture of the global phase diagram
of the BCS-BEC crossover in the 100 %-polarized Al
phase is presented in Fig. 2. In its gross features, it re-
sembles the phase diagram of the BCS-BEC crossover
for s-wave pairing (see [16] for more details). However,
there is a very interesting question about the origin
of the point u(T = 0) = 0 for the three-dimensional
Al phase. We show in what follows that at the point
w(T = 0) = 0, we probably deal with a quantum phase
transition [17,18].

On the global phase diagram, the BCS domain with
the chemical potential 1 > 0 occupies the region of
negative values of the gas parameter \, = V,p3% < 0
(or the negative values of the scattering length a,). It
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Fig.2. Qualitative picture of the BCS-BEC crossover
in the 100 %-polarized A1 phase for p-wave superfluids.

We indicate the line where u(7T') = 0 and the quantum
phase transition point (7' =0) =0

also stretches to small positive values of the inverse gas
parameter 1/, < 1 and is separated from the BEC
domain (where u < 0 and the inverse gas parameter
is large and positive, 1/A, > 1) by the line u(7') = 0.
In the Feshbach resonance regime, the density of “up”
spins n = p%. /677 is usually fixed. Deep inside the BCS
domain (for small absolute values of the gas parameter
[Ap] < 1), we have the standard BCS-like formula for
the critical temperature of the A1 phase:
—m/2pl

Tcp = 0.1epe (2)
where the prefactor for the 100 % polarized A1 phase
is defined by second-order diagrams of the Gor’kov
and Melik-Barchudarov type [19] and is approximately
equal to 0.1ep [20]V).

Deep in the BEC domain (A, < 1), the well-known
Einstein formula is applicable in the leading approxi-
mation for Bose condensation of p-wave molecules with
the density n/2 and mass 2m:

(n/2)*/*

Tep=331-5-

(3)
In the unitary limit, 1/\, = 0. Hence, T¢p, = 0.lep
here, and we are still in BCS regime (see [16]). In
the rest of the paper, we consider low temperatures
T K Te, i.e., we work deep in the superfluid parts of
BCS and BEC domains of the A1 phase.

1) This calculation was done for the nonpolarized A phase in
the case where the s-wave scattering is totally suppressed. The
calculation for the 100 %-polarized A1 phase yields only a 10 %
difference from the result in [20] for the prefactor 0.l p.
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Fig.3. The topology of the superfluid gap in the Al
phase. There are two nodes in the quasiparticle spec-
trum corresponding to the south and north poles

3. QUASIPARTICLE ENERGY AND NODAL
POINTS IN THE A1 PHASE

For the standard s-wave pairing, the quasiparticle
spectrum is given by

i

It has no zeros (no nodes) and therefore the topology
of the s-wave pairing problem is trivial. But for the
triplet A1 phase, we have

[T =

Pr

where A = Ag(e,+ie,) is the complex order parameter
in the A1 phase and Ay is the magnitude of the super-
fluid gap. In fact, |A - p|? = A2p%sin® 6§ = A2[p x 1]?,
where 1 = e, X e, is the unit vector of orbital momen-
tum (see Fig. 3). We note that pp is fixed by the fixed
density n. The angle # is between the momentum p
and the orbital momentum quantization axis 1 = e,.

E, = (4)

P’ * e
%—M> +A0.

p2

Ep = 2m

(5)

For p1 > 0 (the BCS domain), there are two nodes
in the spectrum for p?/2m = p and § = 0 or 7. For
# < 0 (the BEC domain), there are no nodes. The
important point © = 0 is a boundary between the to-
tally gapped BEC domain and the BCS domain with
two nodes of the quasiparticle spectrum corresponding
to the south and north poles in Fig. 3. This point for
T = 0 is often called the topological quantum phase
transition point [21, 22].
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4. LEGGETT EQUATIONS FOR THE A1l
PHASE

The Leggett equations for the 100 %-polarized Al
phase in three dimension are the evident generaliza-

tion of the standard Leggett equations for the s-wave
BCS-BEC crossover [16,23]. The first equation is

B 225 (-8))

where &, = (p®/2m — ),

2dp
272

p

=~

27

A2p2
F

£+ sin? 6

is the quasiparticle spectrum, and z = cosé. This
equation defines the chemical potential p for a fixed
density n.

The momentum distribution for the function
1/2(1—¢&,/Ep) in (6) is depicted in Fig. 4 for different
values of p corresponding to the BCS and BEC
domains.

The second self-consistency equation defines the
magnitude of the superfluid gap Ag. It is given by

1
—mmRe —— =
fi=1(2p)
e 11
< 4
= [ < pdp{———}, 7
[5 [ralg-gp @
e 0
where
1 1 4mu>
Re—— = | —
fi=1(2p) <Vp TTo

is the real part of the inverse scattering amplitude in
the p-wave channel for the total energy E = 2u of col-
liding particles. This energy is relevant for the pai-
ring problem, and hence f;— (E) must be replaced with
fi=1(21) in the Legget equations.

