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FLUCTUATION INTERACTIONS OF COLLOIDAL PARTICLEST. O
ampo-Delgado a, B. Ivlev a;b*aInstituto de Físi
a,Universidad Autónoma de San Luis Potosí San Luis PotosíSan Luis Potosí 78000, Mexi
obDepartment of Physi
s and Astronomy and NanoCenter,University of South CarolinaColumbia, South Carolina 29208, USARe
eived August 22, 2009For like-
harged 
olloidal parti
les, two me
hanisms of attra
tion between them survive when the interparti
ledistan
e is larger than the Debye s
reening length. One of them is the 
onventional van der Waals attra
tionand the se
ond is the attra
tion me
hanism mediated by thermal �u
tuations of parti
le position. The latter isrelated to the e�e
tive variable mass (Euler mass) of the parti
les produ
ed by the �uid motion. The strongestattra
tion potential (up to the value of the temperature T ) 
orresponds to the 
ase of un
harged parti
les anda relatively large Debye s
reening length. In this 
ase, the third attra
tion me
hanism is involved. It is mediatedby thermal �u
tuations of the �uid density.1. INTRODUCTION AND AN OVERVIEWSystems of 
harged 
olloidal parti
les exhibit a vari-ety of unusual physi
al properties [1�3℄. Colloidal par-ti
les 
an be arranged into 
rystals [4℄ and into stru
-tures with 
lusters and voids [5�7℄. Colloidal systemsmay undergo di�erent types of phase transition [8�13℄.Topologi
al phase transitions in a two-dimensional sys-tem of 
olloidal parti
les were dis
ussed in [14, 15℄. Un-usual ensembles of 
olloidal parti
les were observed inRefs. [16�18℄. In [19℄, bu
kling instabilities in 
on�ned
olloidal 
rystals were analyzed. Interesting behaviorsof 
olloidal parti
les in external �elds were reportedin [20℄. In an ele
trolyte, 
olloidal parti
les a
quiresome surfa
e 
harge, s
reened by 
ounterions at theDebye length �D , whi
h results in the repulsion po-tential of Derjaguin, Landau, Verwey, and Overbeek(DLVO) [1, 2℄. The DLVO theory, as a result of so-lution of the linearized Poisson�Boltzmann equation,has been questioned in [21, 22℄. The generalization ofthe DLVO intera
tion via a modi�
ation of 
ounterions
reening was reported in [23℄.The long-range attra
tion of like-
harged parti
lesis a matter of 
hallenge and 
ontroversy in 
olloidal s
i-en
e. Very s
hemati
ally, the story of the long-rangeattra
tion is as follows.*E-mail: ivlev�
aprine.physi
s.s
.edu

