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For the N/ = 1 SQCD with N. colors and N. < Ng < 3N, flavors with small but nonzero current quark
masses mg # 0, the dynamic scenario is considered, in which quarks form the diquark-condensate phase. This
means that colorless chiral quark pairs condense coherently in the vacuum, (QQ) # 0, while quarks alone do
not condense, (Q) = (Q) = 0, and therefore the color is confined. Such condensation of quarks results in the
formation of dynamic constituent masses pc > mq of quarks and the appearance of light “pions” (similarly to
the case of QCD). The SQCD mass spectrum in this phase is described and compared with the Seiberg dual
description. It is shown that the direct and dual theories are different (except, possibly, in the perturbative

strictly superconformal regime).

1. INTRODUCTION

Because supersymmetric gauge theories are much
more constrained than ordinary ones, it is easier to deal
with them theoretically. Therefore, they can serve, at
least, as useful models for elucidating the complicated
strong-coupling gauge dynamics (not to speak of their
potential relevance to the real world).

The closest to QCD is its supersymmetric exten-
sion, the A/ = 1 SQCD, which has been considered in
many papers. We here consider SQCD in the nonper-
turbative region (or in the perturbative strong-coupling
regime). Most impressive results here were obtained by
Seiberg, who proposed describing this strongly coupled
(and/or nonperturbative) SQCD in terms of the equi-
valent, but weakly coupled dual theory [1] (for reviews,
see Refs. [2-4] and the references therein).

Our purpose in this paper is to introduce (in Sec. 3)
the main dynamic assumption about the coherent
diquark-condensate (DC) phase of SQCD, to describe
its consequences for the behavior in the infrared region,
the mass spectrum, etc., and to compare with predic-
tions of the Seiberg dual theory.

The paper is organized as follows. In Secs. 2 and
4, we recall definitions of the direct and dual theories;
some particular examples are considered in Sec. 2. Both
direct and dual theories are considered in the confor-
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mal window 3N./2 < Np < 3N, in Secs. 3, 5, and 6
and for N, < Np < 3N,./2in Sec. 7. For completeness,
the case Nrp > 3N, is considered in Sec. 8. Finally,
some conclusions are presented in Sec. 9 (and there is
one appendix about the 't Hooft triangles).

2. DIRECT THEORY. DEFINITION AND
SOME EXAMPLES

The fundamental Lagrangian of SQCD with V.. co-
lors and N flavors (at a high scale p > Ag) is given
by

L= /d20d2§Tr (QTeVQ +Q e_V@> +

+/d29{

where a(p) is the running gauge coupling (with
its scale parameter Ag independent of the quark
masses), mq(u) is the running current quark mass,
S = W2/32n%, W, is the gluon field strength,
and traces are taken over color and flavor indices.
This theory has the exact SU(N,.) gauge symmet-
ry and, in the chiral limit mg — 0, a global
SU(NF)LXSU(NF)RXU(].)BXU(].)R symmetry. Un-

2T

alp) S"'mQ(N)TYQQ} +He., (2.1)
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der these symmetries, the quarks @ and @ transform
as

Q: (No)eor X (Np)I! x

Q: (No)eot x (0045 (N ) 5 (=1) g x (Np—N,/Np)g.

The explicit dependence of the gluino condensate
(S) on the current quark masses and A¢g can be found
as follows.

a) We can start with Np < 3N, and the heavy
quarks, mg’le =mo(p = mg)le) > Ag, such that the
theory is UV-free and in the weak-coupling regime at
sufficiently large energies.

b) We then integrate out all quarks directly in the
perturbation theory at scales u < pug = mg’le, which
yields a pure Yang—Mills theory with the scale factor
Ay s. The value of Ay s can be found from the match-
ing of the couplings a4 () and a_(u) of the upper
and lower theories at u = ump: ay(pum) = a—(um).
The upper theory is always the original one with N,
colors and Ny flavors, and the value of ay(ug) can
be obtained starting with high u > pgy and evolving
down to p = pup through the standard perturbative
renormgroup (RG) flow for the theory with N, col-
ors and N flavors of massless quarks! . But instead,
the same value ay () can be obtained starting with
i~ Ag and going up to u = pp > Ag with the same
RG flow for massless quarks, that is (¢%(u) = dra(u),
bo = 3N, — Np),

(0)% x ()5 X (Np=N/Nr)r,

i =" (5) ()
+ N, h{@) +OL, (2.2)

where zg = zg (i, Ag) < 1is the standard perturba-
tive renormalization factor (logarithmic in this case) of
massless quarks in the theory with N, colors and Npg
flavors. At the weak coupling a(um/Ag) < 1 (with
Cr = (N2 = 1)/2N,),

(ir1) 2Cr /by
2a(un, ) = Co (j(ﬁg )> x

o ()]~ Gamma) ™ <

where Cj is a nonparametric constant O(1).
As regards the lower theory, it is the Yang—Mills
theory with N/ colors and no quarks in all examples

D In Egs. (2.2) and (2.3) and everywhere below in the text,
the perturbative NSVZ [5] -function is used, corresponding to
the Pauli—Villars scheme.

considered in this section. Its coupling can be written
similarly as

2T HH
———— =3N!In +
a—(pum) ‘ (AYM)

1

!
NI
The Cy in (2.2) and (2.3) are constants indepen-
dent of the quark mass values. After introducing
the Wilson coupling aw(u) whose [S-function is
that of NSVZ for «a(p) but without the denomi-
nator, 2r/aw () = 2r/a(n) — NIn(1/g*(n) I3,
we have C, = 2m/af(p = Ag) and C_ =
= 2r/ay(p = Aywm). In essence, the term

Ncln<1/92(,uH)) in (2.2) is the higher-loop per-
turbative renormalization factor of gluons, i.e.,

Neln (2, Aq)) = Neln(a (urr) fas (u = Ag)),
and similarly in (2.3).

Our purpose here and below is to explicitly trace
the dependence on the parameters like pp/Ag, which
are to be finally expressed through the universal pa-
rameter mq/Aqg, mg = mq(p = Aq), which can be
large, mg/Ag > 1, or small, mg/Ag < 1. Therefore,
the constant terms like C. are omitted in what follows,
because their effect is equivalent to a redefinition of Ag
by a constant factor.

In the case considered now, N, = N, and upyg =
= mg)le > Ag, and it then follows from (2.2) and
(2.3) that

)+Co (23)

Ayar = (AR detmg)' /3N,
v = (Ag @) (2.4)

mo = Zél(mgOle,AQ) mgole > mgole > AQ

¢) Lowering the scale u to u < Ay and integrat-
ing out all gauge degrees of freedom, except the field
S itself, we can write the effective Lagrangian in the
Veneziano—Yankielowicz (VY) form [6], from which we
obtain the gluino condensate

(S) = A}y = (A det mg) /N,

mq =mq(k = Ag).

Now, expression (2.5) can be continued in m¢ from
large mg > Ag to small values, mg < Ag. While
mgq is some formally defined parameter for mg > Ag
(see (2.4), the physical quark mass is mgle > Ao

(2.5)

and it does not run any more at u < mg’le), it has
a simple and direct meaning for mg < Ag: mg =
=mq(p =Ag).

Expression (2.5) for (S) has appeared many times
in the literature, but to our knowledge, the exact defi-
nition of the parameter mg entering (2.5), i.e., its re-
lation to mq () in (1) that defines the theory, has not
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been given. Clearly, without this explicit relation, ex-
pression (2.5) is not very meaningful, because the quark
mass parameter mg () is running. For instance, if mg

is understood as mgle in (2.5) for heavy quarks, than

the relation (S) = (Ag’ det mgde)l/z\]c would be erro-
neous. All this becomes especially important, in partic-
ular, in the conformal window 3N,./2 < Np < 3N, and
mqg < Ag, when mg(p) runs at u < Ag in a power-li-
ke fashion: mq(us) = (p1/p2)*/NF mg(p1). Every-
where below, except in Sec. 8, only the case mg < Ag
is considered.
d) From the Konishi anomaly equation [7]

(@)

we obtain the explicit value of the chiral condensate:

(S)

i

(mg' ().

J

(S), (2.6)

0-0Q°! = M2 L= 1 st
<(Q] Q ),u:AQ> = Mch 5]. = mo (5].,
— \1/2N.  __ .
My, = (Ag’ mgc) , N.=Ng—-N,, (2.7)
(S) = Abyy = (A det mg)'/V, g < Ag.

Expression (2.5) can now be continued in Np from
the region Np < 3N, to Nrp > 3N, and, together with
Konishi anomaly relation (2.6), these two then become
the basic universal relations for any values of quark
masses and any Np.

To check this universal form of (2.5), we briefly
consider (see Sec. 8 for more details) the case
Nr > 3N, and mg < Ag. In this case, by
= 3N. — N < 0, and hence the theory is IR-free
in the interval pg < pu < Ag, where upg is the
highest physical mass (Ayy < pg = mg)le < Ag
in this example); its coupling, which is O(1) at
it = Ag, becomes logarithmically small at 1 < Ag.
Besides, the parameter mg has now a direct phys-
ical meaning as the value of the running quark
mo(n = Ag) < Aq.

mass at © = Ag, mg =

Therefore, starting with p© = Ag and go-
ing down perturbatively to pupm = mg’le =
= mo(p = m’gle) = zél(AQ, mgde)mQ > mg

(where zg(Ag, mg)le) < 1 is the perturbative loga-

rithmic renormalization factor of massless quarks),
we can then integrate out all quarks as heavy ones.
Writing the matching condition for two couplings
at and a_, we obtain (2.2) and (2.3) with the only
replacement:

20(my" > Ag, Ag) = 25" (Ag, my'* < Ag),

and the same expression (2.5).
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Another check can be performed for Np < N. — 1
and small quark masses, mg < Ag. In this case, all
quarks are Higgsed and the gauge symmetry SU(N,.)
is broken down to SU(N/. = N.— Np) at the high scale
pE = g > Ag:

a

<Qz>u:ugz = 52/\/‘07 <§7>u:ugz = 6?-/\/107

Mo > Ag.

The 2N.Np — N}% gluons become massive, with the
mass scale 2, = g3.(1T) gaMZ, where g%
=dras (= ug,Ag) < 1. The same number of quark
degrees of freedom acquire the same masses and become
the superpartners of massive gluons (in a sense, they
can be considered as the heavy “constituent quarks”),
and N% light complex pion fields fr% remain:

ﬂ;_ = (@]_Qi)u:ugz = M(Q)((S;_: + ﬁ;;/MO)’

7\ _ s 2
(1) = M3,

All heavy particles can be integrated out at scales
i < figr. The couplings at pg = pgr: o (10 = g1, Ag)
in (2.2), i.e., those of the original theory, with
1 g3 (1) gIMG, T (QQ)p=py > and
a_(pt = pg,Ar) in (2.3) of the lower-energy pure
Yang-Mills theory can be matched numerically simi-
larly to the previous examples with heavy quarks. But
in this case, we consider it more useful to write the
explicit form of the f[—dependence of the lower-energy
coupling a— (1 < g1, Ar) multiplying the field strength
squared of massless gluons, to see how the multiloop
[B-function reconciles with the holomorphic dependence
of Ay on the chiral superfields II. We thus ibtain

2T

-

= {3(N.— Np)ln
i~ (

a— (,Lt < I’LglaAL
+ (Ne — Np)In _r +
© T 2 s (AL))

o).

