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We find that neutron transmission of a magnetic systems with the noncollinear magnetization contains a ti-
me-odd correlation. The neutron reflection from such a system violates detailed balance. Time-odd correlation
is shown to violate T-invariance even in the presence of an irreversibility produced by losses and discribed by

imaginary part in the neutron—matter interaction.

1. INTRODUCTION

The principles of invariance of physical processes
under discrete transformations such as spatial inversion
(P-invariance), time reversal (T-invariance), charge
conjugation (C-invariance), and their products like CP
and CPT, and the principle of detailed balance, some-
times called “reciprocity”, are now a standard topic of
textbooks. All these principles are mainly considered
with respect to elementary particles and elementary
scattering processes, and a large field of research is de-
voted to the search of a violation of these principles.

The detailed balance, like unitarity and energy con-
servation, was never checked because the reign of these
principles is unquestionable. The P- and T-invariance
were questioned because of experimental observation of
P- and T-odd correlations. For instance, a P-odd cor-
relation, like p, - s, was observed in neutron [-decay.
This means that the numbers of electrons (with mo-
menta p,) emitting along and opposite the neutron spin
s are different. This correlation is P-odd because the
momentum p, changes its sign under spatial inversion,
while the axial vector s does not. Therefore, the pro-
duct pe - s also changes sign. At the same time, this
correlation is T-even because both p, and s change
their signs under time reversal, and their product does
not.

A T-invariance violation was initially observed in
K-meson decays, and great efforts, still without success,
are now focused on the search for the neutron electric
dipole moment, which is equivalent to the search for
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the correlation s - E, where E is an external electric
field.

In this paper, we concentrate on neutron optics and
show that T-odd correlations can easily be discovered
there, and hence the question of whether these cor-
relations are an evidence of the T-violation naturally
arises.

In fact, the T-invariance violation can be expected
in neutron optics. This is because neutron interaction
with matter is described by an optical potential, which
contains an imaginary part due to losses, and the imagi-
nary part like friction is considered as indication of time
irreversibility.

A Hamiltonian with an imaginary part is not Her-
mitian. Under time reversal, which is described by a
unitary operator times the complex conjugation opera-
tor, the imaginary part changes its sign. Normally, the
imaginary part of an optical neutron—matter potential
is negative and describes neutron losses due to absorp-
tion. After time reversal, it becomes positive, which
means the creation of neutrons. It is clear that these
two Hamiltonians are fundamentally different. Never-
theless, as we prove in what follows, this does not mean
a violation of the T-invariance.

The detailed balance is a special fundamental prin-
ciple. When it is not satisfied, principle of maximal en-
tropy at equilibrium is violated. The detailed balance
is a litmus paper for judgement whether one scattering
or transport model or another is correct. For instance,
if we consider gas flowing along a tube and suppose that
reflection of atoms from the tube walls proceeds accord-
ing to some model indicatrix [1], then we must be care-
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Fig.1. Reflection and transmission of a magnetic mir-
ror of thickness d, consisting of two films magnetized
in the z,y coordinate plane, which is parallel to their
interfaces. The external magnetic field is zero. Mag-
netic fields By 2 of the films are at an angle ¢ to each
other. The incident neutron going from the left and
polarized along the normal to the films (the z axis) can
be reflected, e.g., with a spin flip (R_+ is the reflection
amplitude) or transmitted, e.g., without spin flip (T4
is the transmission amplitude)

ful about the model. We should guarantee that if we fill
the tube with an isotropically distributed atomic gas,
then reflection from the walls according to the model
does not create fluxes in the tube.

In this paper, however, we show that the well-es-
tablished laws of the interaction neutron—-matter can
lead to a violation of detailed balance. It looks as if
some magnetic systems submerged into an isotropically
distributed equilibrium neutron gas at a temperature
T decrease its entropy by —|AS| and cool the gas by
the amount —T'AS without any work! However this
cooling cannot be observed because submersion of the
system into the neutron gas creates many new degrees
of freedom, which increase the entropy by considerably
larger amount.