Initially, the long-range attra
tion of 
olloidal par-ti
les on a mi
ron s
ale was reported in Ref. [24℄. Theauthors re
onstru
ted a pair potential from the mea-sured 
orrelation fun
tions of a large ensemble of 
ol-loidal parti
les.The authors of Refs. [25�27℄ published even moresurprising results, the attra
tion being extended over adistan
e of almost 4 �m. They used a laser te
hniquereleasing two parti
les and observing their behavior.But their measurements were a
tually misinterpreted.Only a ma
ros
opi
 hydrome
hani
al e�e
t asso
iatedwith spe
i�
ity of measurements but not a mi
ros
opi
attra
tion me
hanism was observed [28℄.For a high-
on
entration parti
le ensemble, Be
hin-ger and his group showed that di�erent types of theinterparti
le potential result in almost identi
al 
orre-lation fun
tions [29, 30℄. The 
on
lusion was that theintera
tion potential should be drawn from experimentsnot with a large ensemble but with a pair of 
olloidalparti
les. Another di�
ulty is related to an un
ertaintyin the observed parti
le position 
aused by di�ra
tion,whi
h 
an result in errors in the 
al
ulated pair po-tential (see Ref. [31℄ and the referen
es therein). Toredu
e the di�ra
tion un
ertainty, ultraviolet observa-tions should be used. Therefore, the reliability of 
al-
ulation of the pair potential based on statisti
al prop-erties of large ensembles of parti
les is questionable.419
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k of reliability of various experimentson determination of a mi
ros
opi
 attra
tion me
ha-nism of like-
harges, it is always intriguing whetherthey attra
t in reality. We 
onsider the following mi
ro-s
opi
 me
hanism of attra
tion of two 
olloidal parti
lesor a parti
le and a wall.1. The 
onventional van der Waals attra
tionuvdW [32℄ mediated by ele
tromagneti
 �u
tuations.2. The attra
tion U
om mediated by thermal 
om-pression �u
tuations of a �uid.3. The attra
tion I asso
iated with thermal �u
tu-ations of parti
le positions in a �uid. It results fromvariable parti
le masses (Euler masses) depending onthe distan
e between them. This me
hanism and theterm �Euler mass� were proposed in Ref. [33℄.In the �rst me
hanism, the energy of �u
tuatingele
tromagneti
 waves depends on the distan
e betweenparti
les and therefore leads to a for
e.The �rst and the se
ond me
hanisms are generi
be
ause ele
tromagneti
 waves are just substituted byhydrodynami
 ones.In the third me
hanism, moving parti
les drag apart of the �uid. The mass of the involved �uid dependson the distan
e between the parti
les. There is a ther-mal drift of the parti
les into the region with a larger ef-fe
tive mass, whi
h is analogous to 
lassi
al me
hani
s.This 
an be interpreted as an e�e
tive intera
tion me-diated by thermal �u
tuations of parti
le positions in a�uid. Formation of the variable mass involves high-fre-quen
y �u
tuations of the parti
les when dissipativehydrodynami
 e�e
ts are not important [34℄. This 
or-responds to Euler hydrodynami
s and gives rise to theterm �Euler mass�. The formation of Euler mass re-sembles the equipartition law when the mean kineti
energy is T=2 regardless of the dissipation. This is be-
ause the mean kineti
 energy is also determined byhigh frequen
ies.There is a substantial di�eren
e among the aboveattra
tion me
hanisms. The �rst and the third onessurvive when the interparti
le distan
e be
omes largerthan the Debye s
reening length. At this distan
e, theDLVO repulsion is very small and the above two me
ha-nisms are the only intera
tions. The se
ond me
hanismworks when Coulomb e�e
ts in the �uid are not pro-noun
ed. Spe
i�
ally, the parti
les are not 
harged andthe Debye s
reening length is larger than the interpar-ti
le distan
e. A relative role of I and uvdW was alsoanalyzed in Ref. [35℄.The goal of this paper is to study the three attra
-tion potentials for two parti
les and for one near a wall(walls).

2. VAN DER WAALS INTERACTIONThe energy of a �u
tuating ele
tromagneti
 �eldaround two parti
les depends on the distan
e R be-tween them and therefore results in an intera
tion for
e.It is 
alled the van der Waals for
e [32℄. This for
eis mainly determined by the typi
al wave length � ofthe �u
tuating ele
tromagneti
 �eld be
ause we shouldhave � � R. The permittivity of the parti
le material"(!) depends on the typi
al frequen
y ! � 
=R. We
onsider relatively large interparti
le distan
es,
!0 < R; (1)where !0 
orresponds to an absorption peak of "(!).For example, !0 � 1016 s�1 for water, and estimate (1)be
omes 100Å< R.At a �nite temperature, the typi
al wave length ofthe �u
tuating ele
tromagneti
 �eld is ~
=T . In whatfollows, the interparti
le distan
e is not too large,R < ~
T ; (2)whi
h is equivalent to R < 7:4 �m at room tempera-ture.We 
onsider a typi
al interparti
le distan
e R of theorder of one or two mi
rons, whi
h agrees with 
ondi-tions (1) and (2). In the opti
al range of !, the per-mittivity is determined by the refra
tive index and 
anbe substituted by the diele
tri
 
