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TIME-ODD CORRELATION IN A NEUTRON REFLECTOMETRYEXPERIMENTV. K. Ignatovi
h *, Yu. V. NikitenkoFrank Laboratory of Neutron Physi
s, Joint Institute for Nu
lear Resear
h141980, Dubna, Mos
ow Region, RussiaRe
eived September 4, 2009We �nd that neutron transmission of a magneti
 systems with the non
ollinear magnetization 
ontains a ti-me-odd 
orrelation. The neutron re�e
tion from su
h a system violates detailed balan
e. Time-odd 
orrelationis shown to violate T-invarian
e even in the presen
e of an irreversibility produ
ed by losses and dis
ribed byimaginary part in the neutron�matter intera
tion.1. INTRODUCTIONThe prin
iples of invarian
e of physi
al pro
essesunder dis
rete transformations su
h as spatial inversion(P-invarian
e), time reversal (T-invarian
e), 
harge
onjugation (C-invarian
e), and their produ
ts like CPand CPT, and the prin
iple of detailed balan
e, some-times 
alled �re
ipro
ity�, are now a standard topi
 oftextbooks. All these prin
iples are mainly 
onsideredwith respe
t to elementary parti
les and elementarys
attering pro
esses, and a large �eld of resear
h is de-voted to the sear
h of a violation of these prin
iples.The detailed balan
e, like unitarity and energy 
on-servation, was never 
he
ked be
ause the reign of theseprin
iples is unquestionable. The P- and T-invarian
ewere questioned be
ause of experimental observation ofP- and T-odd 
orrelations. For instan
e, a P-odd 
or-relation, like pe � s, was observed in neutron �-de
ay.This means that the numbers of ele
trons (with mo-menta pe) emitting along and opposite the neutron spins are di�erent. This 
orrelation is P-odd be
ause themomentum pe 
hanges its sign under spatial inversion,while the axial ve
tor s does not. Therefore, the pro-du
t pe � s also 
hanges sign. At the same time, this
orrelation is T-even be
ause both pe and s 
hangetheir signs under time reversal, and their produ
t doesnot.A T-invarian
e violation was initially observed inK-meson de
ays, and great e�orts, still without su

ess,are now fo
used on the sear
h for the neutron ele
tri
dipole moment, whi
h is equivalent to the sear
h for*E-mail: ignatovi�nf.jinr.ru

the 
orrelation s � E, where E is an external ele
tri
�eld.In this paper, we 
on
entrate on neutron opti
s andshow that T-odd 
orrelations 
an easily be dis
overedthere, and hen
e the question of whether these 
or-relations are an eviden
e of the T-violation naturallyarises.In fa
t, the T-invarian
e violation 
an be expe
tedin neutron opti
s. This is be
ause neutron intera
tionwith matter is des
ribed by an opti
al potential, whi
h
ontains an imaginary part due to losses, and the imagi-nary part like fri
tion is 
onsidered as indi
ation of timeirreversibility.A Hamiltonian with an imaginary part is not Her-mitian. Under time reversal, whi
h is des
ribed by aunitary operator times the 
omplex 
onjugation opera-tor, the imaginary part 
hanges its sign. Normally, theimaginary part of an opti
al neutron�matter potentialis negative and des
ribes neutron losses due to absorp-tion. After time reversal, it be
omes positive, whi
hmeans the 
reation of neutrons. It is 
lear that thesetwo Hamiltonians are fundamentally di�erent. Never-theless, as we prove in what follows, this does not meana violation of the T-invarian
e.The detailed balan
e is a spe
ial fundamental prin-
iple. When it is not satis�ed, prin
iple of maximal en-tropy at equilibrium is violated. The detailed balan
eis a litmus paper for judgement whether one s
atteringor transport model or another is 
orre
t. For instan
e,if we 
onsider gas �owing along a tube and suppose thatre�e
tion of atoms from the tube walls pro
eeds a

ord-ing to some model indi
atrix [1℄, then we must be 
are-473
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Fig. 1. Re�e
tion and transmission of a magneti
 mir-ror of thi
kness d, 
onsisting of two �lms magnetizedin the x; y 
oordinate plane, whi
h is parallel to theirinterfa
es. The external magneti
 �eld is zero. Mag-neti
 �elds B1;2 of the �lms are at an angle ' to ea
hother. The in
ident neutron going from the left andpolarized along the normal to the �lms (the z axis) 
anbe re�e
ted, e.g., with a spin �ip (R�+ is the re�e
tionamplitude) or transmitted, e.g., without spin �ip (T++is the transmission amplitude)ful about the model. We should guarantee that if we �llthe tube with an isotropi
ally distributed atomi
 gas,then re�e
tion from the walls a