Deep in the BCS domain, the solution of the Leggett
equations yields

Ay~ epe™ Mol o Tp,

(8)

uep > 0.

In three dimensions, the sound velocity is
Cray

s

For 1/|A\p| = 0, Ay ~ cp, and hence the unitary limit
is still inside the BCS domain.

n dy

Cg =

(9)

m dn
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p=0.1

p=1 p=-0.1 p=-1
Fig.4. Schematic momentum distribution of the function (1 — ¢,/E,)/2 entering (6) in the (p.,p.) plane for p, = 0,
A¢ = 1, and Er = p%/2m in the BCS-BEC crossover for the three-dimensional A1 phase. The different values of

correspond to the situation deep in the BCS domain (. = 1), deep in the BEC domain (1 = —1), and in the important

region close to =0 (= 40.1 and p = —0.1)

Deep in the BEC domain,

Ag & 2ep/prro L e for ppro < 1, (10)
and the chemical potential u = —|Ey|/2 + up/2 < 0,
where, as we already noted,
™
Ey| = 11
B 2mroay, (11)

is the binding energy of a triplet pair (molecule). Ac-

cordingly,
451:‘
MB R ——

3 VPFTo

is a bosonic chemical potential that governs the repul-
sive interaction between two p-wave molecules [16].
The sound velocity deep in the BEC domain is given

(

where ng = n/2 is the bosonic density.
As 1 — 0 (more rigorously, for |u| < AZ/er), we
have

(12)

np dup
2m dnp

Cs

1/2
vf
> ~ \/g \/pFTO <L vf (13)

for prpro < 1,

Ag(p =0) = 2ep/Prro
for the magnitude of the superfluid gap.
For the gas parameter A\, at the point u = 0, we
have

(14)

Ap(p = i%r
Hence, the interesting point u = 0 is effectively in the
BEC domain (in the domain of positive p-wave scat-
tering lengths a, > 0). Accordingly, for p = 0, the
binding energy is

0) > 0. (15)

4
—EFPFTY. (16)

| E| = 3
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The sound velocity squared for p = 0 is given by

Vi
= PFTo
3

2

Cs

(17)
and coincides with (10), obtained deep in the BEC do-
main. A careful analysis of Leggett equations close to
1 = 0 shows that the derivative A /9u also has no sin-
gularities at this point. The second derivative §%n/0u>
is also continuous at p = 0, and hence the anomaly
appears only in higher derivatives, in qualitative agree-
ment with the numerical calculations in [24] in three
dimensions.

At the same time, the careful analysis of compress-
ibility in the two-dimensional case [25] shows contin-
uous behavior but with a kink already developed in
On /O in the 100 %-polarized (p,+ip,) phase for ;1 = 0
on the level of analytic as well as numerical calcula-
tions [24]. To be more specific,

on
op

ocl—}—us—F

A (18)

[1 — sign y]

and hence On/ou « 1 as p — +0, and On/Ou o« 1 +
+2uer /A2 as p— —0.

5. SPECIFIC HEAT AND NORMAL DENSITY
AT LOW TEMPERATURES T K Tc

In this section, we study the thermodynamic func-
tions, the normal density p,, and the specific heat C,
in three-dimensional resonant p-wave superfluids with
the A1 symmetry at low temperatures 7" < T¢. Our
goal is to find nontrivial contributions to p, and C,
from the nodal points on the mean field level.
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5.1. Specific heat in the three-dimensional A1l
phase

The fermionic (quasiparticle) contribution to C), at
the mean-field level in three dimensions is (see [26])

_ [ 9no(E,/T)
Co = / oT Ep

where no(E,/T) = (eF»/T 4+ 1)~1 is the quasiparticle
distribution function and F, is the quasiparticle energy
given by (5).
The result of the calculation is
T3

AF

d*p
(2m)3”’

(19)

Cy ~ N(0) (20)
deep in the BCS domain, where N(0) = mpp /27?2 is
the density of states at the Fermi surface. Deep in the
BEC domain, C, is given by an exponential,

(2mT)*? B,

) . emIBI/2T
2m 4T '

with |Ep| in (11).

Finally, in the interesting region of small i and low
temperatures (|u| < T < AZ/er and hence in the clas-
sical limit |p|/T — 0), we have a notrivial temperature
dependence for C:

(2mT)3/? epT

Cy ~ —.
v 272 A2

(22)

We note that in the opposite quantum limit T'/|u| — 0
(T < |u| < A/er), we have

1 epT T?m3/?