2Nfg

g (1 = pgr, Ag) det TT

2Np
AQ
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1
+Npln| ————— )V =

" (gi(:“:“glvAQ)>}

2Np — A ﬂ
—{%m(g* (1 /;%F Q) det N

A
+ Nrpl ! (2.8)
n| —— , .
P\ 2o (i = pgr, Ag)

where three terms in curly brackets in (2.8) are the re-
spective contributions of massless gluons, massive glu-
ons, and Higgsed quarks, and z¢o(ug > Ag, Ag) < 1
is the standard perturbative logarithmic renormaliza-
tion factor of massless quarks (see above).

It is worth noting that the dependence of the cou-
pling 27/a_ on the quantum pion superfields fr%/ Mo

entering ITZ originates only from the # / My-dependence
of heavy-particle masses entering the “normal” one-loop
contributions to the gluon vacuum polarization, while
the “anomalous” higher-loop contributions [5] origina-
ting from the quark and gluon renormalization factors,
zg and z;t ~ g%, do not contain the quantum pion
fields /My and enter (2.8) as pure neutral c-numbers.
This is clear from the R-charge conservation (see foot-
note 2) and the holomorphic dependence of F-terms on
chiral quantum superfields (the chiral superfields here
are Q7Q" (1) = 2q(p1, p2) Q7Q" (12))-

Therefore, the coupling a—_(u, A;) of the lo-
wer-energy pure Yang-Mills theory at p < pg and its
scale factor Ay, are given by

21 B 2m _
aV (M < :uglaAL) a (M < Mgl»AL)
1
— (N, — Np In =
( ) g2 (1 < pgr, (AL))
_ _ o
= 3(N, Np)ln(AL), (2.9)
Abo AbO
3(N.—Np Q Q
BN NE)

20" (gt Ag) det TT — detTl

_ IT
- i (a )

= ) (2.10)

<H> = M%h < M(2)7

where
I = 2q (g1, AQ)TL,

1/3N.
<AL> = AYM = (Az—g det MQ)

)
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and the Lagrangian at p < pg takes the form?

L=/d20d25{2”[‘r ﬂfﬁ} +

2g) __ 2T
+/d9{ a—(/J/aAL)

where S = W2/327% and W, are the gauge field
strengths of the (N. — Np)? — 1 remaining massless
gluon fields.

S+ mQTrﬂ}, (2.11)

Lowering the scale pu to 1 < Ay and integrating
out all gauge degrees of freedom except the field S it-
self (which leaves a large number of gluonia with masses
Mg ~ Ayar), we obtain the VY form

L=/d20d25{2”[‘r TTHT +

+ (D terms of the field 5‘)} +

R S
+/d20 ~(N, =Np)S{In(—=) -1+
{ ()
+mQTrﬁ}, < Ay (2.12)

It is worth noting that it is the first place where
the nonperturbative effects were incorporated to ob-
tain the VY form of the superpotential (nonpertur-
bative effects introduce the infrared cutoff of the or-
der of Ayjus, and hence the explicit dependence on
u disappears at u < Ayjps), while all previous cal-
culations with this example were purely perturbative.
From (2.12), we obtain the gluino vacuum condensate
(S) = (A7) = Afyy = (S) = (Agy det mg) '/,

Finally, integrating out the last gluonium field S
(with its mass scale of the order of Ay /) at lower ener-
gies, we obtain the Lagrangian of pions

2) Because the gluon fields are not yet integrated completely,
there are the gluon regulator fields (implicit) whose contribu-
tions ensure the R-charge conservation in (2.11) (see also (2.12)
below). In (2.11), we also neglected the additional dependence
of the Kéahler term on the quantum pion fields 7 /Mg (origina-
ting from the dependence on 7/ Mg of the quark renormalization
factor zQ(f[Jf, I1)), because at weak coupling, this influences the
pion mass values through logarithmically small corrections only.
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+
D

(NC—NF) X

L= lQTr\/fITfI

Abo 1/(N.—Np) )
x Q . +moTrll| =
zq(1gt, Ag) det I r
= #Trvﬂ'fﬂ +
2Q kg, AQ) b
Abo 1/(Ne—Nr)
+ (Nc NF) —Q +
det TI
+ mQTrH , pK Ay . (213)
F

The superpotential (N. — Ng) (A / det TT)'/Ne ap-
peared many times in the literature because, up to
an absolute normalization of the field IT(u) = QQ(u)
(which is not RG-invariant by itself), this is the
only possible form of the superpotential if it can be
shown that the lowest-energy Lagrangian depends on
NZ pion superfields only. But it seems that the
absolute normalization of all terms entering (2.13)
has never been carefully specified (clearly, the abso-
lute normalization makes sense only when both the
superpotential and the K&hler terms are absolutely
normalized simultaneously). Lagrangian (2.13) de-
scribes weakly interacting pions with small masses
My = 2img = 220(tg1, Ao)mo K mg < Ay < Ag.

On the whole, the mass spectrum in this case con-
tains 2N.Ngp — N}% massive gluons and “constituent
quarks” with the mass scale gy = gaMo > Ag, a
large number of gluonia with the mass scale of the or-
der of Ay < Ag, and N7 pions with small masses
My =2mq = 2mq(p = pg) < Aym.

Form (2.13) can be continued in Np to the point
Np = N, — 1 and it then predicts the form of the pion
Lagrangian in this case. The whole gauge group is now
Higgsed at the high scale py = pg > Ag, and the
direct way to obtain (2.13) is not through the VY pro-
cedure but through the calculation of the one-instanton
contribution [8] (see also [9] and the references therein).
The changes in the mass spectrum are evident and,
most important, there is then no confinement and no
particles with masses of the order of Ay, in the spect-
rum.

3. DIRECT THEORY. CONFORMAL WINDOW
3N./2 < Np < 3N,

The superconformal behavior means the absence of
the scale Ag in the physical mass spectrum. In other

441

words, there are no particles with masses of the order
of Ag, with all quarks and gluons remaining effectively
massless for up < p < Ag, where pp is the highest
physical mass scale. Therefore, “nothing particularly
interesting” happens when decreasing the scale u from
> Ag to ug < < Ag. Only the character of
running of the coupling a(u) and the quark renormal-
ization factor zg(u) change. The slow logarithmic evo-
lution in the weak-coupling region p > Aq is replaced
with freezing of a(u) at p < Ag: a(n) — a*, while
zo(u) acquires a power-low behavior:

29(Ag. i) = (u/Ag)/Nr < 1.

As a result, the Green’s functions of chiral superfields
also behave in a power-like fashion, with dynamical di-
mensions determined by their R-charges: D = 3|R|/2.
This conformal regime continues until p reaches the
highest physical mass scale ug < Ag, and then the
conformal behavior breaks down.

There are three characteristic scales at © = Ag in
the direct theory: the current quark mass mg, the
scale M,y of its chiral vacuum condensate, and the
scale Ay s of the gluino condensate. It follows from
(2.5)=(2.7) that in the whole region N. < Np < 3N,,
there is an hierarchy:

mg K Ayy K Mg, for N, < Np < 3N.. (3.1)

By itself, this hierarchy has no direct physical conse-
quences, until it is realized that some physical masses
stay behind the above quantities. We show below that
within the dynamical scenario considered, the above
inequalities reflect a real hierarchy of physical masses:
mgq is the mass of lightest pions, Ay s is the mass scale
of gluonia, and M., is the dynamical constituent mass
of quarks.

The main idea of the dynamical scenario for SQCD
considered in this paper, with N. < Np < 3N, and
small equal quark masses, is that this theory is in
the collective coherent (DC) phase. This means that
quarks do not condense alone, (Q?) (@7) = 0 (be-
cause there are too many flavors at Ny > N.). In
other words, the theory is not Higgsed by quarks, all
gluons remain massless at scales p > Ay, and color
is confined. But quarks condense in colorless chiral
pairs (@;Qi), and these pairs form the coherent con-
densate (like the quark—antiquark pairs in the Nambu—
Jona-Lasinio model and, more importantly, like QCD).
And as a result of this coherent condensation, quarks
acquire a large (in comparison with their pole mass
mg’le = mo(p = m’é"le)) dynamical constituent mass
pe = (M2) = ((QQ),—, ) (u2 = pc/(several), uc =



V. L. Chernyak

MITP, Tom 137, BBmm. 3, 2010

= Mp, see below). This constituent quark mass puc =
= M.y, is the highest physical mass pug and it stops
the massless perturbative RG evolution at scales u <
< pe. Simultaneously, the light composite pions 71';;
are formed, with masses Mz ~ ma2 = mq(un = p2),
(mg = mg, see below)?).

All this occurs in the “threshold region” s
= uc/(several) < u < py = (several) uc around the
scale ¢ of the constituent quark mass. In other words,
the nonperturbative effects operate in this threshold re-
gion, such that they “turn on” at 4 = p; and “saturate”
at p = pi2.

If this idea is accepted, the proposed effective La-
grangian at the scale p2 has the form

L= /d20d2§{Tr\/H£H2 +

+ Z2Tr<Q§eVQ2 +§2Te‘/§2> ... } +

+/d29 (W, +Wo) +He, (32)

where
T g s—w2 s
T R
det I VN
e —
o= (55) mlene)-
AQ
dettr, )
_NF< etb 2) + mo Tr1l,,
AO
Q
bo/N.
7, = 2o _ [ Fe _ e
pe Ag My’
1 [ det (IT,) VN
€ 2 —
Ao = . ba y Nc:N _Nca
o= (3 ‘

3) This is unlike (our) QCD, where the value of the constituent
quark mass pc is also determined by the coherent chiral quark
condensate, p2, ~ (), but it is here puc ~ Ag, while mx ~
~ (mgq pe)'/?. The difference in the parametric dependence of
mg on the current quark mass mg between SQCD and QCD is
because spin-1/2 quarks condense in QCD, and spin-zero quarks
in SQCD. Besides, unlike the genuine spontaneous breaking of
the chiral flavor symmetry in QCD with pc ~ ()3 ~ Ag # 0
as mqg — 0, po ~ <§QIJ«:AQ>1/2 = Mg, =+ 0asmg — 0in
SQCD, see (2.7). Nevertheless, because the ratio M., /m¢g > 1
is parametrically large at mg < Ag, all qualitative features
remain the same, and this can therefore be considered a “qua-
sispontaneous breaking” of the chiral flavor symmetry.
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(Light)

the field (Hg);;, = (@;Q’) represents the dy-
H=2

namically generated “one-particle light part” of the
composite field (TI5) HZ, (6% + ﬂ;/uc); it con-

: =
tains the c-number vacuum part u2 5;; = ((HQ);_)
= <§2,3 Q%) <§3 Q' Yu=n, and the quantum fields
71%/ e of light pions. The canonically normalized quark

fields Cs = Z21/2Q2 and Cs = Z21/2 @, have no c-num-
ber vacuum parts, (C) = (C) = 0, and are the quan-
tum fields of heavy constituent quarks with the “field

masses” (uc)?

J

)

(ue)i =

(3

and c-number masses jic:
1 det H2

1/N.
—1
%)

Z
{(ne)l) = ] uc.

The nonzero vacuum condensate (UZJCQ')
= Z5(Qy5 Q%) = Zoug 6;; ((S)/nc) 6;; of these
heavy constituent quarks is a pure quantum effect from
the one-loop triangle diagram with the constituent
quark fields Cy and C» contracted into their massive
propagators with the masses pc and emitting two
external gluino lines; this contribution realizes the
Konishi anomaly.

Besides, by definition, all effects of evolution
through the threshold region are already taken into ac-
count in (3.2), and hence the quark terms in the Lag-
rangian are needed in practical calculations with the
valence heavy quarks only. And finally, the dots in
(3.2) indicate other possible D-terms, which are sup-
posed to play no significant role in what follows.