onstant " for parti-
les and the diele
tri
 
onstant "0 for the surroundedmedium. When the two diele
tri
 
onstants are 
loseto ea
h other, "� "0"0 � 1; (3)we 
an use the approa
h of pairwise summation to 
al-
ulate the energy of ele
tromagneti
 �u
tuations (thevan der Waals intera
tion energy) [32, 36℄ asuvdW (R) = �23~
("� "0)264�3"5=20 ZV1 d3r1 ZV2 d3r1jr1 � r2j7 : (4)In Eq. (4), the integrations are taken over the volumesof the two bodies. For two identi
al spheri
al parti
lesof the radius a and 
enter-to-
enter distan
e R, the in-tegration in Eq. (4) results in [32, 36℄uvdW (R) = � 231920� ("�"0)2"5=20 ~
R �2a2(20a2�3R2)(R2�4a2)2 ++ 2a2R2 + ln R2R2 � 4a2 � : (5)420
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tuation intera
tions of 
olloidal parti
lesFor a spheri
al parti
le near a �at in�nite wall,Eq. (4) yieldsuvdW (h) = � 23640� ("� "0)2"5=20 ~
a 1Z�1 (1� z2) dz(z + h=a)4 ; (6)where h is the 
enter-to-wall distan
e.In the region of visible light for water, "0 � 1:77,for the typi
ally used polystyrene 
olloidal parti
les," � 2:40. Therefore, the parameter (" � "0)="0 � 0:35
an be 
onsidered relatively small and hen
e Eqs. (5)and (6) are reasonable approximations for the van derWaals intera
tion.3. INTERACTION MEDIATED BYCOMPRESSION FLUCTUATIONS OF THEFLUIDWe suppose that two parti
les are totally �xed in-side a hydrodynami
 medium and serve only as obsta-
les to �uid motion. There is no ma
ros
opi
 motion inthe system and the only motion is 
aused by thermal�u
tuations of the �uid velo
ity v(r; t). In this 
ase,the free energy of thermal �u
tuations of the �uid F (R)depends on the distan
e R between the parti
les. Thefun
tion U
om(R) = F (R)� F (1) (7)is an intera
tion mediated by 
ompression �u
tuationsof the �uid analogously to the 
onventional van derWaals intera
tion mediated by ele
tromagneti
 �u
tu-ations.To �nd the free energy of thermal �u
tuations of the�uid, we 
an start with the linearized Navier�Stokesequation [34℄��v�t = �rp+ �r2v + �� + �3�rdiv v: (8)There are two types of �uid motion, one of themis transverse di�usion and the se
ond is longitudinalsound waves asso
iated with density variations. Theequilibrium free energy of transverse motions is deter-mined by the Boltzmann distribution of their kineti
energies and is independent of the fri
tion 
oe�
ientin the thermal limit. The free energy of transverse mo-tions in the thermal limit depends on the total volume,but is independent of the relative positions of the bod-ies. Therefore, transverse �u
tuations do not result inan intera
tion.Quite an opposite situation o

urs for longitudinalmotions, when the total free energy is a sum of ener-gies of di�erent sound modes. The spe
trum of sound

waves depends on the distan
e R between bodies due tohydrodynami
 boundary 
onditions on body surfa
es,and this results in an R-dependen
e of the free energy.Hen
e, the �u
tuation intera
tion between bodies ismediated by hydrodynami
 sound waves, like the 
on-ventional van der Waals intera
tion is mediated by �u
-tuations of ele
tromagneti
 ones. With v = r��=�t,it follows from Eq. (8) that��2��t2 = �Æp+�� + 4�3 � ��tr2�: (9)From thermodynami
 relations and the 
ontinuityequation, we 
an obtain Æp = ��s2r2�, where s is theadiabati
 sound velo
ity [34℄. At the typi
al frequen
y! � s=a � 1011 s�1 (with a � 1 �m being the parti
leradius), the dissipative term in Eq. (9) is small and we
an write �2��t2 � s2r2� = 0: (10)A

ording to the small-fri
tion limit, the boundary 
on-dition for the normal derivative rn� = 0 to Eq. (10)
orresponds to the Euler �uid [34℄. From the generalstandpoint, the free energy of a system of harmoni
 os-
illators is independent of fri
tion in the thermal limit.In an ele
trolyte, the dispersion law of sound waves
an be approximated as!2(q) = s2q2 + s2�2D ; (11)where �D is the Debye s
reening length. We �rst 
on-sider the 
ase of two in�nite parallel walls separatedby a distan
e R. The free energy per unit area of thesystem is expressed as a sum of energies of indepen-dent os
illators a