Cy~—— 23
v o2 A(Z) ut/? (23)
in the BCS domain and
omT 3/2 3 T
C\y ~ @mT)*> |ul” e*\u\/TEFQ (24)

272 T3 H

in the BEC domain. In this limit, C, behaves very
differently in the BCS and BEC domains.

For |u| ~ T, results (23) and (24) coincide with (22)
by the order of magnitude.

For small |u|, but intermediate temperatures
lu| € A3/ep < T < Ag, we recover a more expected
result:

(2mT)%/?

272
But the bosonic contribution (the contribution from
sound waves) prevails at these temperatures and yields

Cy ~ (25)

B T_SL
c3 2r2’

v

(26)
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where the sound velocity ¢, is given by (9) in the BCS
domain, and by (13) and (17) in the BEC domain and
close to u = 0.

We see that a power-law fermionic contribution
C, x T%/? at low temperatures and C, o T3/2 at
intermediate temperatures can be separated from the
bosonic contribution CP oc T3 close to the important
point p = 0. We also see very different behaviors of C,
in the BCS and BEC domains in the limit 7'/|u| — 0.

Analogously, in the two dimensional 100 %-polari-
zed (p, + ipy)-phase in the quantum limit T < |p| <
< A2/ep(T/|u| — 0), the quasiparticle contribution is
given by
1 MEF o

Cy~—
v or Ag

(27)

in the BCS domain for p — +0. We note that the
phonon contribution has the same order of magnitude
as the fermionic contribution in the BCS domain. In
the BEC domain for u — —0,

L mep Ul

ot A2 T

Cy ~
2w

(28)

We note that in both three and two dimensions for
T # 0, we are effectively always in the classical
limit |p|/T — 0, because p is continuous close to
i = 0. Hence, the real phase transition occurs only
at T =0 [21,22].

5.2. Normal density in the three-dimensional
A1l phase

The quasiparticle contribution to the normal den-
sity in the three-dimensional A1 phase is (see [26])

Iz

Deep in the BCS domain, the evaluation of p,, yields

1

pn:_g

5 Ong(Ep/T) *p
0E, (2m)3

(29)

T2

Pn~ P37 (30)
where p = mn is the total mass density. We note that
rigorously speaking, Eq. (30) yields the longitudinal
component of the normal density tensor p,;. There
is also a small transverse contribution p,; ~ T* first
obtained in [21].

Deep in the BEC domain, the normal density is ex-
ponential,

P ~ = (2mT)?/2e 1B/2T (31)

™
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Finally, close to pn = 0 at low temperatures (Ju| < T <
< A%/er and hence in the classical limit |u|/T — 0),
we have

(32)

In the opposite quantum limit T/|u| — 0 (T < |u| <
< A2/eF), we have

m EFT

1/2
Pn ~ ) A—% 2mT (2m|pul) / (33)

in the BCS domain and

m 6FT _
o~ 2 S Tl 2mT) 2 (34)
in the BEC domain, and therefore the hehavior of p,
is again very different in the BCS and BEC domains in
the quantum limit.

For |u| ~ T, results (33) and (34) coincide with (32)
by the order of magnitude.

At intermediate temperatures |u| < A2/ep < T <
< Ay, the normal density yields

pn ~ =y (2mT)*2, (35)

as expected. But the bosonic (phonon) contribution
from the sound waves prevails at these temperatures
and yields (see [26])

T4
pg ~ 750 (36)
Cs

where ¢, is again respectively given by (5), (13), and
(17) in the BCS and BEC domains and close to u = 0.
We can again separate the fermionic (quasiparticle)
contribution to p, (p, o T°/? at low temperatures
and p,, oc T3/? at intermediate temperatures) from the
bosonic contribution (p, oc T%) close to u = 0. We also
see very different behaviors of p,, in the BEC and BCS
domains in the quantum limit 7'/|u] — 0. The same
behavior holds in the two-dimensional case.

6. ORBITAL WAVES, INTRINSIC ANGULAR
MOMENTUM AND CHIRAL ANOMALY IN
THE A1 PHASE

Topological effects in the A1 phase are already pro-
nounced in the spectrum of orbital waves and in the
superfluid hydrodynamics at low temperatures T' — 0,
especially in the BCS domain. There, by symmetry
requirements, we can write the total mass current as

jtot :jB +jana (37)

where ;
jan = —EOO (l - rot l)l (38)

is an anomalous current. In the BEC domain, Cy = 0
and the anomalous current is absent. This is because

P fafo- )

in the BEC domain (for £, > 0), while this integral is
nonzero and defines the total density in the BCS do-
main. However, it is a difficult question whether Cp =0
in the BCS domain.

At the same time, jp in (37) is the total mass cur-
rent in the BEC domain for p-wave molecules. It is
given by

. h pl

JB = pvs + %mt?v
where L = hpl/2m is the density of orbital momentum
and vy is the superfluid velocity.