To a large extent, the form of the Lagrangian in
(3.2) is unique, once the main assumption about for-
mation at the scale u ~ puc of massive constituent
quarks with masses p2, = (Q,Q2) = (II5) and light
pions with masses msy (and with all gluons remaining
massless) is adopted. The only important nontrivial
point may be the nonzero value of the coefficient —Np
in front of the second term in the superpotential Wg. It
was determined from the requirement that, until quark
and/or gauge degrees of freedom are integrated out, the
vacuum value of the superpotential does not change,
in comparison with its original value at higher scales
H > pe

(W) =Y me(m)((QQ)u) = Nr(S)

flav

(contributions of all three terms in W in (3.2) to (Wg)
are equal to Np(S) each, but the vacuum averages of
the first and second terms in (3.2) cancel each other).
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The absolute value of (Il;) = (Q,Q>) can be deter-
mined from the Konishi anomaly:

1/N.
1 (det <H2>> (@:02) =

(II) Ag’ B
det (1) \
= <S> = T . (34)
Q

Together with m»(Ils) = (S), Eq. (3.4) implies (see
(2.5)=(2.7)) that ma = mg = mg(u = Ag) and p2, =
= () = (Q2Q2) = (QQ)u=1o = M2,".

It is also useful to consider the evolution through
the threshold region in more detail. At the scale u =
= p1, there is no real distinction between the original
light quarks Q1 = Q(u = p1) and Q; = Q(u = )
with the current masses my = mqg(u = p1) and the
(heavy at scales pu < p2) constituent quarks C; =
= C(p = m), C1 = C(u = 1), because the large
constituent quark mass pc “turns on and saturates”
only after the evolution through the threshold region
2 < p < pp. Similarly, there is no real distinction
between the light composite field (QQ)(u = u1) with
its mass scale of the order of m; and the pion field
Iy = U(p = py) (this is the pion My = T(u = us)
evolved back to p = 1), with its mass me at g = us
evolving back to the current quark mass m; at u = p.
In essence, all these are the obvious matching condi-
tions. They can also be used as an independent check
that the form of Wyq in (3.2) is self-consistent. After
evolving back from p = ps to pu = pq, the difference
between the composite field QQ of heavy constituent
quarks and the field IT of the light pion disappears due
to disappearance of the mass gap of the order of uc,
such that two first terms in W¢ cancel each other, while
the last term evolves back into the original quark mass
term.

But then, at 1 < p1, the colorless light composi-
te pions and colored heavy constituent quarks evolve
differently through the threshold region ps < u < p,

4) 1t is worth noting that the concrete form of the Kéhler term

K of quantum pion fields 7rji, in (3.2) should not be taken literal-

ly. Its only purpose is to show a typical scale of this Kéhler term.
For instance, it can be replaced with the contribution of the or-
der of Tr(pucTue) from the loop of constituent quarks, where

the field (pe)? is given in (3.3). Finally, to determine the values
of pion masses up to nonparametrical factors of the order of 1, it
is only important that both these forms of the pion Kéahler term
have the same scale (Kr) ~ M2, . For similar reasons, we ne-
glect a possible additional dependence of Zs-factors entering the
Kéhler term of the constituent quark in (3.2) on the quantum
pion fields 7w/ M._p,.

and their K&hler terms acquire different renormaliza-
tion factors. The renormalization factor Z, of pions is
as follows: from I} ~ (Q1Q,) with the mass m; at
W=y to Iy = Z,1I;, with the mass mq at u = us,
i.e., Z = mq/ms. Similarly, the overall renormaliza-
tion factor of quarks is from (C;7C}) ~ (Q17Q1) with
the mass my at p = 1 to (C’2TC’2) =2Zg (C’llfC’l), with
the mass puc at u = pa, i.e., Zg = myi/uc.
Independently of (3.4), the absolute values of ms
(the parameter m» explicitly enters the lowest-energy
Lagrangian and determines the observable pole masses
of pions, M, ~ ms) and (Ils) = uZ, can be obtained
from the following reasoning. We rewrite, say, the se-
cond term in the quark superpotential in (3.2) in terms
of the quark fields (Q1Q,) normalized at p = p; and

then, once more, in terms of (Q,Q,) normalized at the
running g > ;%)

1/N. — \1/N.
(det H2> =ZNF/NC (det(Q1Q1)> —

AD AB
Np/N. — 1/Ne
det (Q,Q,,)
= | Zrzq(p, 1) — =
A 0
Q

Ng/N.
= (ZWZQ(AQ7N1)> X

— 1/N.
x <W> . (3.5)
Q

Clearly, for p; < p < Ag, the coefficient in front
of the field (Q,Q,) depends explicitly on the running
scale u through the quark perturbative renormalization
factor zg(u, p1), while Z, is independent of p. Hence,
to find the value of Z,, we have to fix the normal-
ization at some definite value of p. The only distin-
guished point is 1 = Ag, in the sense that this term in
the superpotential, being expressed though the fields
(Qu=rq @y—r,) normalized at Ag, should have the co-
efficient that depends on Ag only. From this, it follows

that

my = m(p = j)
ma

Zr = = 2o (Mgum) =25" > 1,

p1 ~ po < Ag,

M2C = (II) = (Q,Q2) = (QQ Yu=Ag = th,

(3.6)
my =mq(p = AqQ) = mq,

5) It is worth noting that this is only a change of notation, not
a real evolution to another scale.
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bo/N.
_ Ao (M _mgq
J1%e; Ag Mo’

mq meo My
ZQ = — = — =
po  po ma

Zy

mgqg mi 1
L =72,7, = Zy25",
Mcth 2 L ZQ

where zg(Ag, p# = 1) < 1 is the standard perturba-
tive renormalization factor of the massless quark de-
scribing its evolution from u = Ag down to g =
(in the conformal window, it is known explicitly:
2q = 29(Aq, 1) = (11 /A@)"/N* < 1).

On the whole, the evolution of the current quark
mass in the interval ps < p < Ag looks as fol-
lows. At p = Ag, the current quark mass is mg =
= mg(p = Ag). At smaller iy < p < Ag, it runs
with the perturbative 2g(Ag, 1) = (u/Ag)*/Nr < 1
factor, mqg(n) = zél(AQ, wmeqg > mg, such that
m1 = mo(p =) = zélmQ. In the threshold region
Ho < p < p1, it runs such that (at g < g, the current
quark mass can be understood more properly as the
pion mass) mi1 = mqg(u = 1) = ma = mo(u = p2),
me = Z;l my. And at u < ps, the current quark
mass ms does not run any more. With Z, = 251
from (3.6), it follows that evolving through the thre-
shold region from u = p; down to pu = o, the
current quark mass returns to its value at p = Ag:
my = Z7 my = Z71 (25" mq) = mq. As regards the
constituent quark mass pc, it originates in the thresh-
old region p ~ puc due to the existence of the coherent
quark condensate, pZ, = (Q,Q2) = M?,, and it stops
the further RG evolution of the constituent quark and
pion fields at u < puc = Mep. The self-consistency of
this scenario requires that uc = M,y be larger than

! . .
mgy ©, because otherwise the massless conformal regime

would stop earlier, at the point u = mg’le, i.e., quarks

would be in the heavy-quark (HQ) phase and the co-
herent quark condensate could not be formed in this
case. In the case considered, with 3N./2 < Np < 3N,

l [ bo/N
mgoe _ mQ(,uz mgoe) _ @ AQ o
AQ - AQ AQ m;éole

Nr /3N,
_ [ Mo _ M < Mo _ Mep,
-\ Mg A A Ag)

which is therefore self-consistent.

We now dwell on the evolution of the Wilson cou-
pling aw (1) in the interval ps < p < Ag. We first
recall its standard perturbative evolution in the inter-
val 11 < 1 < Ag:

2m 4 4
1) =<{¢{3N.In— — Ngpln— } +
(aw(u)> { A T AQ}

1
+ {Np In m}, (3.7)

where the first two terms are the one-loop contribu-
tions of massless gluons and quarks, and the last term
describes higher-loop effects from massless quarks [5].
In the conformal window 3N./2 < Np < 3N,
the explicit form of the perturbative quark renor-
malization factor zg(Ag, p) is known at pu < Ag:
20(Ag, i) = (/Ag)"/Nr < 1. Then, the above three
parametrically large logarithmic terms in (3.7) cancel
each other. This describes the standard effect that the
perturbative coupling freezes in the conformal regime
at a* = O(1), i.e., it remains nearly the same as it was
at ;1 = Ag, because a(u = Ag) is already close to o,
by the definition of Ag.

This perturbative form (3.7) can be used down to
> p1. Now, on account of additional contributions
from the threshold region us < p < pi, the cou-
pling a(p, Ar) at u < po looks as follows (the number
21 /Nea(pn = Ag) is considered O(1) and is neglected
in comparison with the large logarithm):

2T _ 2
aw(p < po, An) | oy < pa,Ar)

N —Lf YU P
el <92<u,<AL>>>} {3N“1 Aq

det (uc)! 1 1
—n| ) LN (In— +ln— | b (3.8)
(% TR E

Here, the first term in the curly brackets is due to con-
tributions of massless gluons, and in the second term
in the curly brackets, the one-loop term from colored
quarks stops its evolution at their constituent mass
(,uo);;. (see (3.3)), i.e., with surviving light pion fields
w;; still living at lower energies; besides, in addition to
the previous term In(1/zq), zg = zo(Ag,u1), which
describes the standard smooth perturbative evolution
from p = Ag down to gy, the last term In(1/Zqg) ap-
pears due to the additional (nonstandard) evolution of
the colored constituent quark in the threshold region
p2 < < i

Numerically (i.e., neglecting the quantum pion
fields W;;/Mch and replacing detIl, by its vacuum

value M), the first three terms in the right-hand
side of (3.8) still cancel each other. Therefore, the
parametrically large value of 1/aw(un < p2) (i.e.,
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the weak coupling) originates from the parametrically
large In(1/Zg) threshold contribution only. In other
words, the strong evolution of the coupling a(u) in the
threshold region p2 < p < pp decreases it from the
O(1) value at u = py to a logarithmically small value
a(pz) ~ aw(p2) ~ 1/In(Ag/Men) at p = pa.
Substituting the value of Zg from (3.6) and

det (uc)! from (3.3) in (3.8), we can finally write the
Yang—Mills coupling as

27
a(luv AL)

2w
aw (p < piz)

We emphasize (this is to become important in
Sec. T) that the explicit value of the quark perturba-
tive renormalization factor zg = zg(Ag, 1 ~ Mep) is
not actually needed to obtain (3.9), because zg cancels
exactly in (3.8), independently of its explicit form (and
Z> does as well).

