ZK9T®, 2010, rom 137, Beim. 3, crp. 419-428

© 2010

FLUCTUATION INTERACTIONS OF COLLOIDAL PARTICLES
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For like-charged colloidal particles, two mechanisms of attraction between them survive when the interparticle
distance is larger than the Debye screening length. One of them is the conventional van der Waals attraction
and the second is the attraction mechanism mediated by thermal fluctuations of particle position. The latter is
related to the effective variable mass (Euler mass) of the particles produced by the fluid motion. The strongest
attraction potential (up to the value of the temperature T') corresponds to the case of uncharged particles and
a relatively large Debye screening length. In this case, the third attraction mechanism is involved. It is mediated

by thermal fluctuations of the fluid density.

1. INTRODUCTION AND AN OVERVIEW

Systems of charged colloidal particles exhibit a vari-
ety of unusual physical properties [1-3]. Colloidal par-
ticles can be arranged into crystals [4] and into struc-
tures with clusters and voids [5-7]. Colloidal systems
may undergo different types of phase transition [8-13].
Topological phase transitions in a two-dimensional sys-
tem of colloidal particles were discussed in [14, 15]. Un-
usual ensembles of colloidal particles were observed in
Refs. [16-18]. In [19], buckling instabilities in confined
colloidal crystals were analyzed. Interesting behaviors
of colloidal particles in external fields were reported
in [20]. In an electrolyte, colloidal particles acquire
some surface charge, screened by counterions at the
Debye length Ap, which results in the repulsion po-
tential of Derjaguin, Landau, Verwey, and Overbeek
(DLVO) [1, 2]. The DLVO theory, as a result of so-
lution of the linearized Poisson—Boltzmann equation,
has been questioned in [21, 22]. The generalization of
the DLVO interaction via a modification of counterion
screening was reported in [23].

The long-range attraction of like-charged particles
is a matter of challenge and controversy in colloidal sci-
ence. Very schematically, the story of the long-range
attraction is as follows.
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Initially, the long-range attraction of colloidal par-
ticles on a micron scale was reported in Ref. [24]. The
authors reconstructed a pair potential from the mea-
sured correlation functions of a large ensemble of col-
loidal particles.

The authors of Refs. [25-27] published even more
surprising results, the attraction being extended over a
distance of almost 4 um. They used a laser technique
releasing two particles and observing their behavior.
But their measurements were actually misinterpreted.
Only a macroscopic hydromechanical effect associated
with specificity of measurements but not a microscopic
attraction mechanism was observed [28].

For a high-concentration particle ensemble, Bechin-
ger and his group showed that different types of the
interparticle potential result in almost identical corre-
lation functions [29, 30]. The conclusion was that the
interaction potential should be drawn from experiments
not with a large ensemble but with a pair of colloidal
particles. Another difficulty is related to an uncertainty
in the observed particle position caused by diffraction,
which can result in errors in the calculated pair po-
tential (see Ref. [31] and the references therein). To
reduce the diffraction uncertainty, ultraviolet observa-
tions should be used. Therefore, the reliability of cal-
culation of the pair potential based on statistical prop-
erties of large ensembles of particles is questionable.
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Despite the lack of reliability of various experiments
on determination of a microscopic attraction mecha-
nism of like-charges, it is always intriguing whether
they attract in reality. We consider the following micro-
scopic mechanism of attraction of two colloidal particles
or a particle and a wall.

1. The conventional van der Waals attraction
uygw [32] mediated by electromagnetic fluctuations.

2. The attraction Uy, mediated by thermal com-
pression fluctuations of a fluid.

3. The attraction I associated with thermal fluctu-
ations of particle positions in a fluid. It results from
variable particle masses (Euler masses) depending on
the distance between them. This mechanism and the
term “Euler mass” were proposed in Ref. [33].

In the first mechanism, the energy of fluctuating
electromagnetic waves depends on the distance between
particles and therefore leads to a force.

The first and the second mechanisms are generic
because electromagnetic waves are just substituted by
hydrodynamic ones.