The anomalous current j,,, violates the conservation
law for the total mass current (total linear momentum)
Jtot because it cannot be expressed as a divergence of a
momentum tensor IT;;:

(39)

8jtiot 9 .

Therefore, the presence of an anomalous current de-
stroys the superfluid hydrodynamics of the Al phase
as T — 0. Tts contribution to the equation for the to-
tal linear momentum (to dj},,/0t) can be compensated
only by adding a term with the relative normal veloci-
ty and normal density p,(T = 0)(va — vs) to the total
current jior already at 7 = 0 (see [5,6]). The anoma-
lous current also significantly changes the spectrum of
orbital waves. This additional Goldstone branch of col-
lective excitations in the A1 phase is related to the ro-
tation of the 1 vector around a perpendicular axis. It
is quadratic at low frequencies (the Al phase is called
an orbital ferromagnet; it is also a spin ferromagnet).
However, the coefficient at ¢? is drastically different in
the BCS and BEC domains.
In the BEC domain for small w and q, pw ~ pq2/m
or, equivalently,
w~ g2 m. (41)

But in the BCS domain,

2 A
q—zln o
m vr|g:|

(p—Co)w ~p (42)
The most straightforward way to obtain (42) is to use
the diagram technique in [27] for the collective excita-
tion spectrum in p-wave and d-wave superfluids. The
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solution of the Bethe—Salpeter integral equation for the
Goldstone spectrum of orbital waves in the approach
in [27] involves the Ward identity between the total
vertex I' and the self-energy ¥, which is based on the
generator of rotations of the 1 vector around a per-
pendicular axis. In the general form, for small w and
q = q.e, it is given by

1
/@COSQHX

—1

2 2 2
pidp | w wC pto, 1
X/%? [8E3+4E3 2 Gagg) =0 (43)

Deep in the BCS domain (for p ~ e > 0), we
can replace p*dp/27? with N(0)d¢, (where N(0) =
= mpr/27?) and p*/m? with v% cos® §. This yields

N(O)/dcTosecos20><
1

w?  w&  viq?cos®l
A
. / @ [8153 TIE T T 4B (49

Using the estimates

7 de 1
S - 45
E}  AZsin’f (45)
S
and
[ &de, 1
pdSp 1
/ e (46)
.
we obtain
WAy w R Ay
N(0){ —1In— + — — 2= =0. (47
(’{A3“w+sF A2 Pl L

More rigorously, the equation for the spectrum is
biquadratic due to rotation of the 1 vector, as it should
be for bosonic excitations:

2
) L)

2 2\ 2 2 2

w A w v A

<—21n—0—|——2> N(ngln 0
A w L A vrlg.]

For small frequencies w < A2/ep, the spectrum is

quadratic:

A% 2 2 Ay
w— = In 49
eF Fq: v |qz| ( )

or, equivalently,

A @ A

€2 'UF|qz|.

2
ey m

Hence, comparing (50) and (42), we obtain

2
P=Co_ B0 oy (51)
p €F
and therefore Cy & p deep in the BCS domain.
In superfluid 3He-A, for example, Ag/ep ~
~T./er ~ 1073 [12], and hence (p — Cp)/p ~ 1075.
At the same time, for larger frequencies AZ/ep <
< w < Ay, the spectrum is almost linear:

A
w?ln =2 = v%qz In
w

Ao
. 52
UF|QZ| ( )
Deep in the BEC domain for u ~ —|E|/2 < 0, it fol-
lows from (43) that

2

q
W+ |ulw ~ |ul = (53)
m
Of course, the exact equation is again biquadratic due

to rotation,
(w? + Jplw)? ~ (plgZ /m)?. (54)

Hence for w < |p|: w ~ ¢2/m in agreement with (41).
Moreover, this means that (p — Cp)/p = 1 deep in the
BEC domain, and thus Cy = 0.

The same estimate for the density of the intrinsic
angular momentum yields

L= (- o)
for the BCS domain and L = plh/2m for the BEC
domain. We note that even in the BCS case, diffe-
rent, calculations yield different results. For 1 = const,
the evaluation in [28,29] yields L = plh/2m, while the
inclusion of inhomogeneous textures of the 1 vector re-

stores the expression

L= " (p—Cpl
Qm(P Co)

We note that according to Leggett [30], the total
N-particle Hamiltonian H exactly commutes with the
z-projection of the angular momentum L. = hN/Q
This fact is in favor of the result L = plh/2m for
1 = const in the BCS domain. Returning to the compli-
cated problem of the chiral anomaly, we reconsider the
two different approaches to this problem worked out in
the late 1980s.