ording to the modeldoes not 
reate �uxes in the tube.In this paper, however, we show that the well-es-tablished laws of the intera
tion neutron�matter 
anlead to a violation of detailed balan
e. It looks as ifsome magneti
 systems submerged into an isotropi
allydistributed equilibrium neutron gas at a temperatureT de
rease its entropy by �j�Sj and 
ool the gas bythe amount �T�S without any work! However this
ooling 
annot be observed be
ause submersion of thesystem into the neutron gas 
reates many new degreesof freedom, whi
h in
rease the entropy by 
onsiderablylarger amount.Below, we 
onsider re�e
tion and transmission of amagneti
 mirror shown in Fig. 1. The mirror of thetotal thi
kness d 
ontains two magneti
 layers. Theirmagnetizations are parallel to the interfa
es (the x; y
oordinate plane) and make an angle ' to ea
h other.The outside �eld is supposed to be zero. We show thatthe neutron transmission matrix 
ontains a term pro-portional to the time-odd 
orrelations � [B1 �B2℄: (1)Observation of su
h a 
orrelation 
an be interpreted asa T-invarian
e violation.The problem of T-odd 
orrelations in 
ross se
tionsof polarized neutrons in the presen
e of 
orks
rew-li-ke magneti
 �elds and �u
tuations was �rst dis
ussed

in [2�5℄. We show that the T-odd term in the trans-mission matrix does not imply a violation of the T-in-varian
e even in presen
e of absorption.In the next se
tion, we show how 
orrelation (1) ap-pears in the transmission of the system shown in Fig. 1.In Se
. 3, re�e
tion of the system in Fig. 1 is dis
ussed.The re�e
tion matrix is shown not to 
ontain T-oddterms, but it 
ontains terms that violate the detailedbalan
e prin
iple. In Se
. 4, we dis
uss a T-odd 
orre-lation appearing in the intera
tion of neutrons with amirror having heli
oidal magnetization, and show thatthe violation of the detailed balan
e prin
iple in this
ase is very prominent. In Se
. 5, we dis
uss the 
on-
ept of the T-invarian
e as applied to neutron re�e
-tometry, and show why this invarian
e is not violatedeven if there is absorption in the system. In Se
. 6, wesummarize our results.2. NEUTRON TRANSMISSION OF THETWO-LAYER MAGNETIC MIRROR ANDDERIVATION OF Eq. (1)The left-to-right transmission matrix �̂t for the sys-tem of two �lms depi
ted in Fig. 1 is representableas [6; 7℄�̂t = �̂2(� �B2)[Î� �̂1(� �B1)�̂2(� �B2)℄�1 �� �̂1(� �B1); (2)where Bi are the magneti
 �elds inside the �lms, Î isthe unit 2 � 2 matrix, and � is the ve
tor (�x; �y; �z)of the Pauli matri
es:�x =  0 11 0 ! ; �y =  0 �ii 0 ! ;�z =  1 00 �1 ! : (3)Expression (2) is easily obtained if we imagine thatthe �lms are separated by an in�nitesimal va
uum gap.The �rst right and the last left fa
tors in (2) are trans-missions of the separate �lms, and the middle fa
tora

ounts for multiple re�e
tions between them.The transmission matrix �̂ (� �B) of a single �lm is�̂ (� �B) = exp(ik̂0(� �B)l)�� Î� r̂2(� �B)Î� r̂2(� �B) exp(2ik̂0(� �B)l) ; (4)where l is the �lm thi
kness,k̂0(� �B) =q(k2 � u)Î� � �B; (5)474
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orrelation in a neutron re�e
tometry experimentk is the wave number of the in
ident neutron,u = u0 � iu00 is the opti
al potential of the �lm,r̂(� �B) = k̂� k̂0(� �B)k̂+ k̂0(� �B) (6)is the re�e
tion matrix of the interfa
e between theva
uum and the �lm, and k̂ = kÎ. The potential u isde�ned with the fa
tor 2m=~2, and the �eld B is de-�ned with the fa
tor 2�m=~2 (m and � are respe
tivelythe neutron mass and the absolute value of its magneti
moment).The re�e
tion matrix �̂(� �B) of the �lm is�̂(� �B) == r̂(� �B) Î� exp(2ik̂0(� �B)l)Î� r̂2(� �B) exp(2ik̂0(� �B)l) : (7)We see that (4) and (7) transform into ea
h other underthe ex
hange r̂(� �B)$ exp(ik̂0(� �B)l):An arbitrary fun
tion f̂(� �B) of the matrix (� �B)is also a matrix, whi
h is representable in the formf̂(� �B) = Îf (+)(B) + � � bf (�)(B); (8)where f (�)(B) = f(B)� f(�B)2 ; b = BB : (9)Relation (8) is easily derived by expanding the fun
-tion into the Taylor (or Ma
Laurent) series in power of(� �B)n and taking into a