In the third mechanism, moving particles drag a
part of the fluid. The mass of the involved fluid depends
on the distance between the particles. There is a ther-
mal drift of the particles into the region with a larger ef-
fective mass, which is analogous to classical mechanics.
This can be interpreted as an effective interaction me-
diated by thermal fluctuations of particle positions in a
fluid. Formation of the variable mass involves high-fre-
quency fluctuations of the particles when dissipative
hydrodynamic effects are not important [34]. This cor-
responds to Euler hydrodynamics and gives rise to the
term “Euler mass”. The formation of Euler mass re-
sembles the equipartition law when the mean kinetic
energy is T'/2 regardless of the dissipation. This is be-
cause the mean kinetic energy is also determined by
high frequencies.

There is a substantial difference among the above
attraction mechanisms. The first and the third ones
survive when the interparticle distance becomes larger
than the Debye screening length. At this distance, the
DLVO repulsion is very small and the above two mecha-
nisms are the only interactions. The second mechanism
works when Coulomb effects in the fluid are not pro-
nounced. Specifically, the particles are not charged and
the Debye screening length is larger than the interpar-
ticle distance. A relative role of I and u,qw was also
analyzed in Ref. [35].

The goal of this paper is to study the three attrac-
tion potentials for two particles and for one near a wall
(walls).
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2. VAN DER WAALS INTERACTION

The energy of a fluctuating electromagnetic field
around two particles depends on the distance R be-
tween them and therefore results in an interaction force.
It is called the van der Waals force [32]. This force
is mainly determined by the typical wave length A\ of
the fluctuating electromagnetic field because we should
have A ~ R. The permittivity of the particle material
¢(w) depends on the typical frequency w ~ ¢/R. We
consider relatively large interparticle distances,

c
— < R,
wo

(1)

where wy corresponds to an absorption peak of e(w).
For example, wy ~ 1016 s~! for water, and estimate (1)
becomes 100 A < R.

At a finite temperature, the typical wave length of
the fluctuating electromagnetic field is hc/T. In what
follows, the interparticle distance is not too large,

he
Tv (2)

which is equivalent to R < 7.4 um at room tempera-
ture.

We consider a typical interparticle distance R of the
order of one or two microns, which agrees with condi-
tions (1) and (2). In the optical range of w, the per-
mittivity is determined by the refractive index and can
be substituted by the dielectric constant ¢ for parti-
cles and the dielectric constant g for the surrounded
medium. When the two dielectric constants are close
to each other,

R <

E—€y

<1, (3)

€o
we can use the approach of pairwise summation to cal-
culate the energy of electromagnetic fluctuations (the
van der Waals interaction energy) [32, 36] as

/dgﬁ/ll‘l—l‘2|7 @

In Eq. (4), the integrations are taken over the volumes
of the two bodies. For two identical spherical particles
of the radius a and center-to-center distance R, the in-
tegration in Eq. (4) results in [32, 36]

23hc (e — o)
e

Upqw (R)

(R) = 23 (e—¢c0)® he [2a%(20a°—3R?)
G T 10200~ 32 R | (RP—da?)?
2a R?
+ﬁ““732_4a2]~ 5)
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For a spherical particle near a flat infinite wall,

Eq. (4) yields
1

-1

23 (¢ —¢0)* hc

640m 2

(1—2%)dz

Grhgar O

Upaw (h) = .

where h is the center-to-wall distance.

In the region of visible light for water, eg ~ 1.77,
for the typically used polystyrene colloidal particles,
€ & 2.40. Therefore, the parameter (¢ — ¢g)/co &~ 0.35
can be considered relatively small and hence Eqs. (5)
and (6) are reasonable approximations for the van der
Waals interaction.

3. INTERACTION MEDIATED BY
COMPRESSION FLUCTUATIONS OF THE
FLUID

We suppose that two particles are totally fixed in-
side a hydrodynamic medium and serve only as obsta-
cles to fluid motion. There is no macroscopic motion in
the system and the only motion is caused by thermal
fluctuations of the fluid velocity v(r,¢). In this case,
the free energy of thermal fluctuations of the fluid F(R)
depends on the distance R between the particles. The
function

Ucom(R) F(R) - F(OO) (7)

is an interaction mediated by compression fluctuations
of the fluid analogously to the conventional van der
Waals interaction mediated by electromagnetic fluctu-
ations.