7. TWO DIFFERENT APPROACHES TO THE
CHIRAL ANOMALY PROBLEM IN THE A1l
PHASE

The first approach [4] is based on supersymmetric
hydrodynamics of the Al phase.
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Tl

Fig.5. A qualitative illustration of the fermionic (Sr)
and bosonic (Sg) contributions to the total hydrody-
namic action Sy, of the Al phase at T — 0

7.1. Supersymmetric hydrodynamics of the Al
phase

The idea in [4] was to check whether the chiral
anomaly (more precisely, the term j,,vs in the total
energy) is directly related to the zeros of the gap. The
authors of [4] assumed that in a condensed matter sys-
tem at low frequencies, the only physical reason for
an anomaly can be related to the infrared singulari-
ty. We note that ultraviolet singularities are absent
in condensed matter systems, in contrast to quantum
electrodynamics. Strong (critical) fluctuations are also
suppressed in three-dimensional systems. The main
idea in [4] was therefore to check the dangerous in-
frared regions where the gap is practically zero. For
that, the authors of [4] considered the total hydrody-
namic action St of the A1l phase for low frequencies
and small ¢ vectors as a sum of bosonic and fermionic
contributions,

Stot =SB + SF, (55)

where Sg(p,1,vs) is the bosonic action and Sp is the
fermionic action related to the zeros of the superfluid
gap (see Fig. 5).

Generally speaking, the idea in [4] was to use super-
symmetric hydrodynamics to describe all the zero-ener-
gy Goldstone modes, including the fermionic Goldstone
mode that comes from the zeros of the gap.

The authors of [4] were motivated by the nice pa-
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per [31], where the massless fermionic neutrino was
for the first time included in the effective infrared La-
grangian for electroweak interactions.

After the integration over fermionic variables, the
authors of [4] obtained the effective bosonic action and
checked what infrared anomalies were present in it. As
a result, they obtained

SF = Sp + ASg, (56)

where the nodal contribution to the liquid-crystal-like
part of the effective action [32], which is related to the
gradient orbital energy, is

2
_ _Dbru 4
ASp = 3072 /d r X
>, Ui 2 Bir
x q [Ix rot1]* + —(1-rot1) In 5= ). (57)
v; r

Here, * = (r,t), lyr is the mean free path, and
o <r <lyp (& ~ vr/Ayg is the coherence length).

Expression (57) for ASp has a general character
and is valid in both weak-coupling and strong-coupling
limits.

We note that v; ~ vpAg/ep € vp, and v ~ vp
in the weak-coupling case. It follows that only weak
logarithmic singularities are present in ASp.

However, we do not observe any sign of a strong
singularity (which should actually be é-functional be-
cause the fermionic density pp coming from the nodal
regions in Sr is small in comparison with the total den-
sity p). In the other words, we do not see any trace of
the anomalous contribution

. h
Jan Vs = —%C’O(Lrotl)(l-vs) (58)
in ASB

Hence, even if the chiral anomaly exists in the BCS
domain of the Al phase, it is not directly connected
with the dangerous regions of momentum space near
zeros of the gap (it does not have an infrared charac-
ter).

8. THE DIFFERENT APPROACH BASED ON
A FORMAL ANALOGY WITH QUANTUM
ELECTRODYNAMICS

The authors of [5,6] proposed a different, and also
rather nice approach based on a formal analogy bet-
ween the anomalous current in 3He-A and the chiral
anomaly in QED. They assume that the anomalous
current with the coefficient Cy ~ p in the BCS domain
of the A1l phase is not directly related to the zeros of
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the gap (and hence is not contained even in the super-
symmetric hydrodynamics). They believe that it is re-
lated to global topological considerations, and therefore
a topological term must be added to the supersymmet-
ric hydrodynamics. To illustrate this point, they solve
the microscopic Bogoliubov—de Gennes (BdG) equa-
tions for fermionic quasiparticles in a given twisted tex-
ture (1 || rot 1) of the 1 vector. To be more specific, they
consider the case

1=1, + 4l (59)

with

ly=6l, =Bz, l,=0,  (60)

lz = lOz = €z,

where e, is the direction of a nonperturbed 1 vector. In
this case,

ol

1~r0t1:lza—;' = B = const (61)
and, accordingly,
. h
Jan = —R CyBe,. (62)

After linearization, the BdG equations become equiva-
lent to the Dirac equation in the homogeneous magnetic
field B = (1-rotl). Solving the Dirac equation yields
the level structure for fermionic quasiparticles

En(p.) = :t\/ §2(p2) + A%a

where £(p.) = p2/2m — p, e = p./pr = £1 is the
electric charge, and

(63)

A% = 2nv?preB| (64)

is the gap squared, with v; ~ vpAg/ep.

For n # 0 (see Fig. 6), all the levels are gapped,
A, # 0, and are doubly degenerate with respect to
p. — —p.. Their contribution to the total mass cur-
rent is zero as T — 0.