Now, at lower scales p < o, if we are not
interested in calculations with the valence quarks,
the fields of heavy constituent quarks can be inte-
grated out. Because quarks are confined, this leaves
behind a large number of heavy quarkonia, both
mesons and baryons, with masses Myeson ~ Mep
and Mpgryon ~ NeMcp, built from nonrelativis-
tic (and weakly confined, the string tension being
Vo ~ Ayy € M,p) constituent quarks with masses
ne = M.y Indeed, the characteristic distance between
the nonrelativistic quarks in a bound state is the Bohr
radius Rg ~ 1/pp, where pp is the Bohr momentum,
pp ~ a(fi & pg) M,p,. Supposing that pp < M., this
requires a( <€ M,.,) < 1. But indeed (see above), in
this region Ay < u < Mgy, the coupling is already
logarithmically small, a(u) ~ 1/In(u/Ayy) < 1.
Therefore, the nonrelativistic regime is self-consistent
(a(p) becomes O(1) only at much smaller distances
Rep, ~ 1/M., < Rp, while confinement effects be-
gin to be important only at much larger distances
Rconf ~ ]-/AYM > RB)

This results in simply omitting all terms containing
the quark fields in (3.2) (we recall that the quark loop
contributions to the gauge coupling have already been

445

taken into account in (3.8)). Besides, the pion fields
[T, (and masses ms) do not evolve any more at p < s,
and therefore My, in M,,” = (TI) and mo become the
low-energy constant observables at y < M., (the pion
pole mass is of the order of ms, and M., = (S)/ma, or
(S) itself, is related to the tension of BPS domain walls
between different vacua [10]).Therefore, the only re-
maining evolution in the interval Ay < p < Mgy, is
the standard (weak coupling) perturbative logarithmic
evolution of massless gluons, and hence in this range
of scales, the Lagrangian takes the form (from now on,
to simplify the notation, we substitute Iy = II, and
me = mg = mq(p = Ag); see also footnote 2 about
the R-charge)

L= /d20d2§{Tr\/HTH}+/d20{—%
a(, AT,

_NF<

/3N
) y Aym < p < My (3.11)

S—

detII

1/N.
F) + mQTrH}, (310)
Q

Lowering the scale pu to 1 < Ay and integrating
out all gauge degrees of freedom except the field S it-
self (this leaves behind a large number of gluonia with
masses Mg ~ Ay ), we obtain the VY form

L= /d%d@{ﬁvmn} +

+ (D terms of the field S) +

1/N.
+/d20 N5 1) -yt +
A3 Aé’

+mQTrH}, /J<Ay]\/[. (3.12)

Finally, at lower energies u < Ay, after integrating
out the last gluonium field S (with its mass scale of the
order of Ay ), we obtain the Lagrangian of pions

L= /d%d@{ﬁvmn} +
det II

o 1/Nc (313)
+/d20 —N, I +moTrlIl ,,
Q

<L Ay
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This describes weakly interacting pions with the small-
est masses m, ~ mg. The vacuum value (H%)

= M?, &L remembers the scale i = M.y, at which the
pions were formed and thus determines their “internal
hardness”, i.e., the scale up to which they behave as
pointlike particles®).

This concludes our analysis of the direct theory in
the conformal window.

4. DUAL THEORY. THE DEFINITION

The Lagrangian of the dual theory (at the scale
w~ Ag) is taken in the form [1]

L= /d29d2§ {Tf (qTqu + 6*6%) +
1

W“(MTM)}#&"{%(?AG,)

+ 5+

1
o Tr(an) —l—mQ(u)TrM} +He, (4.1)
q

where 5 = w2 /3272, a(u) = N.a(p)/27 is the run-
ning dual coupling (with its scale parameter A,),
af(u) = Npf?(p)/4m is its running Yukawa coupling
(with its scale parameter Ay) with f(u = Ag) ~ pig /g,
and W, is the dual gluon field strength. This theory has
the exact SU(N,. = Np—N,) gauge symmetry, while in
the chiral limit mg — 0, the global symmetries are the
same as in the direct theory. Under these symmetries,
the dual quarks and mesons M (mions) transform as

a: (Np)p' < (0 % (Ne/Ne) x (Ne/Nr),

7: (0)]' x (Ne)R x (=Ne/Ne)p x (Ne/Np)g, (42)

M : (Np)jt < (Np)E % (0)p x (2N./Nr)g.

The mion fields M]l in (4.1) are defined as pointlike
ones. This is unlike the pion fields H;;. of the direct theo-
ry, which appear as light pointlike fields only at ener-
gies below the scale of chiral flavor symmetry breaking,
< e = Mep. At higher scales u > Mgy, strictly
speaking, they cannot be used at all (or, at best, can
be resolved as composite fields of two current quarks).

To match the parameters of the direct and dual the-
ories (see below), the normalizations at u = Ag are
taken as

(M yumng = M2, 68,

(4.3)
me (= Ag) = me(n = Ag) =mq.

6) A short discussion of external anomalies (the 't Hooft tri-
angles) is transferred to Appendix.
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In addition, to match the values of gluino condensates,
the scale parameter A, has to be taken as [3]

Abo —

= (DY T AG = (S) = (=),

e (4.4)
bo = 3N, — Np.

5. DUAL THEORY WITH g, = Aq.
CONFORMAL WINDOW

With u, = Ag, it follows that |A,] = Ag (see
(4.4)). In essence, this is the only natural value
for p, from the viewpoint of the direct theory. For
tg < Ag, the value of |Ay| is either artificially small
(at Np > 3N,./2), or artificially large (at Np < 3N./2)
(see (4.4)). At Ay ~ |Aj| = Aq (g ~ hy), the
dual theory (which, self-consistent by itself, is con-
sidered to be in the UV-free logarithmic regime at
o> Ag, with ap(p) < a(p) at p > Ag), si-
multaneously with the direct one, enters the super-
conformal regime at pu ~ Ag, with frozen couplings
a(p) — @ and ay(p) — a}j. The dynamic di-
mensions of chiral superfields are here determined
by their R-charges, D 3|R|/2, such that, for in-
stance, the distance dependence of the two-point corre-
lators ({Q7Q"(x)}1, Q;Q*(0)) and ({M}(x), MF(0))
is the same [1]. In addition, all 't Hooft triangles
are matched [1]. At present, no indication of possi-
ble differences between the direct and dual theories
is known in this perturbative superconformal regime.
We therefore pass to lower energies, where the physi-
cal scales originating from the chiral symmetry break-
ing begin to reveal themselves. What happens in the
direct theory when reaching its highest physical scale
wi ~ po = M., was described in Sec. 3.

In the dual theory and in the case considered, the
highest physical scale pg is determined by the con-
stituent mass i of dual quarks, i.e., by the value of

(@)l 2,
= (mgAg)'/? because this value is parametrically
larger in the conformal window 3N./2 < Np <
< 3N, than the pole mass mgOle of dual quarks
(mg(p) is the running current mass of dual quarks,
mg = me(p = AQ) = M2 /Mg, vg = bo/Nr
= (3N, = Np)/Nr, Aynr = (A detmq)t/3Ne):

)"

mg(p = mpe'e) M2,
Ao A

their coherent condensate puy = o

pole
mq

Ao’

Pc _
Ag

mQ
Ag

pole
mq

Ag

Ag

g

Ay

Ya
> - AQ .

pole
q
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This shows that similarly to the direct theory, the
dual theory is also in the same (dual) DC phase here,

with the appearance of N7 dual pions Nij (nions) and
the large constituent masses 7ip = (mgAg)'/? of dual
quarks when p crosses the corresponding threshold re-
gion: T, = Tix/(several) < p < @, = (several)Jio.
Similarly, all dual gluons also remain massless simul-
taneously. Therefore, the pattern of evolution through
the threshold region is universal if either the direct or
the dual theory is in the same DC phase. Hence, argu-
ing as in Sec. 3 and making some simple substitutions
of direct parameters by dual ones, we obtain the effec-
tive dual Lagrangian at u = T, (with the meson and
quark fields normalized at pr = Ag) in the form

I-= /d‘é’ed??{i—ﬂjﬁ (MTM> +
Q

+TrVNIN + Z,Tr (q*evq + Gfevq> } +

i\ 2 5
<M3> - Mch 677

(N7) = @ ai) = =iz 6] = —maAq ],
mg = Mgh/AQ'

The factor zp = zm (A, 7)) > 1in (5.1) is the
standard perturbative renormalization factor of mion
fields M in the interval 7i; < 1 < Ag (the fields M and
N and the dual quarks are frozen and do not evolve
any more at u < Ji,; besides, like the gluon fields, the
mion fields M have no nonstandard evolution in the
threshold region; and finally, here and everywhere be-
low, as in Secs. 2 and 3, we neglect the dependence of
the renormalization factors z»; and Z» on the quantum
mion and nion fields m/M., and n/fi because that
would affect the particle mass values by nonparametric
factors of the order of 1 only; see also footnote 4):

(5.2)

where z, is the renormalization factor of the massless
dual quarks due to the standard perturbative evolution
from = Ag down to fi; = (several) Tic.

Similarly to the direct theory, the factor Z» in (5.1)
is the overall renormalization factor of the dual quark
due to its evolution from y = Ag down to pu = i, =
= Jic/(several). Tt can be written in the form Z, =
= z, Z,, where z, is due to the standard perturbative
evolution in the interval Ii; < pu < Ag and Z, is due to
the additional nonstandard evolution in the threshold
region T, = fi/(several) < p < 71, = (several) fic.

The heavy constituent dual quarks decouple at
i < Ty, and the mions M and nions N and the pure
gauge SU(N,) dual theory remain. For its inverse cou-
pling 1/a(u), we obtain, similarly to the direct theory,
that it increases from its frozen value 1/@* = O(1)
at u = @, to a logarithmically large value at u = i,
due to the additional large renormalization factor Z,
of constituent dual quarks. The whole evolution from
w=|A,| down to p < Ji, results in the expression

27 _
@(,u < ﬁZvKL)
—u 1
= 3Ncln—+Ncln_7_ —
{ Aq 9 (u, (AL)) }

(5.3)

det (ﬁc)7 1
A ——2 ) —Npln=—
"\ TArE PRz

1 (dee v\ i
1\ e _
(Mc)f,: =\ N7

J 2 Aq0 -

J

i
where (ﬂc)f_ is the constituent mass of dual quarks

j
(see (5.1)). Therefore, it follows from (5.3) that the
scale parameter Ay, of a(u, Az) is

det N\ /PN

_ e _

A== C A = Avar. (54)
AL

Lowering the scale to 1 < Ay s and integrating out
all gauge degrees of freedom through the VY procedure,
we obtain the lowest-energy Lagrangian
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7= /d20d29{A—MTr (MTM> +Tr VN }

+/d20{

Substituting A, from (4.4) and changing N — —N,
we can write the superpotential in the more convenient
form

W= —Tr<—MN> +
Ag

det N\
+Nc< < ) +moTr M. (5.6)
v

Therefore, the masses of mions M and nions N are
(see (5.2))

1/2 1/2
T2 moA
s i (u_> . (g) _
ZM ZM

_ AQ (T§)3Nc/2NF

On the whole, the mass spectrum looks here as fol-
lows: a) there is a large number of hadrons made of
nonrelativistic (and weakly confined, the string tension
being /o ~ Ayy < Ti) dual quarks, with their dy-
namic constituent masses fic = (mgAg)'/? < Ag;
b) there is a large number of gluonia with their uni-
versal mass scale of the order of Ay ,/; c) the lightest
are N7 mions M and N7 dual pions N (nions) with

3N./2Np
masses [ ~ AN ~ AQ (mQ/AQ) < Ay -

Comparing the mass spectra of the direct and dual

theories shows that they are very different.

< Ay (5.7)

6. DUAL THEORY WITH p, = M.
CONFORMAL WINDOW

We now consider the choice p, = M.y, of parame-
tersin (4.1). Asisto be shown below, this choice results
in a much more close similarity of the mass spectra of
the direct and dual theories.

But we first note that in this case, it follows from
(4.4) that [Ag| = (MJF/AR)Y™ < Ag, ie., the
scale parameter of the dual gauge coupling a(u, A,) is
parametrically smaller than those of the direct theory.
Moreover, it is parametrically smaller than even M.p,:

(|Ag|/Mep) = (Men/Ag)P/% < 1. But this means
that these two theories are clearly distinct in the per-
turbative interval M., < p < Ag. Indeed, the direct
theory entered the perturbative conformal regime al-
ready at © < Ag, and therefore its coupling is frozen
at the value a* and does not run.

As regards the dual theory, the most natural bound-
ary condition at y = Ag is obtained by setting the
scale factor Ay of the Yukawa coupling Ay ~ A, which
allows self-consistently considering the dual theory UV
free by itself (but nothing changes essentially at 1 < Ag
with Ay ~ Ag either; the Yukawa coupling is then O(1)
at  ~ Ag and decreases logarithmically with decreas-
ing 1 < Ag; the problems with such a theory will arise
in the region u > Ag). With this choice,

ar'(p=Aq) =2m/Npay(u=Ag) ~
~ @7 (n=Aq) =2r/Na(u=Ag) ~
~ Do ln(Ag/Ay) > 1.