To find the free energy of thermal fluctuations of the
fluid, we can start with the linearized Navier—Stokes
equation [34]

ov
PE (8)
There are two types of fluid motion, one of them
is transverse diffusion and the second is longitudinal
sound waves associated with density variations. The
equilibrium free energy of transverse motions is deter-
mined by the Boltzmann distribution of their kinetic
energies and is independent of the friction coefficient
in the thermal limit. The free energy of transverse mo-
tions in the thermal limit depends on the total volume,
but is independent of the relative positions of the bod-
ies. Therefore, transverse fluctuations do not result in
an interaction.

Quite an opposite situation occurs for longitudinal
motions, when the total free energy is a sum of ener-
gies of different sound modes. The spectrum of sound

= —Vp+nViv+ (C+3) Vdivy.
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waves depends on the distance R between bodies due to
hydrodynamic boundary conditions on body surfaces,
and this results in an R-dependence of the free energy.
Hence, the fluctuation interaction between bodies is
mediated by hydrodynamic sound waves, like the con-
ventional van der Waals interaction is mediated by fluc-
tuations of electromagnetic ones. With v = V9¢/0t,
it follows from Eq. (8) that
2

ﬂ%=—5p+<ﬁ+4—;)% 9)
From thermodynamic relations and the continuity
equation, we can obtain dp = —ps>V 2@, where s is the
adiabatic sound velocity [34]. At the typical frequency
w e~ s/a~ 10" s71 (with a ~ 1 um being the particle
radius), the dissipative term in Eq. (9) is small and we
can write

V2.

fate)
=7
According to the small-friction limit, the boundary con-
dition for the normal derivative V,,¢ = 0 to Eq. (10)
corresponds to the Euler fluid [34]. From the general
standpoint, the free energy of a system of harmonic os-
cillators is independent of friction in the thermal limit.
In an electrolyte, the dispersion law of sound waves
can be approximated as

$2V2¢ = 0. (10)

$2
P
where Ap is the Debye screening length. We first con-
sider the case of two infinite parallel walls separated
by a distance R. The free energy per unit area of the
system is expressed as a sum of energies of indepen-
dent oscillators according to general rules of statistical
physics,

w(q) = 5°¢* + (11)

(12)

Performing the same steps as in Ref. [33], we obtain
the interaction mediated by compression fluctuations
in the form

T
Ueom = 3572 %
T 4R
x/dzln ll—exp (— Z+/\—2> (13)
D
0
In the limit cases, Eq. (13) becomes
—¢(3)/167R?, R < Ap,
Ueom = (14)
—2R/\
_M7 /\D < R7

8TRAp
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where ((3) ~ 1.202 is the Riemann zeta function value.
At a large R, the interaction in (14) is screened on
the length Ap/2. The possibility of an interaction
mediated by nonelectromagnetic fluctuations was pro-
posed in [32]. The first formula in (14) was obtained
in Ref. [33]. It is similar to the result in Ref. [36] for
electromagnetic fluctuations and perfectly conducting
planes.

The fluctuation interaction in (13) depends on the
Debye screening length. This is due to summation over
all wave vectors in the free energy and results in its
dependence on the density of states, which, in turn,
depends on the form of the spectrum. In our case,
the spectrum w = s(k? + A\3?)'/? introduces a Ap-
dependence in the free energy.

When two objects are not flat but are close enough
and interact by small parts of their surfaces, which are
almost flat, the interaction potential can be derived
from flat approximation (14) by integrating over the
surfaces. For example, for a particle close to a flat
wall, in the case where the center-to-wall distance h is
smaller than the particle radius a, the interaction can
be calculated as in Ref. [33]:

h—a<a,\p. (15)

h—a’

The analogous result for two spheres with the center-
to-center distance R is

a

¢(3)
TR—Qa7

16

R—-2a<a,\p. (16)

Ucom =

Equations (15) and (16) hold in a nonelectrolytic fluid
or in an electrolyte with a sufficiently large screening
length.