Below, we consider reflection and transmission of a
magnetic mirror shown in Fig. 1. The mirror of the
total thickness d contains two magnetic layers. Their
magnetizations are parallel to the interfaces (the z,y
coordinate plane) and make an angle ¢ to each other.
The outside field is supposed to be zero. We show that
the neutron transmission matrix contains a term pro-
portional to the time-odd correlation

S - [Bl X Bz] (1)
Observation of such a correlation can be interpreted as
a T-invariance violation.

The problem of T-odd correlations in cross sections
of polarized neutrons in the presence of corkscrew-li-
ke magnetic fields and fluctuations was first discussed
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in [2-5]. We show that the T-odd term in the trans-
mission matrix does not imply a violation of the T-in-
variance even in presence of absorption.

In the next section, we show how correlation (1) ap-
pears in the transmission of the system shown in Fig. 1.
In Sec. 3, reflection of the system in Fig. 1 is discussed.
The reflection matrix is shown not to contain T-odd
terms, but it contains terms that violate the detailed
balance principle. In Sec. 4, we discuss a T-odd corre-
lation appearing in the interaction of neutrons with a
mirror having helicoidal magnetization, and show that
the violation of the detailed balance principle in this
case is very prominent. In Sec. 5, we discuss the con-
cept of the T-invariance as applied to neutron reflec-
tometry, and show why this invariance is not violated
even if there is absorption in the system. In Sec. 6, we
summarize our results.

2. NEUTRON TRANSMISSION OF THE
TWO-LAYER MAGNETIC MIRROR AND
DERIVATION OF Eq. (1)

The left-to-right transmission matrix 7 for the sys-
tem of two films depicted in Fig. 1 is representable
as [6,7]

# =720 Bo)[I— pi (0 Bi)ps(o - B,)] ™' x

X +1(U . Bl)7

(2)

where B; are the magnetic fields inside the films, Iis
the unit 2 x 2 matrix, and o is the vector (0,,0,,0)
of the Pauli matrices:

> ’ ( J

[ Z
(o 5)

Expression (2) is easily obtained if we imagine that
the films are separated by an infinitesimal vacuum gap.
The first right and the last left factors in (2) are trans-
missions of the separate films, and the middle factor
accounts for multiple reflections between them.

The transmission matrix 7(o - B) of a single film is

0 1
10

0

—1

0

Oy =

Oy

(3)
1

0

0
-1

0.

#(o - B) = exp(ik' (o - B)) x
y I-i%(o-B)
I —i2(o - B) exp(2ik’(o - B)I)’

(4)

where [ is the film thickness,

v

kK'(o-B)=1/(k* —u)l-0o-B, (5)
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k is the wave number of the incident neutron,

u =u' —iu" is the optical potential of the film,

_k—k(s B)
k + k'(o - B)

r(o - B) (6)
is the reflection matrix of the interface between the
vacuum and the film, and k = kI. The potential u is
defined with the factor 2m/h?, and the field B is de-
fined with the factor 2um/h? (m and u are respectively
the neutron mass and the absolute value of its magnetic
moment).

The reflection matrix p(o - B) of the film is
plo-B) =

I — exp(2ik/(o - B)I)

=r(o- B)i — = :
—12(0 - B) exp(2ik/(o - B)I)

(7)

We see that (4) and (7) transform into each other under
the exchange

(o - B) < exp(ik'(o - B)I).

An arbitrary function f(e - B) of the matrix (o - B)
is also a matrix, which is representable in the form

f(o -B)=1fY(B)+0o bf ) (B), (8)
where
f(i)(B):w, b:%_ (9)

Relation (8) is easily derived by expanding the func-
tion into the Taylor (or MacLaurent) series in power of
(o - B)™ and taking into account that (o - B)? = IB2.
Therefore, all even powers (o - B)2" are scalars B2",
they constitute f(+)(B), and all odd powers

2n—1 __

(o -B) (o -B)B*" = (¢ - b)B*"*!