ording to general rules of statisti
alphysi
s, F = T Z d2k(2�)2 1Xn=1 ln h! �k; �nR �i : (12)Performing the same steps as in Ref. [33℄, we obtainthe intera
tion mediated by 
ompression �u
tuationsin the formU
om = T32�R2 �� 1Z0 dz ln"1� exp �sz + 4R2�2D !# : (13)In the limit 
ases, Eq. (13) be
omesU
om =8>><>>:��(3)=16�R2; R� �D;�exp(�2R=�D)8�R�D ; �D � R; (14)421
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tion value.At a large R, the intera
tion in (14) is s
reened onthe length �D=2. The possibility of an intera
tionmediated by nonele
tromagneti
 �u
tuations was pro-posed in [32℄. The �rst formula in (14) was obtainedin Ref. [33℄. It is similar to the result in Ref. [36℄ forele
tromagneti
 �u
tuations and perfe
tly 
ondu
tingplanes.The �u
tuation intera
tion in (13) depends on theDebye s
reening length. This is due to summation overall wave ve
tors in the free energy and results in itsdependen
e on the density of states, whi
h, in turn,depends on the form of the spe
trum. In our 
ase,the spe
trum ! = s(k2 + ��2D )1=2 introdu
es a �D-dependen
e in the free energy.When two obje
ts are not �at but are 
lose enoughand intera
t by small parts of their surfa
es, whi
h arealmost �at, the intera
tion potential 
an be derivedfrom �at approximation (14) by integrating over thesurfa
es. For example, for a parti
le 
lose to a �atwall, in the 
ase where the 
enter-to-wall distan
e h issmaller than the parti
le radius a, the intera
tion 
anbe 
al
ulated as in Ref. [33℄:U
om = ��(3)8 T ah� a; h� a� a; �D: (15)The analogous result for two spheres with the 
enter-to-
enter distan
e R isU
om = ��(3)16 T aR� 2a; R� 2a� a; �D : (16)Equations (15) and (16) hold in a nonele
trolyti
 �uidor in an ele
trolyte with a su�
iently large s
reeninglength.4. WHICH MECHANISM SURVIVES IN ANELECTROLYTE?In an ele
trolyte, the intera
tion U
om mediated byplasmons is strongly s
reened (see (14)). The van derWaals intera
tion uvdW , mediated by photons of vi-sible-range frequen
ies, is not sensitive to the plasmone�e
ts. The me
hanism of variable mass is 
onne
tedsolely with in
ompressible �uid �u
tuations. There-fore, only the 
onventional van der Waals intera
tionuvdW and variable mass me
hanisms I 
an survive inan ele
trolyte. The intera
tion due to variable mass is
onsidered in the following se
tions.

5. VARIABLE MASS MECHANISMTo illustrate the variable mass me
hanism, we 
on-sider a simple me
hani
al analogy. We suppose that a
lassi
al nondissipative parti
le of the total energy Emoves in the harmoni
 potential �x2. When the par-ti
le mass is 
onstant, the mean displa
ement hxi = 0in the harmoni
 potential. But in the 
ase of a variablemass m(x), the mean displa
ement hxi 6= 0. This is be-
ause the parti
le velo
ity is smaller in the region of alarger mass, just to keep the total energy 
onstant. A
-
ordingly, the parti
le spends more time in the regionof larger mass. This is equivalent to a 
ertain e�e
-tive attra
tion I(x) to the region of larger mass. Asshown in Ref. [33℄, for a slowly varying m(x), the totale�e
tive potential be
omes �x2 � (E=2) lnm(x).A real parti
le with fri
tion parti
ipates in theBrownian motion 
hara
terized by a 
ertain tempera-ture T . We brie�y repeat the main arguments leadingto the e�e
tive potential I [33℄. The Langevin equationdes
ribing su
h pro
esses has the formm(x)�x + 12 �m�x _x2 + �V (x)�x + � _x == sto
hasti
 for
e: (17)Short-time �u
tuations of the velo
ity _x are well sepa-rated from the slow drift in an e�e
tive potential. In-deed, a