4. WHICH MECHANISM SURVIVES IN AN
ELECTROLYTE?

In an electrolyte, the interaction U.,,, mediated by
plasmons is strongly screened (see (14)). The van der
Waals interaction wu,qw, mediated by photons of vi-
sible-range frequencies, is not sensitive to the plasmon
effects. The mechanism of variable mass is connected
solely with incompressible fluid fluctuations. There-
fore, only the conventional van der Waals interaction
upgw and variable mass mechanisms I can survive in
an electrolyte. The interaction due to variable mass is
considered in the following sections.
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5. VARIABLE MASS MECHANISM

To illustrate the variable mass mechanism, we con-
sider a simple mechanical analogy. We suppose that a
classical nondissipative particle of the total energy F
moves in the harmonic potential a2z?. When the par-
ticle mass is constant, the mean displacement (z) = 0
in the harmonic potential. But in the case of a variable
mass m(z), the mean displacement (x) # 0. This is be-
cause the particle velocity is smaller in the region of a
larger mass, just to keep the total energy constant. Ac-
cordingly, the particle spends more time in the region
of larger mass. This is equivalent to a certain effec-
tive attraction I(z) to the region of larger mass. As
shown in Ref. [33], for a slowly varying m(z), the total
effective potential becomes az? — (E/2)Inm(x).

A real particle with friction participates in the
Brownian motion characterized by a certain tempera-
ture T'. We briefly repeat the main arguments leading
to the effective potential I [33]. The Langevin equation
describing such processes has the form

10m ,

2, V@

m(x)z + 5

2 Oz

+nr =

= stochastic force. (17)

Short-time fluctuations of the velocity & are well sepa-
rated from the slow drift in an effective potential. In-
deed, according to the fluctuation—dissipation theorem,
the mean value of the kinetic energy (mi?/2) = T/2
corresponds to the equipartition law and is essentially
given by short-time fluctuations related to the infinitely
large circle in the complex frequency plane. Substitut-
ing that mean value in Eq. (17) leads to the effective
potential V(z) + I(z) [33], where
T
I(z) = —51n m(z). (18)
Expression (18) is an exact result in the thermal limit
(no quantum fluctuations), as is the equipartition law.
We recall what happens in the conventional case
of position-independent masses. In the thermal limit,
we can then set all frequencies equal to zero because
they provide only quantum corrections to the partition
function. The remaining part of the partition func-
tion is determined solely by the potential energy and
does not depend on velocities. The scenario changes
for a position-dependent mass. In that case, the fol-
lowing general arguments can be used. The partition
function Z, which is proportional to the phase volume
ApAx, acquires an additional positional dependence
Ap ~ /Tm(z) following from the momentum chan-
nel even in the thermal limit [33]. The free energy
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(=T'In Z) results in interaction potential (18) obtained
by a rigorous derivation procedure.

In the multidimensional case, the kinetic energy is
expressed in terms of the mass tensor m;;(R) as

1
K=_

W — 00.
2

As shown in Ref. [33], the interaction due to variable
mass is then given by

I(R) = —% In [det m(R)]. (20)
The potential in (20) has a fluctuation origin and is
mediated by fast fluctuations of velocity. In terms of
coordinates, when form (19) is diagonalized, det m be-
comes a product of principal values and interaction (20)
is reduced to a sum of terms related to principal coor-
dinates.

6. INTERACTION MEDIATED BY THERMAL
FLUCTUATIONS OF PARTICLE
VELOCITIES

Calculating the effective fluctuation potential for
systems with a complicated dynamics requires finding
the mass tensor in the high-frequency limit and insert-
ing it in Eq. (20). When particles in a fluid perform an
oscillatory motion with a high frequency, the fluid ve-
locity obeys the Euler equation everywhere in the fluid
except a thin layer close to the particle surfaces [34].
Hence, finding the mass tensor in Eqs. (19)—(20) re-
quires solving the Euler equation with a zero boundary
condition for the normal component of the fluid ve-
locity. For this reason, the mass corresponding to the
high-frequency limit of particle dynamics can be called
the Euler mass. The effective particle masses depend
on the fluid mass involved in the motion. The fluid
mass depends on the interparticle distance, and there-
fore the effective particle masses also depend on that
distance.

In the case of one particle of a radius a in a bulk
fluid, the Euler mass tensor has the form [34]

)61']'»

where py is the mass density of the particle and p is
the fluid density. The first term in Eq. (21) is related
to the proper mass of the particles and the second is
associated with the fluid motion.