ount that (� �B)2 = ÎB2.Therefore, all even powers (� � B)2n are s
alars B2n,they 
onstitute f (+)(B), and all odd powers(� �B)2n�1 = (� �B)B2n = (� � b)B2n+1
onstitute � � bf (�)(B).With (8), we 
an easily �nd thatf̂(� �B)f̂ (�� �B) = f(B)f(�B);and therefore 1Î� f̂(� �B) = 1N [Î� f̂ (�� �B)℄;N = [1� f(B)℄[1� f(�B)℄: (10)For two arbitrary fun
tions f̂(� �A) and ĝ(� �B) andarbitrary ve
tors A and B, the relation[Î� f̂(� �A)ĝ(� �B)℄�1 == 1N [Î� ĝ(�� �B)f̂ (�� �A)℄ (11)

holds, whereN Î = [Î� f̂(� �A)ĝ(� �B)℄[Î� ĝ(�� �B)f̂ (�� �A)℄;and hen
eN = 1�2[f (+)(A)g(+)(B)+f (�)(A)g(�)(B)(a � b)℄++ f(A)f(�A)g(B)g(�B): (12)Here, a = AjAj ; b = Bjbj ;and we use the well-known relation(� � a)(� � b) = (a � b) + i(� � [a� b℄): (13)With a

ount of (11), the matrix of the total transmis-sion amplitude �̂t in (2) takes the form�̂t = 1N �̂2(� �B2) hÎ� �̂2(�� �B2)�̂1(�� �B1)i�� �̂1(� �B1): (14)Therefore, it has the stru
ture�̂t = 1N [�̂2(� �B2)�̂1(� �B1) �� F̂2(� �B2)F̂1(� �B1)i � 1N [�̂t1 � �̂t2℄; (15)where we setF̂2(� �B2) = �̂2(� �B2)�̂2(�� �B2);F̂1(� �B1) = �̂1(� �B1)�̂1(�� �B1): (16)The �rst term in (15) with (8) and (13) taken into a
-
ount is�̂t1 = �̂2(� �B2)�̂1(� �B1) == h� (+)1 � (+)2 + � (�)1 � (�)2 (b1 � b2)i Î++ � (�)1 � (+)2 � � b1 + � (�)2 � (+)1 � � b2 ++ i� (�)1 � (�)2 (� � [b2 � b1℄); (17)where the last term 
ontains 
orrelation (1), and these
ond term �̂t2 in (15) has the same stru
ture withthe repla
ement of �̂ by F̂.In what follows, we take jB1j = jB2j = B for sim-pli
ity. If we 
hoose the x axis along B1, then�B1 = �xB; �B2 = �xB exp(i'�z);and Eq. (2) with a

ount of (17) be
omes�̂t = C0Î+ Cx�x[Î+ � exp(i'�z)℄ + iCz�z; (18)475
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h, Yu. V. Nikitenko ÆÝÒÔ, òîì 137, âûï. 3, 2010where all the C and � are some s
alar fun
tions of k.It follows from this expression that if the quantizationaxis for in
ident neutrons is 
hosen along z, then thetransmission probability without a spin �ip isT (�! �) = jh�j�̂tj�ij2 == jC0j2 + jCz j2 � 2 Im[C0C�z ℄; (19)where Im[x℄, and later Re[x℄, denote imaginary and realparts of x, and the j�i states arej+i = �10�; j�i = �01�: (20)If we know nothing about the magneti
 stru
ture ofthe mirror, then the di�eren
e of transmissions for dif-ferent spin dire
tions along the normal, whi
h 
oin
ideswith the dire
tion of the neutron wave ve
tor k, 
an beinterpreted as a P-odd 
orrelation k � s. In our 
ase, weknow the magneti
 stru
ture, and hen
e we see thatthe di�eren
e of transmissions is due to not a P-oddbut a T-odd 
orrelation (s � [b1�b2℄), and the questionarises as to whether this 
orrelation is a manifestationof the T-irreversibility of the S
hrödinger equation forsu
h a magneti
 �elds 
on�guration.In fa
t it does not violate T-invarian
e, be
auseT-inversion in
ludes ex
hange of initial and �nal states.Therefore transmission from left to right after T-inver-sion is repla
ed by transmission in opposite dire
tion,whi
h leads to transposition of magneti
 �elds and ad-ditional 
hange of sign of the produ
t [b1�b2℄. More-over, as will be shown later, the T-invarian
e is notviolated even in presen
e of losses in matter.It is important to noti
e that transmission with-out spin �ip depends on angle ', and the di�eren
eT (+ ! +) � T (� ! �) / sin' 
hanges sign when' ! �'. Therefore left rotation in nature is distin-guished from right rotation, whi
h 
an be 
onsideredas violation of spa
e parity. However, spa
e parity isalso not violated. Distinguishing of two rotations o
-
urs be
ause of dynami
s. Intera
tion of neutron withmagneti
 �eld j�j� � B leads to 
ounter
lo
kwise pre-
ession of the neutron spin around the �eld. Be
auseof that only 
ounter
lo
kwise rotating radio frequen
y�eld turns the neutron spin in spin �ipper. Thereforeit is not surprising that 
ounter
lo
kwise turn of themagneti
 �eld in the se
ond �lm a
ts di�erently than
lo
kwise turn. By the way this fa
t gives an oppor-tunity to 
ommuni
ate to a distant galaxy what do wemean 
lo
kwise and 
ounter
lo
kwise rotation. Even ifthe distant galaxy is 
omposed of antimatter, the ob-servers at the distant galaxy 
an use the neutron (orantineutron) experiment to see neutron pre
ession in