constitute o - bf(=)(B).
With (8), we can easily find that

f(o-B)f(-o-B) = f(B)f(-B),
and therefore
1 1 . -
i—_f(c-B) yi-flze Bl (10)
N =[1-f(B)l - f(-B)]

For two arbitrary functions f(o - A) and g(o - B) and
arbitrary vectors A and B, the relation

[i-f(o-A)g(o-B)" =
[

= —[[-g(—o -B)f(—o-A)] (11)

2=
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holds, where

and hence

N = 1=2[fH ()¢ (B)+ ) (4)g 7 (B)(a - b)]+

+ f(A)f(-A)g(B)g(-B). (12)
Here,
_A LB
Al |b|’
and we use the well-known relation
(o -a)(o-b)=(a-b)+i(e-[axb]). (13)

With account of (11), the matrix of the total transmis-
sion amplitude 7 in (2) takes the form

. 1. & .
T = N‘Q(U"Bz) [I - p2(-0- B2)P1(_0"Bl)] X

x 71(o-By). (14)
Therefore, it has the structure
. 1., .
=N [T2(0 - Bo)Ti(o-By) —
~ Fy(0-By)Fi (0 By)| = %[f-ﬂ —#), (15)
where we set
Fa(o - By) = (0 - Bs)pa(—0 - B), (16

Fi(o-By) = pi(o By (-0 - By).
The first term in (15) with (8) and (13) taken into ac-
count is
T = To(0-Ba)fi(0-By) =
= [T1(+)T2(+) + T(_)Té_)(bl bo)| T+
T1(+)

7 (o - [be x by)),

+ T(_)T2(+)0' -by + T(_)

+ iTl(

a - b2 —+
(17)

where the last term contains correlation (1), and the
second term 72 in (15) has the same structure with
the replacement of 7 by F.

In what follows, we take |B;| = |Bz2| = B for sim-
plicity. If we choose the = axis along By, then

0B, =0,B, 0By =o0,Bexp(ipo.),
and Eq. (2) with account of (17) becomes

7 = Col + Cpo, [i + aexp(ipo,)] +iC.os, (18)
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where all the C' and a are some scalar functions of k.
It follows from this expression that if the quantization
axis for incident neutrons is chosen along z, then the
transmission probability without a spin flip is

T(+ - #) = |(£[f|4) =

=|Col* + |C:]* £ 2Im[Co €], (19)

where Im[z], and later Re[z], denote imaginary and real
parts of z, and the |£) states are

B =

If we know nothing about the magnetic structure of
the mirror, then the difference of transmissions for dif-
ferent spin directions along the normal, which coincides
with the direction of the neutron wave vector k, can be
interpreted as a P-odd correlation k-s. In our case, we
know the magnetic structure, and hence we see that
the difference of transmissions is due to not a P-odd
but a T-odd correlation (s-[by x bs]), and the question
arises as to whether this correlation is a manifestation
of the T-irreversibility of the Schrodinger equation for
such a magnetic fields configuration.

In fact it does not violate T-invariance, because
T-inversion includes exchange of initial and final states.
Therefore transmission from left to right after T-inver-
sion is replaced by transmission in opposite direction,
which leads to transposition of magnetic fields and ad-
ditional change of sign of the product [by x bs]. More-
over, as will be shown later, the T-invariance is not
violated even in presence of losses in matter.

It is important to notice that transmission with-
out spin flip depends on angle ¢, and the difference
T+ — +) —T(— — —) x siny changes sign when
@ — —p. Therefore left rotation in nature is distin-
guished from right rotation, which can be considered
as violation of space parity. However, space parity is
also not violated. Distinguishing of two rotations oc-
curs because of dynamics. Interaction of neutron with
magnetic field |u|o - B leads to counterclockwise pre-
cession of the neutron spin around the field. Because
of that only counterclockwise rotating radio frequency
field turns the neutron spin in spin flipper. Therefore
it is not surprising that counterclockwise turn of the
magnetic field in the second film acts differently than
clockwise turn. By the way this fact gives an oppor-
tunity to communicate to a distant galaxy what do we
mean clockwise and counterclockwise rotation. Even if
the distant galaxy is composed of antimatter, the ob-
servers at the distant galaxy can use the neutron (or
antineutron) experiment to see neutron precession in

1
0

0

+) X

(20)
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their magnetic field and direction of this precession will
be exactly counterclockwise.