3

e

3

0+£

: (21)

mij =
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Fig.1. Arrangements of particles with velocities u to
calculate the mass M, (a) and M. (b) in Eq. (23)

6.1. Two particles in an infinite fluid

We now calculate the Euler mass tensor for two
identical particles in a fluid. The fluid velocity normal
to the particle surface should be equal to the normal
particle velocity on its surface. If the particle velocities
are u; and us, there are four independent quadratic
combinations u? + u?, ujuy, (R - w)(R - u), and
[(R-u;)? + (R u2)?]. We make the velocity trans-
formation

u; + up u; —up
V=—-—, -

V2 V2

In terms of the new velocities, the kinetic energy can
be written as

(22)

> [Mi(R)V? + m; (R)v}

i=1

1
K==z

5 (23)

I

where i = 1,2, 3 respectively correspond to x,y,z. Ex-
pression (23) involves only four independent masses be-
cause M, = M, and m, = m,. The proper masses of
the particles 4ra3py/3 can be separated from the fluid
ones by writing

3
M; = _47;a [Po + gGi (g)} )
(24)
dma’ p R
m; = 3 [P0+§gi (E)] .

According to Eq. (21), G(o0) = g(c0) = 1.

The easiest way to calculate the masses is to use the
method illustrated in Figs. 1 and 2, where the particle
velocities are shown by arrows. The kinetic energy of
the fluid in Figs. 1a and 1b is (27a®/3)G,,.(R/a)u?.
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z a z b
u
u
> >
Yy Yy
u
u

Fig.2. Arrangements of particles with velocities u to
calculate the mass m, (a) and m. (b) in Eq. (23)

Analogously, the fluid kinetic energy in Figs. 2a and
2b is (2ma®/3)g...(R/a)u?. Interaction potential (20)

becomes
I(R) = —T |In [2p0+pG:(R/a)][2po+pg.(R/a)] N
(2p0+p)?
1. [2p0 + pg:(R/a)][2p0 + pG-(R/a)]
fal (200 + p)? (25)

The function I(R) tends to zero as R — oo.

6.2. One particle near an infinite wall

We consider one particle of a radius a placed in a
half-space of the fluid filling the volume z > 0. The
center-to-plane distance is h (the plane is at z = 0).
The boundary condition at the particle surface is the
equality of the normal components of the fluid and the
particle velocities. The normal velocity component of
the fluid velocity at the flat surface is zero. Obviously,
the total kinetic energy is half that calculated in the
previous subsection corresponding to Fig. 1a (the x
and y components) and Fig. 2b, which are related to
the zero normal velocity of the fluid at z = 0.

It is now easy to write the interaction potential us-
ing the results in the previous subsection. It is given
by

2po + pGz(2h/a)

I(h) = =T |In

() 2p0 +p
1.2 2
1, 200 +pg:(2h/a) . (26)
2 2po + p

where the functions GG, and g. are the same as in the
previous subsection.

6.3. One particle near two infinite
perpendicular walls

This situation is shown in Figs. 3-5. The particle is
placed in the fluid limited by the conditions y < 0 and
z > 0. The other image particles, shown with dashed
curves, are introduced in order to satisfy the boundary
conditions on the planes z = 0 and y = 0 of zero normal
velocities of the fluid. If we consider the whole space
with the introduced image particles, the total kinetic

energies are
4ma® h D
Clnron (B2 en

with ¢ = 1,2,3 for Figs. 3, 4, 5 respectively; the veloc-
ities of all particles are equal to u. Analogously to the
previous cases, the interaction potential is

3
I(h Zl

The boundary conditions are of the same type as in
Sec. 6.1.

K;,=4

2po + pfi(h/a, D/a)
2p0 +p '

(28)

7. NUMERICAL METHOD TO CALCULATE
THE INTERACTION POTENTIAL

In our case, the fluid velocity is v = V¢, where
the potential ¢ satisfies the Laplace equation VZp =
with the boundary conditions specified in Sec. 6,

n(u — V(p)|s =0, (29)

where S is the total surface that restricts the fluid. S
includes borders of the particles (with velocities u) and
walls (with zero velocity). The unit vector n is perpen-
dicular to the surfaces. The kinetic energy of the fluid
is [d®r pv?/2. Therefore, the total kinetic energy of
the system can be written as

K=Y %ug_g/ds¢(r)ni~ui . (30)
k2 Sz

where summation ranges over all particles with the are-
as S;.