their magneti
 �eld and dire
tion of this pre
ession willbe exa
tly 
ounter
lo
kwise.Transmissions with spin �ip of the system depi
tedin Fig. 1,T (�! �) = jh�j�̂tj�ij2 == jCxj2�1 + j�j2 + 2Re[� exp(�i')℄�; (21)
an also be di�erent. However, if the two �lms in themirror are identi
al and di�er only by the magnetiza-tion dire
tion, then � = 1, and the spin-�ip transmis-sions are identi
al.3. NEUTRON REFLECTION FROM THE TWOLAYER MAGNETIC MIRRORHere we prove that the re�e
tivity of the mirrorshown in Fig. 1 does not 
ontain T-odd terms, but vi-olates the detailed balan
e prin
iple.The amplitude of the re�e
tion from the left is rep-resented by the expression�̂t = �̂1(� �B1) + �̂1(� �B1)�̂2(� �B2)�� [I � �̂1(� �B1)�̂2(� �B2)℄�1�̂1(� �B1); (22)where (11) 
an be used to write�̂t = �̂1(� �B1) + 1N [�̂1(� �B1)�̂2(� �B2)�� [1� �̂2(�� �B2)�̂1(�� �B1)℄�̂1(� �B1)℄; (23)or �̂t = �̂1(� �B1)� �2(B2)�2(�B2)N �� �̂ 21 (� �B1)�̂1(�� �B1) ++ 1N �̂1(� �B1)�̂2(� �B2)�̂1(� �B1): (24)Using (8), this expression is redu
ed to the form�̂t = D0Î+D1(� � b1) +D2(� � b2) == D0Î+D1�x(1 + � exp(i'�z)℄; (25)where all the D and � = D2=D1 are some s
alar fun
-tions of k. It follows from this equation that the no-spin-�ip re�e
tivities for both in
ident polarizations areequal to ea
h other,R(+! +) = R(�! �) = jh�j�̂tj�ij2 = jD0j2; (26)476
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orrelation in a neutron re�e
tometry experimentwhile the spin-�ip re�e
tivities R(� ! �) are di�erent,R(� ! �) = jh�j�̂tj�ij2 == jD1j2�1 + j�j2 + 2Re[� exp(�i')℄�; (27)whi
h means thatR(+! �) 6= R(� ! +);and their dependen
e on the angle ' is su
h thatR(� ! �; ') = R(� ! �;�'): (28). The re�e
tivity does not 
ontain T-odd 
orrela-tions, but violates the detailed balan
e prin
iple. Of
ourse, it is not evident from (27) that the detailed ba-lan
e is violated. It is not violated if � is a real number.But numeri
al 
al
ulations presented in Fig. 2 demon-strate that the two spin-�ip re�e
tivities are a
tuallydi�erent.In Fig. 2, we show the results of numeri
al 
al
ula-tion of re�e
tivities and transmissivities of the mirrorin Fig. 1 
onsisting of two identi
al Co layers of thethi
kness 25 nm magnetized to B = 1 T, when an-gle between their magnetizations is ' = ��=2. Foridenti
al layers, the fa
tor � in (21) is equal to unityin a