Transmissions with spin flip of the system depicted
in Fig. 1,

T(+ - F) = [(F|RlF) =
= |Co2(1+ |f + 2Relaexp(+ip)]),  (21)

can also be different. However, if the two films in the
mirror are identical and differ only by the magnetiza-
tion direction, then o = 1, and the spin-flip transmis-
sions are identical.

3. NEUTRON REFLECTION FROM THE TWO
LAYER MAGNETIC MIRROR

Here we prove that the reflectivity of the mirror
shown in Fig. 1 does not contain T-odd terms, but vi-
olates the detailed balance principle.

The amplitude of the reflection from the left is rep-
resented by the expression
g B2) X

pt = pi(o - B1) + 71 (o - Bi)pa(
]

x [I — p1(o-B1)pa(o - By)| '71(0 - By), (22)
where (11) can be used to write
pi=ir(o By) + 1 [71(7 - Bi)ps(o Ba) x
X [1 = p2(—0 B2)pi(—0o - Bi)]Ti(a-By)], (23)
or
pt =p1(o-By) — p2(B2)p2(=Ba) X

N
(U . Bl)ﬁl(—d . B1) +

)
x 7

+%Al(a"Bl)pAQ(U'BQ)‘IA'l(U-Bl). (24)

Using (8), this expression is reduced to the form

ﬁt = Doi—FDl(O' bl) —|—D2(0’ b2) =

= Dol + Do, (1 + Bexplipo.)], (25)
where all the D and § = D5/D; are some scalar func-
tions of k. It follows from this equation that the no-
spin-flip reflectivities for both incident polarizations are
equal to each other,

R(+ = +) = R(= = =) = [(£[pe|£)* = |Do[?, (26)
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while the spin-flip reflectivities R(+ — F) are different,

R(* = F) = [(Flpe|£)* =
= D12 (14 |81 + 2Re[Bexp(ip)]),  (27)
which means that
R(+ — —) # R(— — +),
and their dependence on the angle ¢ is such that

R(£ = F,0) = R(F > £,-9). (28)

The reflectivity does not contain T-odd correla-
tions, but violates the detailed balance principle. Of
course, it is not evident from (27) that the detailed ba-
lance is violated. It is not violated if 5 is a real number.
But numerical calculations presented in Fig. 2 demon-
strate that the two spin-flip reflectivities are actually
different.

In Fig. 2, we show the results of numerical calcula-
tion of reflectivities and transmissivities of the mirror
in Fig. 1 consisting of two identical Co layers of the
thickness 25 nm magnetized to B = 1 T, when an-
gle between their magnetizations is ¢ = +7/2. For
identical layers, the factor a in (21) is equal to unity
in accordance with (17). Therefore, the probabilities
of transmission with a spin flip are identical and their
dependence on ¢ is proportional to cos? ¢.

The difference of the two spin-flip reflectivities im-
plies violation of the detailed balance principle, because
it creates a cycle current in phase space, which dimi-
nishes the entropy. We discuss this effect in the next
section, where the violation of the detailed balance is
seen more clearly.

4. NEUTRON REFLECTION AND
TRANSMISSION OF A MAGNETIC
MIRROR WITH HELICOIDAL
MAGNETIZATION

The false effect of the time and parity violation
is seen especially well in the case of a neutron reflec-
tion from a magnetic mirror magnetized helicoidally [8]
around a vector q that is directed along the z axis pa-
rallel to the normal to the mirror interface. The neut-
ron wave function in a helicoidal field was found in [9],
and the reflection and transmission of helicoidal mir-
rors were calculated in [8,10]. In Fig. 3, we show the
reflectivities with and without a spin flip for polariza-
tions of the incident neutron along and opposite the z
axis. Outside the mirror, the magnetic field is absent.