For n = 0, there is no gap (Ay = 0), and we have
an asymmetric chiral branch that exists only for p, <0
or, more precisely, for one sign of eB (see [5] for more
details). The energy spectrum for n = 0 is given by

Ey = f(pz)

We can say that there is no gap for the zeroth Lan-
dau level. Moreover, in the BCS domain, Ey = 0 for
|p:| = pr, which means that the chiral level crosses the
origin in Fig. 6 and we have a zero mode.

We note that in the BEC domain, Ey > || and the
zeroth Landau level does not cross the origin. The ab-
sence of a zero mode in the BEC domain is the physical
reason why Cp = 0 there.

(65)
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A En n=2
&_’/
n=1
Oe
ENE/
0 {(PZ)
n=20
— | =1
— n=2

Fig.6. Level structure of the Dirac equation in the

magnetic field B = 1-rotl. All the levels with n # 0

are doubly degenerate. The zeroth level is chiral. It

crosses the origin at |p.| = pr in the BCS domain

(1 > 0). We also illustrate the concept of the spectral
flow, which is to be discussed in Sec. 9

!

BN

Fig.7. The contribution to the coefficient Cy is gov-
erned by a narrow cylindrical tube of the length pr and
width (p}) ~ pr|eB| inside the Fermi sphere

The zeroth Landau level gives an anomalous contri-
bution to the total current in the BCS domain:

jan(r = 0) = —e.(1- rot 1) / 2”;2 de(ps) =
p=<0
hC
= ——mo (1-rot1)l, (66)
where

7(1'2;2;2”’ = g—fi = /Ifol2%7 (67)

and hence
Co ~ ngﬁ? ~p (68)

in the BCS domain.



MITD, Tom 137, BBm. 3, 2010

BCS-BEC crossover and quantum hydrodynamics ...

We note that fy(z — py/eB) in (67) is an eigen-
function for the zeroth Landau level. It is easy to see
that the integral for Cy in (66) and (67) is governed
by the narrow cylindrical tube inside the Fermi sphere
(see Fig. 7) with the length pr parallel to the 1 vector
and with the radius of the cylinder squared given by

(py) ~ prleB|. (69)

According to the ideas in [5, 18], this tube plays the
role of a vortex in momentum space, thus providing a
normal core and anomalous current at 7" = 0.

We note that a key result in [5, 6] related to the
absence of the gap for the energy of the zeroth Lan-
dau level (see Eq. (65)) is quite stable with respect to
small modifications of the texture of the 1 vector in
Eq. (60). Our careful analysis shows that the account
of small bending corrections with [1-rotl] # 0 (small
tilting of the magnetic field with respect to the (x,y)
plane B = Bpe, + Bie,) as well as of small inhomo-
geneties of a magnetic field B = By + By, which lead
to a double-well effective potential, does not suppress
the zero mode in the spectrum of the BdG equation
(does not lead to the appearance of a gap A= for the
zeroth Landau level).

9. HOW TO REACH THE HYDRODYNAMIC
REGIME wr K 1

In spite of the zero-mode stability, the authors of [4]
expressed their doubts regarding the calculation of Cj
based on the Dirac equation in the homogeneous mag-
netic field B = 1-rotl. From their standpoint, the
calculation of Cy from (66) and (67) is an oversimplifi-
cation of a complicated many-particle problem. In par-
ticular, they emphasized the role of the finite damping
v = 1/7 and of the other residual interactions in de-
stroying the chiral anomaly, which is connected with
the states inside the Fermi sphere, thus restoring the
superfluid hydrodynamics (without the normal velocity
vy, and the normal density p,). Indeed, if the damping
~ is larger than the level spacing of the Dirac equation,
we have
[1-rotl]

p (70)

wo = V¢PF
in the case where £(p.) = 0, and then the contribution
from the zeroth Landau level should be washed out by
the damping (see Fig. 8) and the hydrodynamic regime
is established. The damping 7 for the chiral fermions
(for fermions living close to the nodes), in a very clean
Al phase without impurities, it is defined at T"= 0 by
the different decay processes (see [26]).
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\ o
>< i
Fig.8. The possible role of damping in reaching the

hydrodynamic limit for low frequencies and small k vec-
tors for v > wo (wo = E1 — Ej is the level spacing)

—<

Fig.9. Different decay processes for damping of chiral

fermions at T' = 0: the standard three-fermion decay

process and a decay process with an orbital wave emis-
sion

It is natural to assume that the only parameter
that determines v at T 0 for chiral fermions is
Ao(0) = Ao(pL)/pr. The leading term in decay pro-
cesses is given by the emission of an orbital wave (see
Fig. 9). It is given by

AP /pE + vE(p: — pF)’

71
- (7)
For p. = pr (£(pz) = 0), we have
A2 p2
~ T2 (72)
F Pg

We note that for the chiral fermions on the zeroth Lan-
dau level, we have

1-rot 1]\ /2
ol (mt)”
and the level spacing for £(p.) =0 is
wo ~ Ay <§;> . (74)

Hence, v/wp < 1 close to the zero mode for these two
decay processes, and a ballistic regime is established. It
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is therefore difficult to wash out the contribution form
the zeroth Landau level by the different decay processes
in the superclean *He-A1 phase at T = 0. We note
that the hydrodynamic regime w7t < 1 could be easily
reached in the presence of nonmagnetic impurities or
in the presence of aerogel [33-35].