ordan
e with (17). Therefore, the probabilitiesof transmission with a spin �ip are identi
al and theirdependen
e on ' is proportional to 
os2 '.The di�eren
e of the two spin-�ip re�e
tivities im-plies violation of the detailed balan
e prin
iple, be
auseit 
reates a 
y
le 
urrent in phase spa
e, whi
h dimi-nishes the entropy. We dis
uss this e�e
t in the nextse
tion, where the violation of the detailed balan
e isseen more 
learly.4. NEUTRON REFLECTION ANDTRANSMISSION OF A MAGNETICMIRROR WITH HELICOIDALMAGNETIZATIONThe false e�e
t of the time and parity violationis seen espe
ially well in the 
ase of a neutron re�e
-tion from a magneti
 mirror magnetized heli
oidally [8℄around a ve
tor q that is dire
ted along the z axis pa-rallel to the normal to the mirror interfa
e. The neut-ron wave fun
tion in a heli
oidal �eld was found in [9℄,and the re�e
tion and transmission of heli
oidal mir-rors were 
al
ulated in [8; 10℄. In Fig. 3, we show there�e
tivities with and without a spin �ip for polariza-tions of the in
ident neutron along and opposite the zaxis. Outside the mirror, the magneti
 �eld is absent.

The analogous transmission probabilities are shown inFig. 4. We see that there is again a time-odd 
orrela-tion � �q, whi
h 
an also be interpreted as a parity-odd
orrelation of spin with the in
ident neutron momen-tum � � k̂. The resonant spin-�ip re�e
tivity for thej�i polarization in
reases with the mirror thi
kness,and be
omes almost total. Su
h a re�e
tivity violatesthe detailed balan
e prin
iple, and the violation is es-pe
ially well seen in this example. Indeed, we imaginethat a vessel with ideal walls is homogeneously �lledwith a gas of unpolarized neutrons. If we split thevessel into two parts as shown in Fig. 5, inserting aheli
oidal mirror, then all the neutrons from the leftpart I go through the mirror to the right part II, andbe
ome 
ompletely polarized along the z axis. Indeed,the neutrons in the j+i state go dire
tly through themirror, and 
annot return, while the neutrons in thej�i state are re�e
ted from the mirror with a spin �ip,and after the re�e
tion from ideal walls of the vessel, goagain to the mirror and through it to part II. Therefore,it looks as if all the neutrons from part I gathered inpart II in the single state j+i, whi
h strongly de
reasesthe entropy.However, su
h a spilling over the mirror from leftto right is a
tually 
ompensated by the opposite �uxfrom II to I, be
ause the neutrons in the j�i state in theright part 
an go through the mirror, while neutrons inthe j+i state are re�e
ted from the mirror with a spin�ip to the j�i state. Therefore, the neutrons in bothparts remain isotropi
 and in the unpolarized state, al-though a 
y
le o

urs in the phase spa
e. This 
y
lehas 6 steps listed below, where the last 7th step is thesame as the �rst one.1. The neutron in the j+i state goes through themirror (M) from the left to the right part of the vessel.2. Then it re�e
ts from the right wall of the vesseland goes to M.3. It re�e
ts from M to the right with a spin �ip tothe state j�i.4. Then it re�e
ts from the right wall of the vesseland, being in the j�i state, goes through M from theright to the left part of the vessel.5. Then it re�e
ts from the left wall of the vesseland goes ba
k to M.6. It re�e
ts from M to the left with a spin �ip tothe j+i state.7. Then it re�e
ts from the left wall of the vesseland, being in the j+i state, goes through M.If there were the same 
y
le but with the initialstate j�i, and a neutron 
ould go through both 
y
leswith the same probability, then we 
ould say that both
y
les were equally well populated, and the entropy of477
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Fig. 2. The 
al
ulated re�e
tion R(i ! j) = jhjj�̂tjiij2 and transmission T (i ! j) = jhjj�̂tjiij2, (i; j = �), 
oe�-
ients of two-layer mirror of the same thi
kness when the angle ' between magnetizations is �=2 (a), and ��=2 (b).The 
urves 
orrespond to 1 � R(+ ! +) = R(� ! �), 2 � R(� ! +), 3 � R(+ ! �), 4 � T (+ ! +), 5 �T (+! �) = T (� ! +), 6 � T (� ! �). The 
hange of the sign of ' leads to the ex
hange R(� ! �)! R(� ! �)of spin-�ip 
urves in re�e
tivities and of no-spin-�ip T (� ! �)! T (�! �) 
urves in transmissivities
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Fig. 3. Re�e
tivity of a heli
oidal magneti
 mirror with (dashed line) and without (solid line) spin �ip for the in
ident po-larization opposite (a) and along (b) the z axis [4℄. We see that above the total re�e
tion range, there is a well-pronoun
edpeak of almost total re�e
tion with a spin �ip, when the in
ident neutron is polarized against the z axisthe isotropi
ally distributed unpolarized neutron gaswould be maximal. Be
ause only one 
y
le is popu-lated in our 
ase and the other is not, the entropy ofthe neutron gas is not maximal. If the heli
oid mirroris thin, and the re�e
tion with a spin �ip is not total,then the opposite 
y
le exists, but the population oftwo 
y
les is not equal, and therefore the entropy isnot maximal again. The same happens with the mirror
shown in Fig. 1. In that 
ase, the population of two 
y-
les and the value of the entropy depend on the angle' between the two magnetizations.A de
rease in the entropy in both 
ases is 
reatedby the ve
tor, around whi
h the magneti
 �eld turns.Su
h a turn violates the spa
e balan
e, and thereforethe equilibrium state of the neutron gas does not havethe maximal entropy.478
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543Fig. 4. Transmission probabilities of a heli
oidal magneti
 mirror with (dashed line) and without (solid line) spin �ip for thein
ident polarization opposite (left) and along (right) the z axis [4℄. We see that above the total re�e
tion range, there isa well-pronoun
ed dip in transmission of neutrons initially polarized against the z axis
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Fig. 5. Illustration of violation of the detailed balan
eprin
ipleAt the end of this se
tion, we mention the paper [11℄(see also [4℄), where di�ra
tion on 
rystals with heli-
oidal magnetization was 
onsidered. It was found thatdi�ra
tion 
ontains peaks, whi
h in the perturbationtheory are proportional toI / Æ(�� �B � q); (29)where � = ki�kf is the momentum transferred to the
rystal by the neutron with the initial and �nal mo-menta ki;f , �B is a ve
tor of the re
ipro
al latti
e ofthe 
rystal, and q is the heli
oidal ve
tor similar to oursin heli
oidal mirrors. In (29), we see some interestingdis
repan
y. The argument of the delta fun
tion 
on-tains a 
ombination of polar ve
tors � and �B and ofthe axial ve
tor q. This is in
onsistent. The additionalpeak appearing be
ause of the heli
al magnetization isrelated not to the 
rystal stru
ture but to the width ofthe Bragg peak. If the energy width of the peak is �u,then the position of the heli
al magneti
 peak is shiftedfrom the Bragg position �B of the nonmagneti
 