ATT

The analogous transmission probabilities are shown in
Fig. 4. We see that there is again a time-odd correla-
tion o -q, which can also be interpreted as a parity-odd
correlation of spin with the incident neutron momen-
tum o - k. The resonant spin-flip reflectivity for the
|—) polarization increases with the mirror thickness,
and becomes almost total. Such a reflectivity violates
the detailed balance principle, and the violation is es-
pecially well seen in this example. Indeed, we imagine
that a vessel with ideal walls is homogeneously filled
with a gas of unpolarized neutrons. If we split the
vessel into two parts as shown in Fig. 5, inserting a
helicoidal mirror, then all the neutrons from the left
part I go through the mirror to the right part II, and
become completely polarized along the z axis. Indeed,
the neutrons in the |+) state go directly through the
mirror, and cannot return, while the neutrons in the
|—) state are reflected from the mirror with a spin flip,
and after the reflection from ideal walls of the vessel, go
again to the mirror and through it to part IT. Therefore,
it looks as if all the neutrons from part I gathered in
part IT in the single state |+), which strongly decreases
the entropy.

However, such a spilling over the mirror from left
to right is actually compensated by the opposite flux
from IT to I, because the neutrons in the |—) state in the
right part can go through the mirror, while neutrons in
the |+) state are reflected from the mirror with a spin
flip to the |—) state. Therefore, the neutrons in both
parts remain isotropic and in the unpolarized state, al-
though a cycle occurs in the phase space. This cycle
has 6 steps listed below, where the last 7th step is the
same as the first one.

1. The neutron in the |+) state goes through the
mirror (M) from the left to the right part of the vessel.

2. Then it reflects from the right wall of the vessel
and goes to M.

3. It reflects from M to the right with a spin flip to
the state |—).

4. Then it reflects from the right wall of the vessel
and, being in the |—) state, goes through M from the
right to the left part of the vessel.

5. Then it reflects from the left wall of the vessel
and goes back to M.

6. It reflects from M to the left with a spin flip to
the |+) state.

7. Then it reflects from the left wall of the vessel
and, being in the |+) state, goes through M.

If there were the same cycle but with the initial
state |—), and a neutron could go through both cycles
with the same probability, then we could say that both
cycles were equally well populated, and the entropy of
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Fig.2. The calculated reflection R(i — j) = |{j|p¢|i)|* and transmission T(i — j) = |{j|#|i}|*, (i,j = +), coeffi-

cients of two-layer mirror of the same thickness when the angle ¢ between magnetizations is 7/2 (a), and —m/2 (b).

The curves correspond to I — R(+ -+ +) = R(— = =), 2 — R(— = +), 3 — R(+ — =), 4 —T(+ — +), 5 —

T(+——)=T(— —+), 6 — T(— — —). The change of the sign of ¢ leads to the exchange R(+ — F) = R(F — %)
of spin-flip curves in reflectivities and of no-spin-flip T(+ — +) — T'(F — F) curves in transmissivities
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Fig.3. Reflectivity of a helicoidal magnetic mirror with (dashed line) and without (solid line) spin flip for the incident po-
larization opposite (a) and along (b) the = axis [4]. We see that above the total reflection range, there is a well-pronounced
peak of almost total reflection with a spin flip, when the incident neutron is polarized against the z axis

the isotropically distributed unpolarized neutron gas
would be maximal. Because only one cycle is popu-
lated in our case and the other is not, the entropy of
the neutron gas is not maximal. If the helicoid mirror
is thin, and the reflection with a spin flip is not total,
then the opposite cycle exists, but the population of
two cycles is not equal, and therefore the entropy is
not maximal again. The same happens with the mirror

shown in Fig. 1. In that case, the population of two cy-
cles and the value of the entropy depend on the angle
© between the two magnetizations.