Then, with decreasing p1 < Ag, both couplings of
the dual theory increase logarithmically but remain
< 1 for [Ay] € M < pp < Ag. Hence, the dual
theory is in the weak-coupling logarithmic regime for
Mep € 1 < Ag. Therefore, while correlators of the
direct theory already behave in a power-like fashion,
those of the dual theory acquire only slowly varying
logarithmic renormalization factors. (Indeed, with so
small a value of |A,| < M., the dual theory never en-
ters the conformal regime, see below.) Unfortunately,
this is the price for a better similarity of both theories
at lower scales p < M.,")

The current mass of dual quarks is now m, = Mgy,
and it is much larger than the scale of their condensate:
HgD)|"/? = (mg M.4)'/?. Hence, they cannot be in
the collective coherent condensate phase, because their
quantum fields are short-range and fluctuate indepen-
dently locally. Therefore, they can be treated simply
as heavy quarks (because their mass M.y, is also much
larger than |A4]). (Their non-zero vacuum conden-
sate is now a pure quantum effect induced by the one-
loop triangle diagram: (gq(u = Mecn)) = (3)/ Meh,
where (5) is the vacuum condensate of dual gluinos
and M., > Ay is the large current mass of dual
quarks. This realizes the Konishi anomaly.)

7) From now on, to simplify all expressions, whenever the dual
theory is in the weak-coupling perturbative logarithmic regime,
we ignore the logarithmic renormalization factors z4 and zps in
calculations of mass spectra. In any case, because these nonlead-
ing effects from z; # 1 and zpr # 1 are only logarithmic, taking
them into account would not violate any power hierarchies and,
besides, they are not of great importance for numerical values of
masses.
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At lower scales u <« M.y, they can be integrated
out directly as heavy particles. (Because the dual
quarks are confined, this leaves behind a large number
of mesons and baryons (with the mass scale of the order
of M,p, the string tension being /o ~ Ay < Mep)
made of weakly interacting nonrelativistic heavy dual
quarks with the current masses M.,j,.)

What remains then is the SU(N..) Yang—Mills theo-
ry (plus the mions M) with the scale parameter Az, of
its coupling @(pu):

27 — [T —

———— =3N.In=—+ N.In ———,

a(u,Ar) Ar 7% (11, (Ar))

—A7, = (det M/AZ)YNe |(RL)| = Avar.

(6.1)

Therefore, for Ayy € pu € Mgy, the effective dual
Lagrangian takes the form (see footnote 7)

I= /d‘zedz’?{M%Tr(MfM)} +
ch

2 —727T S4+m
-I-/dG{ ) + QTI‘M}. (6.2)

Finally, at scales < Ay s, using the VY procedure
for integrating dual gluons, we obtain the lowest-energy
Lagrangian of mions:

_ [ 1
L:/d20d29 — Tr(M'M) S +
{ (1)
det M VN
+/d20{—ﬁc<%> +
Ag

‘|‘77’LQTI‘M}, N<<AYM- (63)

This describes the mions M with masses of the order
of mg, interacting weakly through the standard super-
potential.

We compare the direct and dual theories in the case
considered.

a) As was pointed out above, they are clearly dif-
ferent in the region M., < u < Agq.

b) There is a large number of colorless hadrons,
heavy mesons (quasistable, decaying into light pions or
mions) and baryons (those of the lowest mass at least
being stable) in both theories, made of heavy nonrela-
tivistic (and weakly confined, the string tension being
Vo ~ Ay € M.p) constituents. In the direct theory,
these are the constituent quarks with the dynamically
generated masses i = M.y, while in the dual theory,
these are simply the dual quarks themselves with the

3 ZKOT®, Beim. 3

same (but now current) masses M.,. It seems that
the mesons are indistinguishable in both theories, but
the baryons are different because they know about the
number of colors and their masses are different:

Mbaryon =N, Mch 7& Mbaryon = NC Mch-

¢) The remaining light particles in both theories for
Ay € p <€ M,y are gauge particles, with respec-
tively N, and N, colors, and pions (or mions). It is
important that both the direct and the dual Yang—Mills
theories are at weak couplings in this interval of scales,
but have different numbers of colors. Therefore, they
are clearly different here. For instance, we consider
two-point correlators of the energy—momentum tensors
in both theories. Because both gauge couplings are
small and the contributions from pion or mion interac-
tions are already power-suppressed at pu < M.y, these
correlators are dominated by the lowest-order one-loop
diagrams. The contributions of pions and mions are
the same, but the contributions of gauge particles are
different because N2 # N ..

d) There is a large number of (strongly coupled and
quasistable due to decays into pions or mions) gluonia
in both theories, all with masses determined the same
scale Ay ;. Hence, it seems, they look indistinguishab-
le.

e) Finally, there are N7 light pions (mions) with
masses of the order of mg in both theories, weakly
interacting at low energies yu < Ay through the
same universal chiral superpotential. Nevertheless,
the interactions of pions and mions with gluons at
Ay € <€ Mgy, are different in (3.10) and (6.2).

On the whole, it follows that (with the logarithmic
accuracy; see footnote 7) the mass spectra look very
(but not completely) similar in both theories in this
case. But in many other respects (see above), the di-
rect and dual theories are clearly different.

7. THE REGION N, < N < 3N,./2

There are two possible ways to interpret the mea-
ning of the Seiberg dual theories at N. < Ny < 3N,./2.

a) The first variant is similar to the one that
is the only possibility in the conformal window
3N./2 < Np < 3N.. That is the description of all light
degrees of freedom of the direct theory in terms of
massless quarks @, @, and gluons remains adequate in
the interval of scales pg < 1 < Ag, where ug < Ag
is the highest physical mass scale due to mg # 0,
and there are no massive particles with masses of
the order of Ag in the spectrum at mg < Ag. In
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comparison with the conformal behavior, the difference
is not qualitative but only quantitative: the strong
coupling does not approach the constant value a* at
i < Ag but continues to increase. Nevertheless, the
nonperturbative contributions are power-suppressed
until g > pg, and the correct answers for all Green’s
functions follow by resummation of the standard
perturbative series with massless quarks and gluons.
The dual theory is then interpreted as a possible
alternative but equivalent (weak coupling) description.
This variant can be regarded as some formal “algebraic
duality”, i.e., something like “a generalized change of
variables”.

b) The second variant is qualitatively different (it
is sometimes referred to as “confinement without chi-
ral symmetry breaking”, i.e., due only to Ag # 0 as
mg — 0). It implies that, unlike in variant a, the non-
perturbative contributions already become essential at
i~ Ag, resulting in a high-scale confinement with the
string tension /o ~ Ag which binds direct quarks and
gluons into colorless hadron states with masses of the
order of Ag. This can be understood, for instance, as
follows. At N close to 3N,, the value of a* = N.a* /27
is small. As N decreases, a* increases and a* ~ 1 for
Np close to 3N./2. When Np < 3N./2, the coupling
a(u) exceeds some critical value a°" = O(1) already
at p ~ Ag; it is therefore assumed that the theory
is then in another phase. The strong nonperturbative
confining gauge interactions begin to operate at the
scale ~ A, resulting in the appearance of a large num-
ber of colorless hadrons with masses of the order of Ag.
Hence, the use of old massless quark and gluon fields for
the description of light degrees of freedom at 1 < Ag
becomes totally inadequate. (This is especially visible
at Np = N, + 1 where, for instance, the gauge degrees
of freedom are not present at all amongst light ones in
the dual theory.)

Instead, the new (special solitonic?) light degrees
of freedom are formed at the scale of the order of Ag as
a result of these strong nonperturbative effects. These
are the dual quarks and gluons and dual mesons M
(mions), with their sizes of the order of 1/Ag and the
internal hardness scale ~ Ag (i.e., they appear point-
like at u < Ag). These new light particles are described
by fields of the dual theory. Hence, this variant b can
be regarded as the “physical duality”, in the sense that
the dual theory is indeed the low-energy description of
the original theory at u < Ag.

We now present arguments against variant b. The
above-described scenario of “confinement without chi-
ral symmetry breaking” implies that even as mg — 0,
there is a large number of massive (with masses of the

order of Ag) colorless hadrons H,, in the spectrum,

both nonchiral made of (Qf, Q) or (@T,G) quarks and
chiral made of (Q, Q) quarks.

For instance, we consider the action of the sim-
plest colorless chiral superfield GjQi on the vacuum
state: @;Qi |0) (or any other colorless spin-zero or
higher-spin chiral superfield composed in some way
from Q?, @;, and the gauge field strength W, for in-
stance, (Q57°Q") W5). From the vacuum, this opera-
tor excites not only, say, the massless one-mion state
|M]i) but also many one-particle states of massive chiral

hadrons |¥,,). Let UL be the regular chiral superfield
of any such a hadron. Then in the effective Lagrangian
describing the theory at the scale  ~ Ag, there should
be a superpotential term that describes the nonzero
mass ~ Ag of this chiral hadron. But the standard
regular term AoTr(¥ ¥) is not allowed because it ex-
plicitly breaks the chiral flavor SU(Np)r x SU(NFr)r
symmetry (and R-charge), and it seems impossible to
write the appropriate regular mass terms for massive
chiral hadron superfields with masses of the order of
Ag in the superpotential as mg — 0.

We could try to “improve” the situation by mul-
tiplying the regular chiral superfield ‘Il% by the chiral
superfields (Q7Q"/A3) " and (det @J—.Qi/AZ)NF)l/A to
build up the term in the superpotential with appropri-
ate quantum numbers, but all such terms are singular
at <0|@3Qi|0> — 0, and hence all this would not re-
sult in obtaining the genuine regular mass term for this
hadron. Trying to use the dual quark fields ¢ and G to-
gether with ¥ does not help either because (gg¢) — 0 as
mqg — 0.

We could also consider variant b when the direct
color is not confined. Then, the absence of the confine-
ment at mg = 0 implies that the individual quarks Q*
and @; would be present in the spectrum and would be
massive, with masses ~ Ag (because there are no such
light fields in the dual theory). And we would face the
same problem that it is impossible to write the right
regular mass term for these quarks in the superpoten-
tial.

From our standpoint, the absence of confinement is
the only realistic variant in the chiral limit mg = 0,
because (at least in SQCD) the strong coupling
a(u ~ Ag) 2 1 does not actually mean that the scale
of confining forces is ~ Ag (in other words, that the
string tension is /o ~ Ag). The underlying reason is
that the role of the order parameter for the confine-
ment is played not by A itself but by the scale of the
gluino condensate, i.e., /o ~ Ay ~ (AN'/3. But
(M) — 0 as mg — 0. Hence, there is no confine-
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ment at all in the chiral limit mg = 0, and the regimes
at mg = 0 and N, < Np < 3N, can be more ade-
quately called the “pure perturbative massless regimes
with neither confinement nor chiral symmetry break-
ing”, down to u — 0. They are the conformal regime
at 3N./2 < Nr < 3N,, and the strong coupling regime
at N. < Np < 3N./2 (see (7.4) below).

In other words, the appearance in the spectrum
of massive chiral flavored (and R-charged) parti-
cles with masses of the order of Ag as mg — 0
seems impossible without the spontaneous breaking of
SU(Np)r, x SU(Nr)r (and R-charge) symmetry.