The numerical method proposed to calculate the
Fuler masses is based on an iteration procedure. In
what follows, we discuss this method for two particles
in an infinite fluid. The zero approximation is

po(r) = ¢(r—R/2) +¢(r + R/2), (31)
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Fig.3. A particle near two perpendicular walls. The
three image particles, shown by the dashed curves, are
added to consider the whole space with zero normal ve-
locities of the fluid at the walls. This particle arrange-
ment contributes to the function fi in Eq. (27)

Az
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’ N ’ \
[ — -l \
\ ! \ 7
AN 7 A 7’
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x

Fig.4. The particle arrangement contributing to the
function f» in Eq. (27)
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\ \
\ /
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\
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Fig.5. The particle arrangement contributing to the
function f3 in Eq. (27)

where the harmonic function ¢ satisfies the equation

_ 1 / i OU(")
P(r) = 47r/dS G(r,r')n o (32)
outside the sphere of the radius a centered at r = 0.
At the sphere surface, nVi(r) = ucosf and 6 is the

angle between n and u. The integration in Eq. (32)
is extended over the sphere surface, and the Green’s
function is given by

2 1 r—7r Cosy
!
= ——+-1
Glr,r') |r—r’|+a o <|r—r’|+a—r cosv) » (39)

where [37]

r—r'|=(r* +a° - 2arc057)1/2,

cosy = cosf cosf' +sinfsin’ cos(op — ¢').

The zeroth approximation potential ¢o(r) in (31)
provides the correct boundary conditions at the particle
surfaces S in the limit R — oo. At a finite R, boundary
condition (29) is not satisfied by the zeroth approxima-
tion (31), which therefore requires a modification. We
can construct an iteration scheme ¢ = pg+p1+@a+. ..
by means of the recursion relation

ds’ R R
Pnt1(r) = — / EG (r—;,r’—;) X

Ir'—R/2|=a

xn' - (uhpo — Vi, (r')) —

!
- / ﬁC?(r—l—E,l"—l—E)x

47 2 2
[r'+R/2|=a
xn' - (udpo — Vipr(r')), (34)
where n = 0,1,2,... We have a fast convergence at

large R because ¢,+1 ~ @npa/R. At each iteration
step, the boundary conditions becomes more and more
exact with respect to the parameter a/R.

To calculate G, = G, and G, in Eq. (23) for Eu-
ler masses, we have to apply the scheme in (34) to the
situations shown in Fig. 1a and Fig. 16. Analogously,
gz = gy and g. in Eq. (26) are associated with Fig. 2a
and Fig. 20.

From the functions GG, and g, numerically found
by the above method, we can also construct interac-
tion (26) of a particle and a wall.

The same method is applicable to calculations of
the potential in (28) for one particle near two perpen-
dicular walls. Instead of two particles, we should then
take four, with three of them playing the role of ima-
ges (shown by dashed curves in Figs. 3-5). We do not
describe an obvious modification of Eq. (32) in that
case.

8. RESULTS

In this section, we discuss the three different con-
tributions to interaction of colloidal particles, listed in
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—0.01

—0.02

—0.03

—0.04

R/a'

Fig.6. The numerically calculated attraction potentials
for two particles in an infinite fluid; p/po =1

Sec. 1, in various geometries: (i) two particles in a bulk
fluid, (ii) one particle over a flat surface, and (iii) one
particle near two perpendicular planes.

The interaction Ugpm, which is mediated by com-
pression fluctuations of the fluid, plays the dominant
role because it is relatively large, Ueom /T ~ (0.3-1.0),
as follows from Figs. 6 and 8. On the other hand, the
interaction Uy, is strongly reduced by a finite Debye
screening length Ap. Therefore, this interaction can be
observed in electrolytes with a large Ap. In addition,
surfaces of interacting objects should not be strongly
charged to prevent the Coulomb repulsion from domi-
nating over Ugopm, -

In conventional electrolytes, normally used in ex-
periments, only u,qw (frequencies higher than the
plasma frequency) and I (noncompressive fluctua-
tions) survive on distances longer than Ap, where the
Coulomb repulsion of charged particles is screened.