A decrease in the entropy in both cases is created
by the vector, around which the magnetic field turns.
Such a turn violates the space balance, and therefore
the equilibrium state of the neutron gas does not have
the maximal entropy.
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Fig.4. Transmission probabilities of a helicoidal magnetic mirror with (dashed line) and without (solid line) spin flip for the
incident polarization opposite (left) and along (right) the z axis [4]. We see that above the total reflection range, there is
a well-pronounced dip in transmission of neutrons initially polarized against the z axis
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Fig.5. lllustration of violation of the detailed balance
principle

At the end of this section, we mention the paper [11]
(see also [4]), where diffraction on crystals with heli-
coidal magnetization was considered. It was found that
diffraction contains peaks, which in the perturbation
theory are proportional to

I xé(k —Kkp£q), (29)

where K = k; —ky is the momentum transferred to the
crystal by the neutron with the initial and final mo-
menta k; r, kp is a vector of the reciprocal lattice of
the crystal, and q is the helicoidal vector similar to ours
in helicoidal mirrors. In (29), we see some interesting
discrepancy. The argument of the delta function con-
tains a combination of polar vectors k and kg and of
the axial vector q. This is inconsistent. The additional
peak appearing because of the helical magnetization is
related not to the crystal structure but to the width of
the Bragg peak. If the energy width of the peak is Au,
then the position of the helical magnetic peak is shifted
from the Bragg position kg of the nonmagnetic crystal

by Ak = /Au + ¢2.
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But this discrepancy does not devaluate the impor-
tance of [11]. Tts main value is in the proof that addi-
tional magnetic peaks exist near Brag peaks, resulting
from scattering with one-directional spin flip. In that
respect, reflection from single crystals with helical mag-
netization does also violate the detailed balance prin-
ciple.

5. ANALYSIS OF THE TIME INVARIANCE

Here, we first discuss the question whether the
T-odd term in (1) actually manifests a T-invariance
violation. Next, we analyze the principle of T-invari-
ance in the case of the neutron scattering on a nonmag-
netic system described by an optical potential with an
imaginary part.

5.1. T-invariance with term (1)

The left-to-right transmission probability without
spin flip can be represented by the function
W = Qo+ (s [b1 x ba])Q1, (30)

where Qo1 are some scalar functions of £, and s is
a unit vector directed along the incident neutron po-
larization; it can be either parallel or antiparallel to
[b; X by]. Hence,

W(E) = Qo % |[br x bs]|Qs.

The right-to-left transmission is

(31)
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7 =Qo+(s-[bs x bi])Q1 =
=Qo— (s-[b1 xb])Q1, (32)

because the order of films met by the neutron at trans-
mission changes. Hence,

W) # W, (33)

which is a manifestation of a violation of the detailed
balance principle.

After the time reversal transformation, not only
s and b; » change sign but also the initial and final
states are permuted. Therefore, m is transformed
to fm but

W) = W+, (34)

and this proves that the T-invariance is not violated.

5.2. T-invariance of the neutron scattering on
absorbing potentials

We consider the simplest case of the neutron scat-
tering on a nonmagnetic one-dimensional potential
u(2) that is nonzero in an interval 0 < 2 < d and con-
tains an imaginary part. The neutron wave function
outside the potential is

P(x,t) = exp(—iwt) x
x [0z < 0)((exp(ika) + p(k) exp(—ikz)) +
+ Oz > d)r(k) exp(ik(z — d))] . (35)
where ©(z) is a step function equal to unity when the
inequality in its argument is satisfied, and to zero ot-
herwise, and p(k) and 7(k) are the reflection and trans-
mission amplitudes, which are complex function of the

incident wave number k. The wave function is a solu-
tion of the Schrédinger equation

ZQ + 8_2
ot Ox2

If we make the transformation

- u(ac)) P(x,t) =0. (36)

t— —t, (37)

then the equation for ¢ (x, —t) changes its form com-
pared with (36). To restore its form, we have to make
a complex conjugation, after which we obtain

(i% + g—; - u*(x)) Uz, —t) =0. (38

However, we must be careful here. A potential that
has an imaginary part changes after complex conjuga-
tion, and therefore we cannot be sure that the function
*(x, —t) remains a solution of (38). Instead of (38)
we must write

’24_ 8_2
Z@t Ox?

and check whether ¥(z,t) = ¢*(x,—t). We prove that
this equality is true in the case of a rectangular poten-
tial, and claim that there are no reasons to doubt its
validity for other potentials.