If the symmetry is broken spontaneously, there
should then be the appropriate noninvariant (el-
ementary or composite) chiral superfield(s) ¢
that condense in the vacuum with a large value:
(0]gk|0) = ¢§CO) ~ Ag. In principle, this condensate
can then give, the masses of the order of Ag to
chiral hadron superfields. But this basic condensate
¢§co) should then occur explicitly in the low-energy
Lagrangian, from which its numerical value in a chosen
vacuum should be determined. The dual theory claims
that it gives the correct description at low energies.
But no large chiral vacuum condensate ¢](€0) ~ Ao
appear either in the dual theory or in the direct
one. We conclude that, indeed, the chiral flavor
SU(Np)r, x SU(Np)r and R-charge symmetries are
not broken spontaneously at mg — 0.

Hence, the above considerations imply that variant
b is incompatible with unbroken SU(Ng)r, x SU(Np)r
(and R-charge) symmetries at mg/Ag — 0.

Below, we therefore consider variant a only, in
which the nonzero particle masses arise only because of
the breaking of the SU(Np)r, x SU(Np)r and R-char-
ge symmetries due to mg # 0, and all these masses
are much smaller than Ag for mg < Ag. Because the
spectrum of light (i.e., with masses much smaller than
Ag) particles is known in this variant in both the di-
rect and dual theories, it becomes possible, in addition
to the 't Hooft triangles, to also compare the values
of some special correlators in the perturbative range of
energies where all particles can still be considered mass-
less (um < p < Ag, where pug is the highest physical
scale due to mg # 0). These are the two-point corre-
lators of external conserved currents, e.g., the baryon
and SU(Np) flavor currents, because these can be com-
puted in the perturbation theory even in the strong-co-
upling region. Actually, it is more convenient to couple
these conserved currents to the external vector fields
and to consider the corresponding external f.,; func-
tions. Such fe,+ functions have the form (see, e. g., [11])

d 2r
dlnp eyt n

ST (1+7), (7.1)
K3
where the sum ranges over all fields that can be consid-
ered massless at a given scale p, the unity in the brack-
ets is due to one-loop contributions, and the anomalous
dimensions ; of fields represent all higher-loop effects.
We then equate the values of such ., functions in
the direct and dual theories at scales pg < p < Ag.
The light particles in the direct theory are the original
quarks @, @, and gluons, and in the dual theory, these
are the dual quarks ¢, g, the dual gluons, and the mions
M. For the baryon currents, we obtain

2
NpNe (Bg =1) (1+7¢) =

&
Ne
and for the SU(Npg)r, (or SU(Np)g) flavor currents,

Ne(1+7v9)=Nc(1+7y) + Np(1+yum).

= NpR. (B, = 25) (14, (72)

(7.3)

Here, the left-hand sides are from the direct theory and
the right-hand sides are from the dual theory, vg is the
anomalous dimension of the quark @), and v, and v
are the anomalous dimensions of the dual quark ¢ and
the mion M.

Now, for pg < 1t < Ag, the dual theory is IR-free
and both of its couplings are small in this range of en-
ergies, a(u) < 1 and ay(u) < 1. Hence, v4(p) < 1
and vy () < 1 are both also logarithmically small at
i < Ag. It then follows that (7.2) and (7.3) are incom-
patible with each other because they predict different
values for the infrared limit of vg. We conclude that
both correlators cannot be equal simultaneously in the
direct and dual theories, and hence these two theories
are different.

Taking the IR value 79 — (N./N. — 1) =
= (2N, — Np)/(Np — N¢) from (7.2) as a concrete ex-
ample, and using the perturbative NSVZ g-function [5],
we obtain the perturbative IR behavior of the strong

coupling a(u):

da(,u) — ,8(01) — _ a2 bO - NF’YQ

dlnp — l—a N. ’
N.a

a(p) = ‘32”(”), bo = 3N, — N,

_dlnzg I

Ao ) = <t
Q= dinp zq( QHU)_(E) <1, (74)

2N, — Np (AQ)V
= -], a — | - >>]-,
_ 3N, —2Np 1

LR
Nr— N, Ao S

3*
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In this case, the behavior of a(u/Ag) looks as follows.
As z = u/Ag decreases from large values, a(z) increases
first in a standard way as 1/Inz. At z = zp ~ 1,
a(z) crosses unity. At this point, yo crosses the value
bo/Nr = (3N, — Ny)/Np. As a result, the S-function
is smooth, it has neither pole nor zero at this point and
remains negative all the way from the UV region z > 1
to the IR region z < 1, while a(z) increases in the in-
frared region in a power-like fashion (see (7.4)). On the
other hand, it is not difficult to see that the IR value
of v¢g obtained from (7.3) with v, — 0 and s — 0 is
incompatible with the NSVZ [-function.

Nevertheless, it is interesting to compare the mass
spectra of the direct and dual theories that reveal them-
selves at lower energies.

It was argued above that the qualitative proper-
ties of the direct theory do not differ much from those
described for the conformal window. The main quan-
titative difference is that the gauge coupling a(u) does
not freeze at u < Ag but continues to increase (for in-
stance, as in (7.4)) until g reaches the dynamic chiral
symmetry breaking scale u ~ uc = M,.,. But after
crossing the threshold region ps = M.,y /(several) <
< p < py = (several) M.y, the coupling also becomes
logarithmically small, and the effective Lagrangian has
the same form as in (3.2). Indeed, as was emphasized
in Sec. 3, this is independent of the explicit form of the
quark perturbative renormalization factor zg(Ag, 1)
entering the evolution of the coupling a=!(u) in the
region p; < p < Ag, because this last cancels in (3.8)
independently of its explicit form. The only restriction
is that the dynamic scenario has to be self-consistent,
i.e., the constituent mass pc of quarks has to be larger
than their perturbative pole mass, uc = M., > mg)le,
so as to stop the perturbative massless RG evolution
before this is done by mg’le. It is not difficult to verify
that this is fulfilled with vo = (2N, — Np)/(Np — N¢)

in (7.2):
Np—N¢)/N.
mgole . @ AQ TR . @ (Nr )/ -
AQ - AQ m;Z?ole - AQ
(NFch)/2Nc
< Men — (e
A Ag

Hence, below the threshold region i < ps, all equa-
tions and all qualitative properties of the direct theory
described above for the conformal window remain the
same also in the region N. < Np < 3N./2.

As regards the dual theory, we also consider two
variants for the scale parameter p, in (4.1), u; = Ag
and pg; = Mep.
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1. py ~ pg = Aq. In this case, the scale parameter
A, of the dual gauge coupling a@(u) is |Ag] ~ Ay ~ Ag
(see (4.4)), both couplings a(p) and ay(u) are < 1 at
it = Ag and both decrease logarithmically when p de-
creases from p ~ Ag to g ~ M2, /Ag < Ag.

In the case considered, the current mass of dual
quarks is (see footnote 7):

mq = (M)/ g = M2, /Aq,

me > [(@9)|'? = (mq Ag)'/?,
which is much larger than the scale of their conden-
sate, and therefore the dual theory is here in the
HQ phase described in Sec. 6. Therefore, at lower
scales, all quarks can simply be integrated out as
heavy (and weakly confined, the string tension being
Vo ~ Ayy < M2, /Ag) particles, leaving a large
number of hadrons with masses of the order of M2, /A
composed of nonrelativistic dual quarks. After this, we
obtain the effective Lagrangian in the form

Z:{ 1 (MTM)}D+ {_NC§[31nK—’“‘L+

—Tr

AG
L
72 (1t/ Ay )
Xy, = —(det M/A) /N,

AL = Ay, Aym < < M2, /Aq.

Going down in energy and integrating out all glu-
onia (with masses of the order of Ay,s) via the VY
procedure, we finally obtain:

(7.5)

+1In (7.6)

+mQTrM} R
F

1/N.
I :{A% Tr (MTM)} +{—NC (detbfw> +
Q D Ag
+mQ’I‘rM} R N<<AYM- (77)
F

This describes the mions M with the masses

A2Q AQ Nc/Nc
i ~me ge- ~mel ol (g

mqg < v < Ay,
interacting weakly through the standard superpoten-
tial.
Thus, comparing the mass spectra of the direct and
dual theories, we see that they are very different.
2. pg = My, With Ay ~ |A4], both dual scale fac-
tors become very large with this choice of u, (see (4.4)):

Al = (

bo

AQ

N,
MchF

(—1/bo)
> > Ag. (7.9)
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But we can ignore the high-energy region u > |A,|
where the dual theory is strongly coupled, and start
directly with u < Ag < |A4|, where both couplings
are already logarithmically small: 2r/a;(p = Ag) ~
~ 2r/a(p = Ag) ~ boln(|A4|/Ag) > 1, and both
continue to decrease logarithmically with decreasing pu
for Men < p < |Ag|- The region M., < p < Ag
was discussed above (see (7.2) and (7.3)). We there-
fore consider p < Mgp.

The regime in this case 2 is qualitatively the same as
in case 1 (see also footnote 7), i.e., there are now even
heavier dual quarks with the current mass m, = Mgy,
(and even smaller condensate), the intermediate-mass
gluonia and smallest-mass mions M. The Lagrangian
in (7.6) and (7.7) remains essentially the same, only the
factor 1/AZ in the meson Kéhler term is now replaced
with 1/M?2,. Hence, the masses pp of mions become

mg ~ Men > Mg[ ~ Ay > KM~ MQ- (7.10)

Thus, in this case, the mass spectra of the direct
and dual theories (with the logarithmic accuracy) are
much more similar, as it was in Sec. 6 in the conformal
window. But all the differences (at scales p < M.p)
described in Sec. 6 also remain.

The case Np = N, + 1. As regards the direct
theory, this point is not special and all equations and
results described above remain without changes®). But
this point is somewhat special for the dual theory be-
cause its field content then amounts to light mesons M]i

and baryons B;, B’ only [1].
The dual Lagrangian at p < Ag is supposed to
have the form [1]
s

/d29d2§{
BMB) — 7.11
+/d20{Tr(BMB) det M +mQTrM}, (7.11)

AG
n < Ag.

Here, the scale factors pp; and pp in the Kéhler

terms are due to noncanonical dimensions of meson and

baryon fields (M — QQ, B — Q™).

In the interval of energies above the highest phys-
ical scale pm, pug <€ p < Ag, Eqs. (7.2) and (7.3)
still hold, with the substitution N. = 1, 7, — vg, and
Yu, ¥YB — 0. They therefore remain incompatible.

MM BB +B'B
2 2(N. 1)
HB

L=

Havr

8) Truly special is the point Np = N, because M., = Ag in
this case, even in the chiral limit mg — 0 (see (2.7)). We do not
consider this case here.
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At lower energies, the meson and baryon masses can
be obtained directly from Lagrangian (7.11):
193,78

2
Mch ) ’
Mih HQB(Nc_l)
T

MM ~ mQ<
(7.12)
Mp = Mz ~

Therefore, at par ~ up ~ Ag, we have

mQ
Ag

mQ

(Ne—1)/Ne
) A

)1/]\7c

We recall (see above) that the mass spectrum of the
direct theory consists here also of a large number
of flavored hadrons with the mass scale ~ M., ~
~ Ag(mg/Ag)t/?Ne, a large number of gluonia with
masses My ~ Ayar ~ Ag(mg/Ag)Net1/3Ne "and N2
light pions with masses of the order of mg.

8. THE REGION Nr > 3N,

For completeness, we also consider this region. The
direct theory is IR-free in this region (by < 0) for
mg’le < < Ag, and in a sense, is therefore very “sim-
ple” at p > Ay (but at the price that it is now, at
best, strongly coupled in the UV region > Ag and,
at worst, cannot be defined self-consistently in the UV
range and needs an UV completion).