rystalby �� =p�u+ q2.

But this dis
repan
y does not devaluate the impor-tan
e of [11℄. Its main value is in the proof that addi-tional magneti
 peaks exist near Brag peaks, resultingfrom s
attering with one-dire
tional spin �ip. In thatrespe
t, re�e
tion from single 
rystals with heli
al mag-netization does also violate the detailed balan
e prin-
iple.5. ANALYSIS OF THE TIME INVARIANCEHere, we �rst dis
uss the question whether theT-odd term in (1) a
tually manifests a T-invarian
eviolation. Next, we analyze the prin
iple of T-invari-an
e in the 
ase of the neutron s
attering on a nonmag-neti
 system des
ribed by an opti
al potential with animaginary part.5.1. T-invarian
e with term (1)The left-to-right transmission probability withoutspin �ip 
an be represented by the fun
tion�!W = Q0 + (s � [b1 � b2℄)Q1; (30)where Q0;1 are some s
alar fun
tions of k, and s isa unit ve
tor dire
ted along the in
ident neutron po-larization; it 
an be either parallel or antiparallel to[b1 � b2℄. Hen
e,���!W (�) = Q0 � j[b1 � b2℄jQ1: (31)The right-to-left transmission is479



V. K. Ignatovi
h, Yu. V. Nikitenko ÆÝÒÔ, òîì 137, âûï. 3, 2010 �W = Q0 + (s � [b2 � b1℄)Q1 == Q0 � (s � [b1 � b2℄)Q1; (32)be
ause the order of �lms met by the neutron at trans-mission 
hanges. Hen
e, ���W (+) 6= ���!W (+); (33)whi
h is a manifestation of a violation of the detailedbalan
e prin
iple.After the time reversal transformation, not onlys and b1;2 
hange sign but also the initial and �nalstates are permuted. Therefore, ���!W (+) is transformedto  ���W (�), but  ���W (�) = ���!W (+); (34)and this proves that the T-invarian
e is not violated.5.2. T-invarian
e of the neutron s
attering onabsorbing potentialsWe 
onsider the simplest 
ase of the neutron s
at-tering on a nonmagneti
 one-dimensional potentialu(x) that is nonzero in an interval 0 � x � d and 
on-tains an imaginary part. The neutron wave fun
tionoutside the potential is (x; t) = exp(�i!t)�� h�(x < 0)� exp(ikx) + �(k) exp(�ikx)� ++ �(x > d)�(k) exp(ik(x� d))i ; (35)where �(x) is a step fun
tion equal to unity when theinequality in its argument is satis�ed, and to zero ot-herwise, and �(k) and �(k) are the re�e
tion and trans-mission amplitudes, whi
h are 
omplex fun
tion of thein
ident wave number k. The wave fun
tion is a solu-tion of the S
hrödinger equation�i ��t + �2�x2 � u(x)� (x; t) = 0: (36)If we make the transformationt! �t; (37)then the equation for  (x;�t) 
hanges its form 
om-pared with (36). To restore its form, we have to makea 
omplex 
onjugation, after whi
h we obtain�i ��t + �2�x2 � u�(x)� �(x;�t) = 0: (38)