- u*(x)) U(x,t) =0, (39)

In fact, we can deal with stationary equations, wri-
ting
U(z,t) = exp(—iwt)®(z)

and
Y(z,t) = exp(—iwt)d(x),

and our goal is then to show that a solution ®(x) of
the equation

2
<k2 + % - u*(a:)) ®(z) =0, (40)
coincides with ¢*(z).

In the case of a rectangular barrier potential of

height v = u’' —iu” and width d, the wave function
on the full = axis is [12]

o(r,u) = 0(x <0) (exp(ikx)+R(k,u) exp(—ikx))-l—

[1 + (s, u)] exp(ik!(u)d)

1 —r2(k,u) exp(2ik' (u)d)

x [exp(ik' (u)(x — d)) — r(k, u) exp(—ik'(u)(z — d))] +
+O(x > d)T(k,u) exp(ik(z — d)), (41)

+00<z<d

where
_r(k,u)[1 — exp(2ik' (u)d)]
Rk, w) = T 3wy exp @ik (w)d) )
(k) = exp(ik'(u)d)[1 — r?(k,u)]
' 1 —r2(k,u) exp(2ik' (u)d)’
_k—FE'(u) Vo 5
r(k,u) = T paany P E'(u)=VEk2—u.  (43)

We here suppose that k> > u', and everywhere we ex-
plicitly indicate the dependence on the complex poten-
tial u. The function ¢*(z,u) is
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¢ (z,u) =
=0(z<0) (exp( ikx) + R*(k,u) exp(ikx)) +
[1+7” (k, u)] exp(—ik"™ (u)d)
+00 < <Dy —5 00 exp =2k (w)d)
x lexp(—ik" (u )( d)) —r*(k,u) x
x exp(ik'™ (u)(x — d))] +
+0O(z > d)T*(k,u) exp(—ik(z — d)). (44)

It describes the interference of two waves incident from
the left and right with the respective amplitudes R* (k)
and T* (k). We show that it coincides with the solution
®(x) in (40) containing these two incident waves.

The wave incident from the left gives a solution
®;(x), the wave incident from the right gives a solution
®,.(z), and the total solution is equal to ®;(z) + @, (z).
Using the general approach in [13,14] for the incident
wave R*(k,u) exp(ikz), we obtain

P)(z,u”) =0O(x < 0)R*(k,u) x
(exp(zkx) + R(k,u™) exp(— zkx))
+0(0 <z < d)R*(k,u )1[1_+T§E ’Z:;]ei’;i%’:f(u*);g) x
x [exp(ik'(u”)(z — d)) —r(k,u”) x
x exp(—ik'(u”)(z — d))] +
+0(x > d)R*(k, u)T(k, u®) exp(ik(z — d)), (45)

and for the incident wave T*(k) exp(—ik(x — d)), the
wave function is

D, (z,u*) =0(x < 0)T*(k,u)T(k,u*) exp(—ikx) +

+00 <2 <d)T*(k,u) 1[1 4;,28? Z:;]ei};p((;zl:’((l;**))(fl)) X
x [exp(—ik' (u*)x) — r(k,u*) exp(ik' (u*)z)] +

+0O(x > d)T*(k,u) [T(k,u") x
x exp(—ik(z — d)) + R(k,u") exp(ik(z — d))]. (46)

2) for k% > u' that k'(u
*(u), but R(k,u*) # R*(k,

")

It follows from (43) and (4
= k"*(u) and r(u*) = r
and T'(k,u*) # T*(k,u).