Figure 6 relates to the case of two particles in a
bulk fluid, Sec. 6.1. The interaction potential I (in the
units of temperature T') is plotted by the thin solid
curve. The conventional van der Waals interaction (5)
is indicated by a dashed curve. The resulting potential
is shown by a thick curve. It can be seen that U,
substantially exceeds the above interaction potentials.

Figures 7 and 8 correspond to the case of one par-
ticle near the wall, Sec. 6.2. As is clear from Fig. 8,
Ucom is not small and is of the order of T'.

In Fig. 9, the potential I relates to one particle near
two perpendicular walls.

When the intersurface distance is small, the poten-
tial I tends to a constant, whereas the van der Waals
interaction is known to diverge. The results in Figs. 6-9
correspond to p/po = 1. As this parameter increases,
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—0.04

—0.08

—-0.12

1.6 1.8 2.0

h/a

Fig.7. The numerically calculated attraction potentials
for one particle and an infinite flat wall; p/po =1

0 T T I
(uvdW + I)/T
—0.4 t+
—0.8 -
—12+
—1.6 1 1 1
1.1 1.2 1.3 14
h/a
Fig.8. The thick curve is the same as in Fig. 7. The

thin curve represents interaction (15) mediated by ther-
mal compression fluctuations of the fluid

the attraction becomes more pronounced. For exam-
ple, for p/py = 13.6, related to colloidal particles in
mercury, the attraction potential becomes more than
two times larger in amplitude.

9. DISCUSSION

Is it possible to experimentally observe attraction
of like-charged colloidal particles separated by a mic-
ron distance? We analyze different physical situations.

9.1. No Coulomb effects

The absense of Coulomb effects means that an elec-
trolyte has a large Debye length Ap and zero charges on
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Fig.9. The attractive interaction I in the units of T for
one particle and two perpendicular walls; p/po =1

all surfaces. In this case, the DLVO repulsion is absent
and the interaction mediated by compression fluctua-
tions, Ugom, substantially dominates the conventional
van der Waals part u,qw and the one mediated by par-
ticle velocities, I. As follows from Fig. 8, the interac-
tion energy U.,n, of a particle of the radius 1 ym and a
flat plane, at the surface-to-surface distance 0.15 pm,
is 17. This attraction can be experimentally observed
because it is relatively large.

9.2. Conventional particles in an electrolyte

For typical electrolytes and polystyrene particles
[25], the DLVO repulsion has a short range and the
interaction Ugpm is well suppressed. In this situation,
only u,qw and I survive. But the van der Waals inte-
raction, u,qw is weak and only I has chances to result
in an observable attraction.

The peculiarity of the interaction I is that a particle
is attracted stronger to a surface that geometrically ad-
justs its shape better. The flat surface in Fig. 7 adjusts
the particle better than the counter-curved neighbo-
ring particle in Fig. 6. Also the geometry of two walls
in Fig. 9 adjusts the particle shape better than one wall
in Fig. 7. The attraction of a particle to a surface of
the same type of curvature is the strongest.

The feature of the interaction [ is that it is of
the order of 0.05T (a particle near a flat wall) and of
the order of 0.17 (a particle near two perpendicular
walls) when the intersurface distance is of the order
of 0.2a ~ 2000 A. At longer intersurface distances, the
attraction I exceeds the van der Waals part.

It is promising to take a surface that adjusts
the spherical particle better than two perpendicular
planes. For example, it can be a cylinder with a parti-
cle inside. In this case, the interaction is a few or even
ten times larger than 0.17 (two perpendicular planes).
The minimum value of the interaction potential 0.17,
where T is room temperature, is approximately a
border of experimental resolution. Therefore, in a
conventional electrolyte, the attraction of a micron-size
particle to two perpendicular planes or to an interior
surface of a cylinder can be observed experimentally.

We thank J. Ruiz-Garcia, C. Bechinger, and M. Kir-
chbach for the valuable discussions.