However, we must be 
areful here. A potential thathas an imaginary part 
hanges after 
omplex 
onjuga-tion, and therefore we 
annot be sure that the fun
tion �(x;�t) remains a solution of (38). Instead of (38)we must write�i ��t + �2�x2 � u�(x)�	(x; t) = 0; (39)and 
he
k whether 	(x; t) =  �(x;�t). We prove thatthis equality is true in the 
ase of a re
tangular poten-tial, and 
laim that there are no reasons to doubt itsvalidity for other potentials.In fa
t, we 
an deal with stationary equations, wri-ting 	(x; t) = exp(�i!t)�(x)and  (x; t) = exp(�i!t)�(x);and our goal is then to show that a solution �(x) ofthe equation�k2 + �2�x2 � u�(x)��(x) = 0; (40)
oin
ides with ��(x).In the 
ase of a re
tangular barrier potential ofheight u = u0 � iu00 and width d, the wave fun
tionon the full x axis is [12℄�(x; u) = �(x < 0)� exp(ikx)+R(k; u) exp(�ikx)�++�(0 < x < d) [1 + r(k; u)℄ exp(ik0(u)d)1� r2(k; u) exp(2ik0(u)d) �� [exp(ik0(u)(x� d)) � r(k; u) exp(�ik0(u)(x� d))℄ ++�(x > d)T (k; u) exp(ik(x� d)); (41)where R(k; u) = r(k; u)[1� exp(2ik0(u)d)℄1� r2(k; u) exp(2ik0(u)d) ;T (k; u) = exp(ik0(u)d)[1� r2(k; u)℄1� r2(k; u) exp(2ik0(u)d) ; (42)
r(k; u) = k � k0(u)k + k0(u) ; k0(u) =pk2 � u: (43)We here suppose that k2 > u0, and everywhere we ex-pli
itly indi
ate the dependen
e on the 
omplex poten-tial u. The fun
tion ��(x; u) is480
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tometry experiment��(x; u) == �(x < 0)� exp(�ikx) +R�(k; u) exp(ikx)�++�(0 < x < d) [1 + r�(k; u)℄ exp(�ik0�(u)d)1� r�2(k; u) exp(�2ik0�(u)d) �� [exp(�ik0�(u)(x� d)) � r�(k; u) �� exp(ik0�(u)(x� d))℄ ++�(x > d)T �(k; u) exp(�ik(x� d)): (44)It des
ribes the interferen
e of two waves in
ident fromthe left and right with the respe
tive amplitudes R�(k)and T �(k). We show that it 
oin
ides with the solution�(x) in (40) 
ontaining these two in
ident waves.The wave in
ident from the left gives a solution�l(x), the wave in
ident from the right gives a solution�r(x), and the total solution is equal to �l(x)+�r(x).Using the general approa
h in [13; 14℄ for the in
identwave R�(k; u) exp(ikx), we obtain�l(x; u�) = �(x < 0)R�(k; u)�� � exp(ikx) + R(k; u�) exp(�ikx)�++�(0 < x < d)R�(k; u) [1 + r(k; u�)℄ exp(ik0(u�)d)1� r2(k; u�) exp(2ik0(u�)d) �� [exp(ik0(u�)(x� d))� r(k; u�) �� exp(�ik0(u�)(x� d))℄ ++�(x > d)R�(k; u)T (k; u�) exp(ik(x� d)); (45)and for the in
ident wave T �(k) exp(�ik(x � d)), thewave fun
tion is�r(x; u�) = �(x < 0)T �(k; u)T (k; u�) exp(�ikx) ++�(0 < x < d)T �(k; u) [1 + r(k; u�)℄ exp(ik0(u�)d)1� r2(k; u�) exp(2ik0(u�)d) �� [exp(�ik0(u�)x)� r(k; u�) exp(ik0(u�)x)℄ ++�(x > d)T �(k; u) [T (k; u�) �� exp(�ik(x� d)) +R(k; u�) exp(ik(x� d))℄ : (46)It follows from (43) and (42) for k2 > u0 that k0(u�) == k0�(u) and r(u�) = r�(u), but R(k; u�) 6= R�(k; u)and T (k; u�) 6= T �(k; u).It is easy to verify by simple algebra that the sumof terms in the interval 0 < x < d from (45) and (46)is equal to the middle term in (44). This is shown inthe next equation, where K 0 denotes k0(u�), and thedependen
e on k and u is omitted in the other terms:

R� [1 + r�℄ exp(iK 0d)1� r�2 exp(2iK 0d) �� [exp(iK 0(x� d))� r� exp(�iK 0(x� d))℄ ++ T � [1 + r�℄ exp(iK 0d)1� r�2 exp(2iK 0d) �� [exp(�iK 0x)� r� exp(iK 0x)℄ == r�(1� exp(�2iK 0d))1� r�2 exp(�2iK 0d) [1 + r�℄ exp(iK 0d)1� r�2 exp(2iK 0d) �� [exp(iK 0(x� d))� r� exp(�iK 0(x� d))℄ ++ exp(�iK 0d)(1� r�2)1� r�2 exp(�2iK 0d) [1 + r�℄1� r�2 exp(2iK 0d) �� [exp(�iK 0(x� d))� exp(2iK 0d)r� �� exp(iK 0(x� d))℄ = exp(iK 0(x� d))�� r�[1 + r�℄ exp(�iK 0d)(1� r�2 exp(2iK 0d))(1� r�2 exp(�2iK 0d)) �� h exp(2iK 0d)� 1� exp(2iK 0d)(1� r�2)i++ exp(�iK 0(x� d))�� [1 + r�℄ exp(�iK 0d)(1� r�2 exp(2iK 0d))(1� r�2 exp(�2iK 0d)) �� h(1� exp(2iK 0d))r�2 + (1� r�2)i == [1 + r�℄ exp(�ik0�d)1� r�2 exp(�2ik0�d) �� h exp(�ik0�(x� d))� r� exp(ik0�(x� d))i: (47)It 
an be veri�ed similarly that the sum of ampli-tudes of two outgoing waves at x < 0 is equal toR�(k; u)R(k; u�) + T �(k; u)T (k; u�) = 1: (48)The right outgoing wave at x > d vanishes. Its ampli-tude isR�(k; u)T (k; u�) + T �(k; u)R(k; u�) == 2Re(R�(k; u)T (k; u�)) = 0; (49)whi
h shows that the phases of the amplitudes R(k; u)and T (k; u�) di�er by �=2.Therefore, we see that �(x) = ��(x), i. e., s
atte-ring of a s
alar parti
le on a 
omplex potential is timereversible. We have 
he
ked this for a simple re
tan-gular potential, but there are no reasons to expe
t theresult to be di�erent for more 
omplex potentials.We 
onsidered the 
ase k2 > u0 above. If k2 < u0,then k0(u) = ik00(u), where k00(u) = pu� k2, andr(k; u) = k � ik00(u)k + ik00(u) ; r(k; u�) = 1r�(k; u) : (50)5 ÆÝÒÔ, âûï. 3 481



V. K. Ignatovi
h, Yu. V. Nikitenko ÆÝÒÔ, òîì 137, âûï. 3, 2010Nevertheless, it 
an be proved again that �(x) = ��(x),i. e., s
attering on a 
omplex potential is time re-versible. The proof is a good exer
ise for the readers,and we do not therefore present it here.It 
an be shown similarly that s
attering of a spinorparti
le on an arbitrary magneti
 potential is time re-versible, even if the nu
lear opti
al potential of theneutron-matter intera
tion 
ontains an imaginary part.6. CONCLUSIONUsing simple examples, we have shown, in a simples
heme of a neutron re�e
tometry experiment, how aT-odd 
orrelation 
an appear that 
an be interpreted asthe T- or P-parity violation, although it does not vio-late T- and P-invarian
es. The experiment to 
he
k thetheoreti
al predi
tions 
an be easily realized with twomagneti
 �lms of di�erent 
oer
ivities evaporated uponnonmagneti
 substrate. After magnetization to satura-tion of the high-
oer
ivity �lm, the external magneti
�eld 
an be de
reased and the sample rotated throughan angle '. The result is a system 
lose to the oneshown in Fig. 1.At the same time, it is shown that if the spa
e 
on-tains a 
ouple of non
ollinear magneti
 �elds, then thes
attering of neutrons from this 
ouple does not sat-isfy the detailed balan
e prin
iple. This means thatthe neutron gas in the presen
e of two magneti
 mir-rors with non
ollinear magnetizations has an equilib-rium with an entropy that is not absolutely maximal.We found some interesting features in 
onsideringneutron s
attering on a non
ollinear magneti
 system.We 
an expe
t to �nd interesting features in 
onsider-ing a three-layer magneti
 system with non
omplanarmagneti
 �elds B1, B2, and B3. In this system, we 
anexpe
t T-odd 
orrelation like(B1 � [B2 �B3℄); (51)

whi
h at the same time violate re
ipro
ity at transmis-sion, but this subje
t, will be dis
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