It is easy to verify by simple algebra that the sum
of terms in the interval 0 < 2 < d from (45) and (46)
is equal to the middle term in (44). This is shown in
the next equation, where K’ denotes k'(u*), and the
dependence on k and u is omitted in the other terms:

b
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« 1+ r*]exp(iK'd)
1 —r2exp(2iK'd)
x [exp(iK'(x — d)) — r* exp(—iK'(z
[14 r*]exp(iK'd)
1 —r*2exp(2iK'd)
X [exp(—iK'z) — r*exp(iK'x)] =
_ (1 —exp(—2iK'd)) [1+r*]exp(iK'd)
1—r2exp(—2iK'd) 1—r*2exp(2iK'd)
X [exp(iK'(x — d)) — r* exp(—iK'(x — d))] +
exp(—iK'd)(1 — r*?) [1+ 7% "
1 —r*2exp(—2iK'd) 1 —r*2exp(2iK'd)
—d)) — exp(2i K'd)r* x

d)) x

—d))] +

+ 7T

X [exp(—iK'(z
x exp(iK'(x — d))] = exp(i K' (v —

r*[1 + r*] exp(—iK'd)

A =2 exp(2iK'd))(1 — 12 exp(—2iK'd)) |

exp(2iK'd) — 1 — exp(2iK'd)(1 — r*?)| +

+exp(—iK'(z — d)) x
[1+4 r*]exp(—iK'd) "
(1 —r*2exp(2iK'd))(1 — r*2 exp(—2iK'd))
+(1=12)]
_ [V +r*]exp(—ik'™d)
1 —r*2exp(—2ik'*d)
X [exp(—ik'*(x —d))]~ (47)

It can be verified similarly that the sum of ampli-
tudes of two outgoing waves at x < 0 is equal to

R*(k, ) R(k, u*) + T* (k, u)T(k,u*) = 1.

x [(1 — exp(2iK"d))r*?

—d)) — r* exp(ik"* (x

(48)

The right outgoing wave at © > d vanishes. Its ampli-
tude is

R*(k,u)T (k,u*) + T (k,u)R(k,u”) =

= 2Re(R* (k,u)T (k,u*)) = 0,

which shows that the phases of the amplitudes R(k,
and T'(k,u*) differ by = /2.

Therefore, we see that ®(x) = ¢*(x), i.e., scatte-
ring of a scalar particle on a complex potential is time
reversible. We have checked this for a simple rectan-
gular potential, but there are no reasons to expect the
result to be different for more complex potentials.

We considered the case k2 > u' above. If k? < u/,

(49)
u)

then &'(u) = ik" (u), where k" (u) = vu — k2, and
k—ik" (u) 1
kyou) = —————= kyu*) = .
k) = s ) = s (60
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Nevertheless, it can be proved again that ®(x) = ¢*(x),
i.e., scattering on a complex potential is time re-
versible. The proof is a good exercise for the readers,
and we do not therefore present it here.

It can be shown similarly that scattering of a spinor
particle on an arbitrary magnetic potential is time re-
versible, even if the nuclear optical potential of the
neutron-matter interaction contains an imaginary part.

6. CONCLUSION

Using simple examples, we have shown, in a simple
scheme of a neutron reflectometry experiment, how a
T-odd correlation can appear that can be interpreted as
the T- or P-parity violation, although it does not vio-
late T- and P-invariances. The experiment to check the
theoretical predictions can be easily realized with two
magnetic films of different coercivities evaporated upon
nonmagnetic substrate. After magnetization to satura-
tion of the high-coercivity film, the external magnetic
field can be decreased and the sample rotated through
an angle ¢. The result is a system close to the one
shown in Fig. 1.

At the same time, it is shown that if the space con-
tains a couple of noncollinear magnetic fields, then the
scattering of neutrons from this couple does not sat-
isfy the detailed balance principle. This means that
the neutron gas in the presence of two magnetic mir-
rors with noncollinear magnetizations has an equilib-
rium with an entropy that is not absolutely maximal.

We found some interesting features in considering
neutron scattering on a noncollinear magnetic system.
We can expect to find interesting features in consider-
ing a three-layer magnetic system with noncomplanar
magnetic fields By, Bo, and B3. In this system, we can
expect T-odd correlation like

(B1 - [B2 x B3], (51)
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which at the same time violate reciprocity at transmis-
sion, but this subject, will be discussed elsewhere [11].
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