The current quark mass mg = mq(p = Ag) < Ag
is now much larger than the scale of its chiral conden-
sate My < mg (see (2.7)), and this power hierarchy
persists at lower energies because the RG evolution is
here only logarithmic for Ay < p < Ag. Therefore,
the direct theory is at Np > 3N, in the HQ phase, such
that there is a standard weak-coupling slow logarithmic
evolution in the region mg‘)le < pu < Ag, mg‘)le
=mqo(p = mg)le) =25 (Mg, = mg’le)mg > mg,
where zg(Ag, p = mg’le) < 1 is the standard pertur-
bative logarithmic renormalization factor of massless
quarks, and the highest physical scale is pg = mgle >
> Ay > Mep. At p < mg‘)le, all quarks can be in-
tegrated out as heavy (and weakly confined, the string

. . A .
tension being /o ~ Ay < mP°, and their vacuum

Q
condensate (QQ(u = mg)le)> = (S)/mgle is due to

a simple quantum one-loop contribution) nonrelativis-
tic particles, leaving behind a large number of mesons
and baryons made of these nonrelativistic quarks, with
masses Moeson ~ mgle and Mpyaryon ~ Ne mg)le. Evi-
dently, there are no additional lighter pions now.
Using (2.2) and (2.3) to match couplings at

o= mgle, we obtain the Yang—Mills Lagrangian
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with the scale factor of its gauge coupling Ayy =

(Ab" NF)1/3NC < mg at lower energies p < mg’le,
such that this Yang—Mills theory is in the weak-
coupling regime at Ay < pu < mg)le. It describes
strongly coupled gluonia with masses My ~ Ayy <

< mg’le, and these are the lightest particles in this
case. This concludes our brief analysis of the direct

theory.
In the dual theory, as before, the mass spectrum
depends on the value of .

8.1. Dual theory with pug ~ pug = Ag

We have Ay ~ |Ay| ~ Ag (see (4.4)), but there are
no particles with masses of the order of Ag, similarly to
the case of the direct theory in Sec. 7. The dual theory
is taken to be UV-free and it enters the strong coupling
perturbative regime at gz < < Ag. For definiteness,
we use the values of the dual quark and mion anoma-
lous dimensions in (7.2) and (7.3) with yo — 0 for
n <L AQ:

=

p— p— Nc
Vg = E -1, v = _E~

Now, it follows that the dynamic constituent mass

of dual quarks 7i is parametrically larger than their

pole.
pole mass mp™:

(8.1)

g = (mQAQ)l/Z > mpole’

gole _ /\1—3(”%38)% _A (/Xl; )1/ 1474) —mo.

Hence, uy = 7i and the dual quarks are in the (dual)
DC phase. The Lagrangian has the same form (5.1),
all equations (5.3)—(5.6) remain the same and, instead

of (5.7), the masses of mions and nions are now given
by
_2 1/2
pv pn (T _
AQ AQ ZMA2Q
(Np+N.)/4N.
_ [me (8.2)
=0 ,
_ ﬁ_o)’YM 1
o (AQ >

On the whole, the mass spectrum of the dual the-
ory includes: a) a large number of flavored hadrons
with their mass scale ~ T, made of dual quarks
with the constituent masses iy = (mgAg)'/? < Ag;

b) N7 mions and N7 nions with masses s ~ uny ~
(Np+Ne.)/4N.

~ Ao (mQ/AQ < fic; ) a large number

of gluonia with the mass scale ~ Ay < pipr ~ pn-
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8.2. Dual theory with p, = Mgy

With the choice |Ay4| ~ Ay, both values are very
small (see (4.4)). The dual theory is also taken to
be UV-free at p > |A,| in this case, and it also en-
ters the strong-coupling perturbative regime at ug <
< p < |A4]. The boundary conditions for the dual
gauge coupling @ = N.@/2r and the Yukawa cou-
pling ay = Npf?/2m at p = Ag are a(u = Ag) ~
~ ap(p = Ag) ~ 1/In(Ag/|Ay]) < 1. In the per-
turbative regions Ayy < p < Ag for the direct
theory and Ayy < |Ay] € p < Ag for the dual
one, both theories are now in the weak-coupling log-
arithmic regime. For the direct theory, this is so be-
cause it is IR-free at |A,;] < mg’le < < Ag,
while its coupling a(u) increases logarithmically at
Ayn < < m' but is still small, and for the dual
theory because |A4| ~ Ay are so small, and both its
couplings @(p) and ay(u) increase logarithmically with
decreasing 1 < Ag but still remain small at g > |A4].
Hence, at mPOle < §1 < Ag, both the direct and dual
theories are 1n the weak-coupling logarithmic perturba-
tive massless regime, Eqs. (7.2) and (7.3) can be used
with all vg, 74, Yar € 1, and they are incompatible.

For u < |A4|, the dual theory is in the strong-
coupling regime @(p) > 1, ay(u) > 1, and we use
values (8.1) for the anomalous dimensions v, and vas.

The hierarchies in the dual theory at p = Ag >
> |A4] are given by

mg = Men < Fie = |(@a)]"/? = (moqMen)'/* < Al
|A] My \ N7 /bo
L < 17
= (0)

where m, is the current quark mass and i is its
(possible) constituent mass. The evolution in the in-
terval |[Ay] < p < Ag is only logarithmic (all loga-
rithmic effects are neglected in what follows) and the
hierarchies at pu ~ |A,| remain the same. The dual
quarks are in the DC phase with the constituent mass
fic = [@)['? = (moMen)'? < [Aq] if Tip > mbere.
This condition is indeed satisfied (see (8.1)):

(mq )1/(1+wq) _ ( )

|Aq]
Ay < Tig < Ay

mpole

IAI

|

Al

<<“_O

<1,
Al

Therefore, the Lagrangian of mions and nions has
form (5.5), (5.6), with the only replacement Ag — M.y,
in the mion Ké&hler term and in the first term of the
superpotential. Hence, instead of (8.2), the masses of
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mions and nions (with the logarithmic accuracy) are
now given by

L 1/2
KM BN (Mo _
|Aq] |Aq] Zumr|Ag?
_\ (Np+N.)/2N,
— | Fc (8.3)
|Aql ’
_ H_C Y™
M= <|Aq|) > 1.

8.3. Direct theory with mg > Ag

We finish this section with a short discussion of
a possible behavior of the direct theory in the case
mqg > Ag. We then have to start with the UV re-
gion u = My, regarding this theory as the effective
low-energy theory with the UV cutoff M.

We use (2.7) for Np > 3N,. It follows that the hie-
rarchy of the standard scale parameters at ;1 = Ag and
Np > 3N, mg > Ag remains the same as it was at
Np < 3N. and mg < Ag, i.e., Mep, > Ayyr > mg.
But what is actually the highest physical scale ug de-
pends on a competition between M., and the quark
pole mass mg’le The value of this last depends on
the value of the quark anomalous dimension ygo. If
Mep > mg’le, then the theory is in the DC phase, and
if mg’le > My, then it is in the HQ phase.

For definiteness, we use the same value of y¢g as in
(7.2) with v, — 0:

7Q = (2Nc - NF)/(NF - N.) <0

(8.4)
at Ngp > 3N.,.
Then
pole 1/(1+7q) (Ng—N.)/Nc
Mo me — (e >
Aq Aq Ao
(Ngp—N¢)/2N.
M, mqQ mqQ
= | — — 1. .
s () e

Therefore, with this value of yq, when going from high

UV = My > mg’le to lower energies, the highest

physical scale encountered is pug = m’é"le. The quarks
are in the HQ phase.

After integrating out all quarks as heavy ones, we
are left with the pure Yang—Mills theory, but now in the
strong-coupling regime, a_ = N.a(p = mg)le){%r > 1.

pole

Hence, the matching of couplings at p = mg is now
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as follows. The coupling of the higher energy theory is
(see (7.4))

> —v=(2NF—3N.)/(Nr—N,)

.

It follows from the perturbative NSVZ S-function [5]
that the coupling of the lower-energy Yang—Mills the-
ory in the strong-coupling regime is a_(pu > Ayy) =
= (u/Aym)3. Therefore,

(

We now have the Yang-Mills theory in the
strong-coupling perturbative regime at Ayy < p <
< mg’le, with its coupling decreasing with u as
a(pn) = (u/Ayar)® until it becomes O(1) at u ~ Ay,
where the nonperturbative effects become essential.
Therefore, at u < Ayys, integrating all gauge degrees
of freedom except the field S ~ W2 and using the
VY form for the superpotential of S [6], we obtain
the correct value of the gluino condensate (S) = A3,

(and a large number of gluonia with the mass scale

me

1.
Mo >

(2Np —3N,.)/N.
) (8.6)

pole
mq

a—

3
> = a4 —Avyym =
Ay

1/3N.
= (Ag’ det mQ> =Avy > AQ. (8.7)

~ Ay ).

On the whole, the mass spectrum includes only two
mass scales in this case: a large number of heavy fla-
vored quarkonia with the mass scale ~ mg’le > Ay iy
and a large number of gluonia with the universal mass

scale ~ Ay > Ag.

9. CONCLUSIONS

As was described above, within the dynamical sce-
nario considered in this paper, the direct SQCD theory
is in the DC (diquark-condensate) phase at N, < Np <
< 3N,. In this case, its properties and the mass spec-
trum were described and compared with those of the
dual theory. It was shown that the direct and dual the-
ories are different, in general. The only region where no
difference has been found, is the case where both theo-
ries are in the perturbative superconformal regime. All
this can be significant in a wider aspect, as a hint that
many of the various dualities considered in the litera-
ture can also be strictly valid, at best, in the supercon-
formal regime only.
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Here, we do not repeat the above-described results
in detail. Instead, we compare the major features of
SQCD and ordinary QCD. In many respects, the above-
described properties of SQCD at N, < Np < 3N, re-
semble those of QCD?). For example, there is simulta-
neously confinement and chiral flavor symmetry brea-
king, with the formation of heavy constituent quarks
and light pions. In addition, both theories have a large
number of (quasi)stable heavy quarkonia and gluonia.
The main difference is in the parametric dependence
of different observable masses in the spectrum on the
fundamental parameters of the Lagrangians: Ag and
the current quark masses mqg = mg(p = Ag), when
mg < Ag.

a) The scale of the chiral symmetry breaking
A.n, (and hence the masses of constituent quarks) is
A?hCD ~ Ag in QCD, while it is parametrically smaller
in SQUD: AZ27Y ~ Moy, = (Amye)/2Ne < Ag.

b) The confinement scale (i.e., the string ten-
sion /o) is A?oi? = (0gep)'? ~ Ag ~ AZP
in QCD, while it is parametrically smaller than even

Af}?CD in SQCD: Afﬁ?D (USQCD)1/2
— (Ag’mgp)l/ch & Af}?CD -~ Mch, < AQ~
c) Therefore, the masses of heavy quarkonia (me-
son and baryon) are also parametrically different:
QCD QCD QCD
Mrggs?n ~ (Ach + Aconf) ~ AQ’ and Mbaryon

~ NACEP ~ N, Ag in QCD, while MS9CD ~ M., <

< Ag, and My 2¢" ~ N, My, in SQCD.

d) The masses of gluonia are Mg?oD ~ Agﬁ?
in QCD, and M;%" ~ ASP ~ Ay < Mo <
<« Ag in SQCD.

e) The smallest pion masses are MYPCP
~ (meAZT )2~ (mghAg)'? > mq in QCD,
while they are not of the order of (mgM.s)'/?, but
MZRCP ~ mg in SQCD (this last difference is because
the spin-1/2 quarks are condensed in QCD, while these
are spin-zero quarks in SQCD).