REFERENCES

1. B. V. Derjaguin, Theory of Stability of Colloids and
Thin Films, Consultans Bureau, New York (1989).

2. J. Israelachvili, Intermolecular and Surface Forces,
Academic, San Diego, CA (1991).

3. P. C. Heimenz and R. Rajagopalan, Principles of
Colloidal and Surface Chemistry, Dekker, New York
(1997).

4. P. Pieranski, Phys. Rev. Lett. 45, 569 (1980).
5. G. Y. Onoda, Phys. Rev. Lett. 55, 226 (1985).
6. K. Ito, H. Yoshida, and N. Ise, Science 263, 66 (1994).

7. S. J. Mejia-Rosales, R. Gamez-Gomez, B. I. Ivlev, and
J. Ruiz-Garcia, Physica A 276, 30 (2000).

8. P. M. Chaikin, P. Pincus, S. Alexander, and D. Hone,
J. Colloid Interface Sci. 89, 555 (1982).

9. Y. Monovoukas and A. P. Gast, J. Colloid Interface
Sci. 128, 533 (1989).

10. A. E. Larsen and D. G. Grier, Phys. Rev. Lett. 76,
3862 (1996).

11. L. Radzihovsky, E. Frey, and D. Nelson, Bull. Amer.
Phys. Soc. 45, 698 (2000).

12. K.-H. Lin, J. C. Crocker, and A. G. Yodh, Bull. Amer.
Phys. Soc. 45, 698 (2000).

13. C.-H. Sow, C. A. Murray, R. W. Zehner, and T. S. Sul-
livan, Bull. Amer. Phys. Soc. 45, 699 (2000).

14. C. A. Murray and D. H. Van Winkle, Phys. Rev. Lett.
58, 1200 (1987).

15. K. Zahn, R. Lenke, and G. Marett, Phys. Rev. Lett.
82, 2721 (1999).

427



T. Ocampo-Delgado, B. Ivlev MXIT®, Tom 137, BBm. 3, 2010
16. J. Ruiz-Garcia, R. Gamez-Corrales, and B. 1. Ivlev, 26. D. G. Grier, Nature 393, 621 (1998).
Physica A 236, 97 (1997).
27. A. E. Larsen and D. G. Grier, Nature 385, 230 (1997).
17. J. Ruiz-Garcia, R. Gamez-Corrales, and B. 1. Ivlev, )
Phys. Rev. E 58, 660 (1998). 28. T. M. Squires and M. P. Brenner, Phys. Rev. Lett. 85,
4976 (2000).
18. J. Ruiz-Garcia and B. I. Ivlev, Mol. Phys. 95, 37
(1998). 29. V. Lobaskin, M. Brunner, C. Bechinger, and
H. H. von Griinberg, J. Phys.: Condens. Matter 15,
19. T. Chou and D. R. Nelson, Phys. Rev. E 48, 4611 6693 (2003).
(1993).
30. C. Bechinger, private commun. (2005).
20. J. Rubi and J. M. G. Vilar, J. Phys.: Condens. Matter ) ] o o
12, A75 (2000). 31. M. Gyger, Master Thesis, Universitit Leipzig (2006).
21. E. B. Sirota, H.D. Ou—Yang, S. K. Slnha, P. M. Chai- 32. L E Dzyaloshlnsku, E. M. LlfShltZ7 and L. P. Pitaev-
kin, P. Pincus, J. D. Axe, and Y. Fujii, Phys. Rev. skii, Adv. Phys. 10, 165 (1961).
Lett. 62, 1524 (1989). 33. B. L Ivlev, J. Phys.: Condens. Matter 14, 4829 (2002).
22. H. Lowen, P. A. Madden, and J.-P. Hansen, Phys. Rev. g4 | p yandau and E. M. Lifshitz, Fluid Mechanics,
E 68, 1081 (1992). Butterworth-Heinemann (1997).
23. M. Ospeck and S. Fraden, J. Chem. Phys. 109, 9166 35 p prosdoff and A. Widom, Phys. Rev. E 73, 051402
(1998). (2006).
24. G. M. Kepler and S. Fraden, Phys. Rev. Lett. 73, 356 36. J. Mahanty and B. W. Ninham, Dispersion Forces,
(1994). Acad. Press, London (1976).
25. J. C. Crocker and D. G. Grier, Phys. Rev. Lett. 77, 37. G. Barton, Elements of Green’s Functions and Propa-

1897 (1996).

428

gation, Claredon Press, Oxford (1989).