ording to the �u
tuation�dissipation theorem,the mean value of the kineti
 energy hm _x2=2i = T=2
orresponds to the equipartition law and is essentiallygiven by short-time �u
tuations related to the in�nitelylarge 
ir
le in the 
omplex frequen
y plane. Substitut-ing that mean value in Eq. (17) leads to the e�e
tivepotential V (x) + I(x) [33℄, whereI(x) = �T2 lnm(x): (18)Expression (18) is an exa
t result in the thermal limit(no quantum �u
tuations), as is the equipartition law.We re
all what happens in the 
onventional 
aseof position-independent masses. In the thermal limit,we 
an then set all frequen
ies equal to zero be
ausethey provide only quantum 
orre
tions to the partitionfun
tion. The remaining part of the partition fun
-tion is determined solely by the potential energy anddoes not depend on velo
ities. The s
enario 
hangesfor a position-dependent mass. In that 
ase, the fol-lowing general arguments 
an be used. The partitionfun
tion Z, whi
h is proportional to the phase volume�p�x, a
quires an additional positional dependen
e�p � pTm(x) following from the momentum 
han-nel even in the thermal limit [33℄. The free energy422
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tuation intera
tions of 
olloidal parti
les(�T lnZ) results in intera
tion potential (18) obtainedby a rigorous derivation pro
edure.In the multidimensional 
ase, the kineti
 energy isexpressed in terms of the mass tensor mij(R) asK = 12 mij(R) _Ri _Rj ; ! !1: (19)As shown in Ref. [33℄, the intera
tion due to variablemass is then given byI(R) = �T2 ln [detm(R)℄ : (20)The potential in (20) has a �u
tuation origin and ismediated by fast �u
tuations of velo
ity. In terms of
oordinates, when form (19) is diagonalized, detm be-
omes a produ
t of prin
ipal values and intera
tion (20)is redu
ed to a sum of terms related to prin
ipal 
oor-dinates.6. INTERACTION MEDIATED BY THERMALFLUCTUATIONS OF PARTICLEVELOCITIESCal
ulating the e�e
tive �u
tuation potential forsystems with a 
ompli
ated dynami
s requires �ndingthe mass tensor in the high-frequen
y limit and insert-ing it in Eq. (20). When parti
les in a �uid perform anos
illatory motion with a high frequen
y, the �uid ve-lo
ity obeys the Euler equation everywhere in the �uidex
ept a thin layer 
lose to the parti
le surfa
es [34℄.Hen
e, �nding the mass tensor in Eqs. (19)�(20) re-quires solving the Euler equation with a zero boundary
ondition for the normal 
omponent of the �uid ve-lo
ity. For this reason, the mass 
orresponding to thehigh-frequen
y limit of parti
le dynami
s 
an be 
alledthe Euler mass. The e�e
tive parti
le masses dependon the �uid mass involved in the motion. The �uidmass depends on the interparti
le distan
e, and there-fore the e�e
tive parti
le masses also depend on thatdistan
e.In the 
ase of one parti
le of a radius a in a bulk�uid, the Euler mass tensor has the form [34℄mij = 4�a33 ��0 + �2� Æij ; (21)where �0 is the mass density of the parti
le and � isthe �uid density. The �rst term in Eq. (21) is relatedto the proper mass of the parti
les and the se
ond isasso
iated with the �uid motion.

z z
R y yu

u
u
u

a ba
Fig. 1. Arrangements of parti
les with velo
ities u to
al
ulate the mass Mx (a) and Mz (b) in Eq. (23)6.1. Two parti
les in an in�nite �uidWe now 
al
ulate the Euler mass tensor for twoidenti
al parti
les in a �uid. The �uid velo
ity normalto the parti
le surfa
e should be equal to the normalparti
le velo
ity on its surfa
e. If the parti
le velo
itiesare u1 and u2, there are four independent quadrati

ombinations u21 + u22, u1u2, (R � u1)(R � u2), and[(R � u1)2 + (R � u2)2℄. We make the velo
ity trans-formation V = u1 + u2p2 ; v = u1 � u2p2 : (22)In terms of the new velo
ities, the kineti
 energy 
anbe written asK = 12 3Xi=1 �Mi(R)V 2i +mi(R)v2i � ; (23)where i = 1; 2; 3 respe
tively 
orrespond to x; y; z. Ex-pression (23) involves only four independent masses be-
ause Mx = My and mx = my. The proper masses ofthe parti
les 4�a3�0=3 
an be separated from the �uidones by writingMi = 4�a33 ��0 + �2Gi �Ra �� ;mi = 4�a33 ��0 + �2gi�Ra �� : (24)A