NAYM:

~

~

We now briefly comment on the N.-dependence of
various quantities that appeared above. The stan-
dard N-counting rules predict that the gluino and

quark condensates (S) and (Q’Q;) are not O(1) at
N. > 1, Np/N, = const, as in the text, but N, times
larger, O(N,), and this agrees with explicit calcula-
tions, see, e.g., [9]. Besides, this can be seen from
the example with Ny < N,., when quarks are Higgsed
(see Sec. 2). The gluon masses pgl ~ alp = pg) M3
are O(1). Because a = O(1/N,), M3 is O(N,) and

9 QCD means here our QCD with N, = 3 and with Np ~ 3
light flavors.
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(S) = mg M2 = O(N.)'"). The correct dependence
on N, can easily be restored throughout the text by
simple substitutions, for instance, Ag’ - NéVCAg’ in
(3.13), etc.

Finally, we comment about the spontaneously
SUSY-breaking metastable local vacuum in SQCD with
N.+1< Np <3N./2, mg #0, mg < Ag. The ar-
guments for the existence of such a state in the dual
theory are presented in [12].

Recalling general arguments in Sec. 7 (see (7.2)-
(7.4)); it is also worth recalling that these arguments
are not connected with the use of the dynamic scenario
with the diquark condensate) that the direct and dual
theories are not equivalent in the infrared region, it
becomes insufficient to show such a state in the dual
theory, because this does not automatically imply that
this state also exists in the direct theory. We therefore
try to identify this state in the direct theory.

In terms of the direct-theory fields, this state is
characterized by all NZ components (Mf) =(Q;Q") =
= 0, while (B) = const - (b) # 0 (and (B) the same),
B — QNe, b — qu_ Unfortunately, no simple possi-
bility for a local vacuum with these properties is seen
in the direct theory. For instance, the dynamics un-
derlying the appearance of the above basic nonzero
baryon condensates looks obscure. If these baryon
condensates were, for instance, due to Higgsed quarks
QY = <§5) # 0, with 4,5 = 1,...,N,, such that
(B) = (B) ~ (Q")Ne # 0, then no reason is seen for
all components of (M]l) = (Q5Q") to be exactly zero.
Rather, (M]i) with i = j = 1,...,N, is of the order
of (Q1(Q,) # 0. Besides, looking at the Lagrangian
in (3.2), we see that it becomes singular as M., — 0.
Hence, it seems impossible that the local vacuum with
the above properties can appear here.

However, this is not the whole story because (3.2)
is a local Lagrangian, i. e., it is valid only locally in the
field space, not too far from the genuine SUSY vacuum.
This implies that in general, besides M, additional
fields can be involved to correctly describe the vicinity
of the above metastable vacuum. We therefore make,
in addition, an attempt from another side, using some
specific properties of the above metastable state of the
dual theory. We also consider the lightest excitations
around this vacuum. As was argued in [12], all excita-

10) Connected with this, there is an inherent ambiguity in the
VY procedure for the pure Yang—Mills theory: we can replace
In(p3/A%) with In(S/CoA%) — 1, where Cp is some constant. The
value Cp = 1 was used everywhere in the text, while p3 is def-
initely Nc-independent, and therefore a better replacement is
In(p?/A3) — In(S/N.A3) — 1, resulting in (S) = N. A3.
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1/2 " except for

(Q;Q)
fields (and the basic vacuum condensates of baryons).
We therefore take the scale u < (mgAg)'/? and try to
write by hand an effective superpotential made of these
meson and baryon fields only. The simplest form is

B 1/N.
Wef = _NC{ ) } +

+mgTr M.

For N, > 2, no possibility is seen to obtain a non-
singular expansion in quantum fluctuations around the
state with (M) = 0, (B) = (B) # 0 from (9.1)'"). Only
the case N. = 11is nonsingularin (9.1). But even in this
case, it must then be shown how to obtain (9.1) starting
with (2.1) and expanding self-consistently around this
metastable vacuum. This is likely to be problematic.

Finally, the absence of the above metastable spon-
taneously SUSY-breaking state in the direct theory
may be not so surprising if we recall all arguments
given above that the direct and dual theories are not
equivalent.

tions have masses of the order of (mgAg)
some massless modes of the baryon and Mjl

det M — Tr (B MNe
I

(9.1)

This work is supported in part by the REBR, (grant
Ne(7-02-00361-a).

APPENDIX

The purpose of this appendix is to briefly comment
on a situation with anomalous divergences of external
currents (the 't Hooft triangles) in SQCD, within the
dynamic scenario considered in this paper.

In our ordinary QCD, at the scale pp, ~ Ag and
at mg — 0, there is a genuine spontaneous break-
ing of the flavor symmetry: SU(Np)r x SU(Np)r —
— SU(NF)r+r, while the baryon symmetry U(1)p re-
mains unbroken. Therefore, the quarks acquire the con-
stituent masses o ~ p.n and decouple at p < pep (to-
gether with all gluons, which acquire either electric or
magnetic masses of the order of Ag due to nonperturba-
tive confining interactions, such that the lower-energy
theory contains only N2 — 1 light pions). If the quarks
are exactly massless, the pions are also massless, but if
the chiral symmetry SU(Np)r, x SU(Np)g is explicitly
broken down to SU(Ng)p+r by parametrically small
quark masses 0 < mg < Ag, then the pions become

11) Formally, we can multiply the first term inihe right-hand
side of (9.1) with a function f(z), 2 = det M/Tr (B MN¢B), but
this does not help avoid singularities.
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the pseudo-Goldstone bosons with parametrically small
masses M, ~ (moAg)'/? < ficn.

In SQCD with Ny < N, and with small ex-
plicit breaking of chiral flavor symmetry and R-char-
ge by quark masses 0 < mg < Ag (see Sec. 2),
the scalar quarks are Higgsed at the high scale p., =
= g > Ag (g = Mep, with the logarithmic accu-
racy) and acquire the large “constituent masses” uc =
= g1 The color symmetry SU(N,) is broken down to
SU(N. — Np), and the 2N.Np — N% gluons become
massive by absorbing the Goldstone bosons. Hence, all
this can be considered as a quasispontaneous symmetry
breaking SU(NC)C X SU(NF)L X SU(NF)R X U(].)R X
X U(l)B — SU(NC _NF)C X SU(NF)C+L+R X U(l)B,
because the “constituent masses” uc ~ M.y, are para-
metrically larger than the pion masses my ~ mg (with
the logarithmic accuracy). As a result, there appear
NZ pseudo-Goldstone pions (together with their su-
perpartners). Therefore, the lower-energy theory at
p < pgr includes the superfields of light (N, — Ng)? —1
gluons and N3 pions.

In SQCD with Nr > N, and mg < Ag (in the
dynamic scenario considered in this paper), all quarks
acquire the constituent masses uc M, € Ag in
the threshold region p ~ pep, = Mep, and there ap-
pear N# light pions, while all gluons remain massless.
This can also be regarded as the quasi-spontaneous
symmetry breaking SU(Np)r x SU(Np)r x U(1)r %
x U(l)p — SU(Ng)pL+r x U(1)p, because the con-
stituent quark masses pc are parametrically larger
than the pion masses m, ~ mg < M. The lower-
energy theory at p < M,y includes the superfields of
light N2 — 1 gluons and N# pions.

We now recall some important and well-known
properties of the lower-energy theory at p < picp.

1) After integrating out all heavy fields (and all
Fourier components of light fields with & > p.p), the
Lagrangian of the lower energy theory at u < pep is
local, just because all the integrated modes were hard
(it is always implied that this integration is performed
in a way that respects all symmetries).

2) The external global symmetries can be gauged by
introducing external vector fields and adding the appro-
priate set of massless “leptons”, such that all anomalous
divergences of external currents originating from the
quark-gluon sector are canceled by those originating
from the lepton sector.

3) After all this, because the symmetry breaking
in the quark—gluon sector was quasi-spontaneous, the
lower-energy Lagrangian preserves all previous symme-
tries, both internal and external. Therefore, because
nothing happens to leptons when crossing the scale
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I = len, the anomalous divergences originating from
the quark—gluon sector also remain the same [13].

Hence, there is no question of whether the lower-
energy theory behaves properly under symmetry trans-
formations, both internal and external, or whether the
anomalous divergences of external currents originat-
ing from the quark—gluon sector remain the same in
the lower-energy theory'® as they were in the higher-
energy theory at p > pp, — this is automatic. The
only relevant questions are: a) what is the explicit form
of the lower energy Lagrangian? b) in what way, ex-
plicitly, the anomalous divergences of external currents
originating from the quark—gluon sector are saturated
by fields of the lower energy theory?

As regards the first question if the dynamics of the
theory is under the full control, the explicit form of
the lower-energy Lagrangian is obtained by the direct
integration described above. As is well known, Wess—
Zumino-like terms appear in addition to the “standard
terms” [14,15].

Now, a few words about the second question within
the dynamic scenario for SQCD considered in this pa-
per. First, as for pions, it is worth noting that be-
cause contributions of pion loops are power suppressed
at scales pu < picp, these loops give only small power
corrections to the contributions of tree diagrams to the
amplitudes with low-energy external pions and/or ex-
ternal gauge fields.

There appear one-pion terms J¢** ~ iF 0,7 + ...
in those external currents that correspond to quasi-
spontaneously broken generators, with the pion decay
constant Fy ~ Mg for Np < N, and F, ~ M,
for N. < Nrp < 3N.. Besides, among many oth-
ers, there occur the well-known terms of the order of
F-'Tr(rF,,F,,) in the Wess-Zumino part of the La-
grangian (here, F),, is the field strength of the exter-
nal vector fields, Wy, or Wgx bosons, or the R-photon

12) That is, at scales eppr < 1 < Heh, Where fiepp ~
~ mg ~ mqg <K [ is the scale of the explicit global chiral
symmetry breaking, because an explicitly broken global sym-
metry is incompatible with gauging this symmetry, and jicqp;
can be neglected only at scales p > ficpp- Formally, to
avoid this problem, we can replace the quark masses mg (1)
in (2.1) with the N2 quantum fields m! and add the term
(—NeA$, (m)) = ch(Ag’ det m)!/Ne to the superpotential.
By the dimensional counting, this term is irrelevant at high en-
ergies. The genuine global symmetry of the Lagrangian is then
SU(NF)L X SU(NF)R X U(].)R X U(].)B. Then, after integrat-
ing out all the N%‘ pion fields H;L, as heavy ones at low energies

u < mg, the m{ are massless fields with zero superpotential,

and choosing the vacuum with (m{) = (5{mQ, 0 <mg < Ag,
we then have a genuine spontaneous breaking of global symme-
tries (in this theory by itself).

458

AR with the appropriate coefficients. As a result, the
anomalous divergences of all such currents are auto-
matically saturated by the sum of three contributions:
a) the one intermediate pion exchange; b) the direct
contributions of fermionic pion superpartners to the tri-
angles; and c) additional direct contributions of gluinos
to the R and R? triangles.

For instance, for all N. < Np < 3N, (with the log-
arithmic accuracy for Np < N.), the decay width of
the pion 7g into two photons is then given by

m
F(TrR — 27) ~ aextmi/Fg ~ agz‘t Mg
ch
mq A
exrt AQ

with A = (4N, — Np)/Ne.

Those external currents (e.g., the baryon one)
that correspond to the unbroken generators do
not contain the one-pion term (because there is
no corresponding pion), and their anomalous di-
vergences, like (Wp|0,JB|W.), are then directly
saturated by the point-like terms of the order of
(e,,,\,,,.AfWAL&,WTL + ...) in the Wess—Zumino part
of the Lagrangian.

We did not explicitly write the Wess—Zumino-like
terms in the main text because this is not a simple
matter to find their explicit form, and they are irrel-
evant for the main purpose of this paper, which is to
calculate the mass spectrum of the theory.
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