9.1. The concept of the spectral flow and the
exact anomaly cancelation

If the anomalous current exists in a superclean Al
phase at T = 0, it should be compensated somehow.
According to [5], the deficit in the equation for the
conservation of the total linear momentum due to the
presence of an anomalous current,

aji. Ol _
ot Oxy, =1 (75)
where
3 ol
I= %COL (rotlx a) ,

is exactly compensated by the quasiparticle contribu-
tion P gyt
8Pf}uas a(I)zk: _
ot Oxy,

where Pguas = pn(T = 0)(vy, — vs) in the hydrody-
namic regime.

We note that p,(T = 0) ~ |1l x rot1|/Ag is a non-
analytic function and is related to the nonzero bending.
The arguments in [5] are connected with the nonconser-
vation of the axial current j; in QED, which just com-
pensates I via the Schwinger term E-B ~ 01/0t - rot 1.
Physically, according to [5, 36], this cancelation is due
to the spectral flow from the negative to the positive
energy values along the anomalous branch with ny, =0
in Fig. 6 and then to the quasiparticle bath in the pres-
ence of an electric field E ~ 91/0t (of a time-dependent
texture of the 1 vector).

We note that there is one anomalous level that
crosses the zero energy in the physics of a vortex core
in the case of cylindrical symmetry (see Fig. 10). At
T = 0, as a function of the generalized angular mo-
mentum (@, it represents the set of discrete points sep-
arated by a minigap wy ~ AZ/ep. Therefore, at T =0
and in the superclean case v = 1/7 — 0, the spectral
flow from negative to positive energies is totally sup-
pressed. Thus the Thouless result [37] for the Berry
phase without the anomaly is restored for the physics
of the vortex friction. An inclusion of a large number of
impurities or a finite temperature leads to the revival
of the anomaly in the hydrodynamic regime wor < 1

_Ia (76)

AE@p.-=0,0Q)
N— -~
Q‘
Chiral branch
— T

Fig. 10. The level structure in the vortex core of *He-A.
All the branches are even in the generalized angular
momentum @, but one branch E(p, = 0,Q) = —woQ,
which crosses zero energy at Q@ = 0, is chiral (odd
in Q). It participates in the momentum exchange be-
tween the fermions in the vortex core and the heat bath
fermions in the hydrodynamic limit wr < 1 according
to [21]

in the case of vortices. We could therefore assume that
the chiral anomaly and the spectral flow are ineffective
at T = 0 for both vortices and the bulk A phase of the
superfluid *He in the superclean limit. Hence, the ques-
tion of how the total linear momentum is conserved in
this case in an infinite system (without walls) is very
nontrivial and unresolved so far.

We think that the exact cancelation between the
time derivatives of the anomalous and quasiparticle
currents should be demonstrated explicitly by deri-
ving and solving the kinetic equations for the nodal
quasiparticles in both the ballistic and hydrodynamic
regimes. We note that if T # 0 (as we always
have in real experiments), and for low frequencies
wr(T # 0) < 1 (7(T # 0) ~ aT™"), the relative
normal velocity v, — vy = 0¢¢/0P jyuqs becomes an ad-
ditional hydrodynamic variable, and hence the cance-
lation of the linear momentum deficit is to occur auto-
matically.

Thus, the problem of the exact anomaly compensa-
tion exists only for 7= 0. We note that an approach
based on the kinetic equation for quasiparticles at dif-
ferent temperatures and the impurity concentrations
in a vortex core of the s-wave superconductors and the
superfluid *He was worked out in [38] in the case of a
singular vortex.

In the case of nonsingular vortex structures in
3He-A, we also note papers [36], where the authors con-
sider the scattering of quasiparticles on the walls of the
container for a finite systems to obtain a finite v at
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T = 0. The importance of the prehistory of the orbital
texture with the spectral flow concept was also stressed
in these papers.