ording to Eq. (21), G(1) = g(1) = 1.The easiest way to 
al
ulate the masses is to use themethod illustrated in Figs. 1 and 2, where the parti
levelo
ities are shown by arrows. The kineti
 energy ofthe �uid in Figs. 1a and 1b is (2�a3=3)Gx;z(R=a)u2.423
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Fig. 2. Arrangements of parti
les with velo
ities u to
al
ulate the mass mx (a) and mz (b) in Eq. (23)Analogously, the �uid kineti
 energy in Figs. 2a and2b is (2�a3=3)gx;z(R=a)u2. Intera
tion potential (20)be
omesI(R) = �T �ln [2�0+�Gx(R=a)℄[2�0+�gx(R=a)℄(2�0+�)2 ++ 12 ln [2�0 + �gz(R=a)℄[2�0 + �Gz(R=a)℄(2�0 + �)2 � : (25)The fun
tion I(R) tends to zero as R!1.6.2. One parti
le near an in�nite wallWe 
onsider one parti
le of a radius a pla
ed in ahalf-spa
e of the �uid �lling the volume z > 0. The
enter-to-plane distan
e is h (the plane is at z = 0).The boundary 
ondition at the parti
le surfa
e is theequality of the normal 
omponents of the �uid and theparti
le velo
ities. The normal velo
ity 
omponent ofthe �uid velo
ity at the �at surfa
e is zero. Obviously,the total kineti
 energy is half that 
al
ulated in theprevious subse
tion 
orresponding to Fig. 1a (the xand y 
omponents) and Fig. 2b, whi
h are related tothe zero normal velo
ity of the �uid at z = 0.It is now easy to write the intera
tion potential us-ing the results in the previous subse
tion. It is givenbyI(h) = �T �ln 2�0 + �Gx(2h=a)2�0 + � ++ 12 ln 2�0 + �gz(2h=a)2�0 + � � ; (26)where the fun
tions Gx and gz are the same as in theprevious subse
tion.

6.3. One parti
le near two in�niteperpendi
ular wallsThis situation is shown in Figs. 3�5. The parti
le ispla
ed in the �uid limited by the 
onditions y < 0 andz > 0. The other image parti
les, shown with dashed
urves, are introdu
ed in order to satisfy the boundary
onditions on the planes z = 0 and y = 0 of zero normalvelo
ities of the �uid. If we 
onsider the whole spa
ewith the introdu
ed image parti
les, the total kineti
energies areKi = 44�a33 ��0 + �fi�ha ; Da �� u22 (27)with i = 1; 2; 3 for Figs. 3, 4, 5 respe
tively; the velo
-ities of all parti
les are equal to u. Analogously to theprevious 
ases, the intera
tion potential isI(h;D) = �T2 3Xi=1 ln 2�0 + �fi(h=a;D=a)2�0 + � : (28)The boundary 
onditions are of the same type as inSe
. 6.1.7. NUMERICAL METHOD TO CALCULATETHE INTERACTION POTENTIALIn our 
ase, the �uid velo
ity is v = r', wherethe potential ' satis�es the Lapla
e equation r2' = 0with the boundary 
onditions spe
i�ed in Se
. 6,n(u�r')��S = 0; (29)where S is the total surfa
e that restri
ts the �uid. Sin
ludes borders of the parti
les (with velo
ities u) andwalls (with zero velo
ity). The unit ve
tor n is perpen-di
ular to the surfa
es. The kineti
 energy of the �uidis R d3r �v2=2. Therefore, the total kineti
 energy ofthe system 
an be written asK =Xi 0��02 u2i � �2 ZSi dS '(r)ni � ui1A ; (30)where summation ranges over all parti
les with the are-as Si.The numeri
al method proposed to 
al
ulate theEuler masses is based on an iteration pro
edure. Inwhat follows, we dis
uss this method for two parti
lesin an in�nite �uid. The zero approximation is'0(r) =  (r�R=2) +  (r+R=2); (31)424
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h

D

z

y

xFig. 3. A parti
le near two perpendi
ular walls. Thethree image parti
les, shown by the dashed 
urves, areadded to 
onsider the whole spa
e with zero normal ve-lo
ities of the �uid at the walls. This parti
le arrange-ment 
ontributes to the fun
tion f1 in Eq. (27)
z

y

xFig. 4. The parti
le arrangement 
ontributing to thefun
tion f2 in Eq. (27)
x

z

y

Fig. 5. The parti
le arrangement 
ontributing to thefun
tion f3 in Eq. (27)where the harmoni
 fun
tion  satis�es the equation (r) = � 14� Z dS0G(r; r0)n0 � (r0)�r0 (32)outside the sphere of the radius a 
entered at r = 0.At the sphere surfa
e, nr (r) = u 
os � and � is the

angle between n and u. The integration in Eq. (32)is extended over the sphere surfa
e, and the Green'sfun
tion is given byG(r; r0) = 2jr�r0j+1a ln� r�r 
os 
jr�r0j+a�r 
os 
� ; (33)where [37℄jr� r0j = �r2 + a2 � 2ar 
os 
�1=2 ;
os 
 = 
os � 
os �0 + sin � sin �0 
os(�� �0):The zeroth approximation potential '0(r) in (31)provides the 
orre
t boundary 
onditions at the parti
lesurfa
es S in the limit R!1. At a �nite R, boundary
ondition (29) is not satis�ed by the zeroth approxima-tion (31), whi
h therefore requires a modi�
ation. We
an 
onstru
t an iteration s
heme ' = '0+'1+'2+: : :by means of the re
ursion relation'n+1(r) = � Zjr0�R=2j=a dS04� G�r� R2 ; r0 � R2 ��� n0 � (uÆno �r'n(r0))�� Zjr0+R=2j=a dS04� G�r+ R2 ; r0 + R2 ��� n0 � (uÆno �r'n(r0)); (34)where n = 0; 1; 2; : : : We have a fast 
onvergen
e atlarge R be
ause 'n+1 � 'na=R. At ea
h iterationstep, the boundary 
onditions be
omes more and moreexa
t with respe
t to the parameter a=R.To 
al
ulate Gx = Gy and Gz in Eq. (23) for Eu-ler masses, we have to apply the s
heme in (34) to thesituations shown in Fig. 1a and Fig. 1b. Analogously,gx = gy and gz in Eq. (26) are asso
iated with Fig. 2aand Fig. 2b.From the fun
tions Gx and gz numeri
ally foundby the above method, we 
an also 
onstru
t intera
-tion (26) of a parti
le and a wall.The same method is appli
able to 
al
ulations ofthe potential in (28) for one parti
le near two perpen-di
ular walls. Instead of two parti
les, we should thentake four, with three of them playing the role of ima-ges (shown by dashed 
urves in Figs. 3�5). We do notdes
ribe an obvious modi�
ation of Eq. (32) in that
ase. 8. RESULTSIn this se
tion, we dis
uss the three di�erent 
on-tributions to intera
tion of 
olloidal parti
les, listed in425
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U
om=T aR2:0 2:4 2:8 3:2R=a

0 uvdW =T (uvdW + I)=TI=T�0:01�0:02�0:03�0:04Fig. 6. The numeri
ally 
al
ulated attra
tion potentialsfor two parti
les in an in�nite �uid; �=�0 = 1Se
. 1, in various geometries: (i) two parti
les in a bulk�uid, (ii) one parti
le over a �at surfa
e, and (iii) oneparti
le near two perpendi
ular planes.The intera
tion U
om, whi
h is mediated by 
om-pression �u
tuations of the �uid, plays the dominantrole be
ause it is relatively large, U
om=T � (0:3�1.0),as follows from Figs. 6 and 8. On the other hand, theintera
tion U
om is strongly redu
ed by a �nite Debyes
reening length �D . Therefore, this intera
tion 
an beobserved in ele
trolytes with a large �D . In addition,surfa
es of intera
ting obje
ts should not be strongly
harged to prevent the Coulomb repulsion from domi-nating over U
om.In 
onventional ele
trolytes, normally used in ex-periments, only uvdW (frequen
ies higher than theplasma frequen
y) and I (non
ompressive �u
tua-tions) survive on distan
es longer than �D , where theCoulomb repulsion of 
harged parti
les is s
reened.Figure 6 relates to the 
ase of two parti
les in abulk �uid, Se
. 6.1. The intera
tion potential I (in theunits of temperature T ) is plotted by the thin solid
urve. The 
onventional van der Waals intera
tion (5)is indi
ated by a dashed 
urve. The resulting potentialis shown by a thi
k 
urve. It 
an be seen that U
omsubstantially ex
eeds the above intera
tion potentials.Figures 7 and 8 
orrespond to the 
ase of one par-ti
le near the wall, Se
. 6.2. As is 
lear from Fig. 8,U
om is not small and is of the order of T .In Fig. 9, the potential I relates to one parti
le neartwo perpendi
ular walls.When the intersurfa
e distan
e is small, the poten-tial I tends to a 
onstant, whereas the van der Waalsintera
tion is known to diverge. The results in Figs. 6�9
orrespond to �=�0 = 1. As this parameter in
reases,
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−0.04