10. CONCLUSIONS AND
ACKNOWLEDGMENTS

We solved the Leggett equations and constructed
the phase diagram of the BCS-BEC crossover at low
temperatures T' < T¢ for the 100 %-polarized three-di-
mensional Al phase. From the evaluation of the
low-temperature specific heat and the normal density,
we see the indications of a quantum phase transition
close to the point u(T = 0) = 0. At the same time, deep
in the BCS and BEC domains, the crossover ideas of
Leggett, Nozieres, and Schmitt—Rink work quite well.
In these regions, the phase diagram for the p-wave re-
sembles the s-wave case in gross features. We discussed
the complicated problem of the chiral anomaly and the
mass current nonconservation in the BCS A1l phase at
T = 0. We presented two different approaches to this
problem, based on the supersymmetric hydrodynamics
and on the formal analogy with the Dirac equation
in QED. We evaluated the damping v = 1/7 due to
the different decay processes in the superclean BCS Al
phase at 7" = 0, and found that ~ is small in compar-
ison with the level spacing wp of the BdG equation.
To reach the hydrodynamic regime wr < 1, we need
a sufficient amount of aerogel or nonmagnetic impuri-
ties at 7' = 0. We assumed that in both the hydro-
dynamic and ballistic regimes at 7' = 0, we have to
derive a reliable kinetic equation to explicitly demon-
strate the exact cancelation between time derivatives
of the anomalous current j,, = —h/4mCpl(1-rotl) and
of the quasiparticle contribution Py, in the conserva-
tion equation for the total linear momentum j;o;. We
note that for the full theoretical analysis of the prob-
lem, other residual interactions different from damping
are also important for the nodal fermions. To check
whether a chiral anomaly has an infrared manifesta-
tion (which was not captured in the approach based
on the supersymmetric hydrodynamics in [4]), it will
be useful to derive a complete set of Ward identities
between the self-energies of chiral fermions ¥ and the
corresponding vertices I'. The idea in this approach is
to find either a strong infrared singularity or a powerful
reexpansion of the quasiparticle spectrum as w, k — 0.

We note that the importance of the residual Fer-
mi-liquid-like interactions for the analysis of a half-in-
teger vortex in the three-dimensional A phase of 3He
was recently emphasized in [39].

We invite the experimentalists to enter this very in-

495

teresting problem. It will be nice to measure the spec-
trum and damping of orbital waves in the superfluid A
phase of He at the low temperatures T < Te. As we
have already discussed, the spectrum is quadratic for
low frequencies w < A2/ep and contains the intrinsic
angular momentum density as a coefficient of the term
linear in frequency (see (50) and (51)).

The damping of orbital waves provides an evalua-
tion of the orbital viscosity in *He-A at low tempera-
tures T' < T. We note that even in this case, it is an
interesting possibility to derive the overdamped (dif-
fusive) character of the spectrum. This possibility is
supported theoretically in [40], where the author ob-
tained several overdamped modes in the partially po-
larized A1 phase via the functional integral technique
in the hydrodynamic limit of small w and k.

Another possibility of an overdamped diffusive spec-
trum was considered in [41] in the impurity diagram
technique [42, 43| for the hydrodynamic regime wr < 1
of spin waves in a frustrated two-dimensional AFM. We
note that in the opposite high-frequency regime, the
spectrum of spin waves is linear.

Here, it is possible to extend the experiments of
the orbital inertia and orbital viscosity for nonsingular
vortices in the A phase of *He to the low temperatures
T <« T¢. Of course, to have the A phase at low tem-
peratures, we need a strong spin polarization.

We also note that a crossover from the ballistic to
the hydrodynamic regime w7 < 1 could occur due to
both the aerogel (the nonmagnetic impurities) or a fi-
nite temperature T # 0, which is always present in a
real experiment. In the last case, the damping v oc T™
is temperature dependent.

Finally, to measure the nontrivial topological effects
in two dimensions, we propose to perform experiments
with a Josephson current between two thin films or two
magnetic taps: one with a two-dimensional axial phase
and the topological charge @ = 1 [44] and the other
with the planar two-dimensional phase with @ = 0.
We hope that it will be possible to directly measure
AQ =1 in this type of experiments.

We note that in the two-dimensional axial phase,
the 1 vector 1 = [e, x e,] = e, is perpendicular to the
plane of 2D films. Hence, the orbital waves, connected,
as we discussed, with the rotation of the 1 vector around
a perpendicular axis, are gapped. The sound wave is
the only Goldstone mode in the gauge orbital sector.
Moreover, 1 L rotl (it is impossible to create a twisted
texture in two dimensions). Therefore, the anomalous
current jon, = —h/4mCo(l-rot 1)1 = 0. Hence, there is
no problem with the mass current nonconservation at
T =0 [25].
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Nontrivial topological effects possibly exist in the
spin sector [44].

Here, the anomalous spin current was predicted in
the presence of an inhomogeneous magnetic field H(r)
for an *He-A film (the BCS phase)

-spin

Jai QgizklzakHch_v (77)
where H| -d = 0 and d is the spin vector in the two-di-
mensional *He film.

Another possibility is to measure the contribution
of the massless Majorana fermions for the edge states
on the surface of superfluid *He-B and a rough wall
(or on the surface of a vibrating wire in the Lancaster

experiments) [45].
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