0

1.0 2.01.81.61.41.2

h/a

h

a

(uvdW + I)/T

I/T

uvdW /T

Fig. 7. The numeri
ally 
al
ulated attra
tion potentialsfor one parti
le and an in�nite �at wall; �=�0 = 1

h=a1:41:1 1:2 1:3
ah

(uvdW + I)=T0�0:4�0:8�1:2�1:6 U
om=T
Fig. 8. The thi
k 
urve is the same as in Fig. 7. Thethin 
urve represents intera
tion (15) mediated by ther-mal 
ompression �u
tuations of the �uidthe attra
tion be
omes more pronoun
ed. For exam-ple, for �=�0 = 13:6, related to 
olloidal parti
les inmer
ury, the attra
tion potential be
omes more thantwo times larger in amplitude.9. DISCUSSIONIs it possible to experimentally observe attra
tionof like-
harged 
olloidal parti
les separated by a mi
-ron distan
e? We analyze di�erent physi
al situations.9.1. No Coulomb e�e
tsThe absense of Coulomb e�e
ts means that an ele
-trolyte has a large Debye length �D and zero 
harges on426
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Fig. 9. The attra
tive intera
tion I in the units of T forone parti
le and two perpendi
ular walls; �=�0 = 1all surfa
es. In this 
ase, the DLVO repulsion is absentand the intera
tion mediated by 
ompression �u
tua-tions, U
om, substantially dominates the 
onventionalvan der Waals part uvdW and the one mediated by par-ti
le velo
ities, I . As follows from Fig. 8, the intera
-tion energy U
om of a parti
le of the radius 1 �m and a�at plane, at the surfa
e-to-surfa
e distan
e 0:15 �m,is 1T . This attra
tion 
an be experimentally observedbe
ause it is relatively large.9.2. Conventional parti
les in an ele
trolyteFor typi
al ele
trolytes and polystyrene parti
les[25℄, the DLVO repulsion has a short range and theintera
tion U
om is well suppressed. In this situation,only uvdW and I survive. But the van der Waals inte-ra
tion, uvdW is weak and only I has 
han
es to resultin an observable attra
tion.The pe
uliarity of the intera
tion I is that a parti
leis attra
ted stronger to a surfa
e that geometri
ally ad-justs its shape better. The �at surfa
e in Fig. 7 adjuststhe parti
le better than the 
ounter-
urved neighbo-ring parti
le in Fig. 6. Also the geometry of two wallsin Fig. 9 adjusts the parti
le shape better than one wallin Fig. 7. The attra
tion of a parti
le to a surfa
e ofthe same type of 
urvature is the strongest.The feature of the intera
tion I is that it is ofthe order of 0:05T (a parti
le near a �at wall) and ofthe order of 0:1T (a parti
le near two perpendi
ularwalls) when the intersurfa
e distan
e is of the orderof 0:2a � 2000Å. At longer intersurfa
e distan
es, theattra
tion I ex
eeds the van der Waals part.

It is promising to take a surfa
e that adjuststhe spheri
al parti
le better than two perpendi
ularplanes. For example, it 
an be a 
ylinder with a parti-
le inside. In this 
ase, the intera
tion is a few or eventen times larger than 0:1T (two perpendi
ular planes).The minimum value of the intera
tion potential 0:1T ,where T is room temperature, is approximately aborder of experimental resolution. Therefore, in a
onventional ele
trolyte, the attra
tion of a mi
ron-sizeparti
le to two perpendi
ular planes or to an interiorsurfa
e of a 
ylinder 
an be observed experimentally.We thank J. Ruiz-Gar
ia, C. Be
hinger, and M. Kir-
hba
h for the valuable dis
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