ФОНОННАЯ СПЕКТРОСКОПИЯ СУБМИКРОННЫХ КЕРАМИК НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ $Ce_{1-x}Gd_xO_{2-y}$

В. В. Иванов^а, Е. И. Саламатов^b, А. В. Таранов^{c*}, Е. Н. Хазанов^c

^а Институт электрофизики Уральского отделения Российской академии наук 620016, Екатеринбург, Россия

^b Физико-технический институт Уральского отделения Российской академии наук 426000, Ижевск, Россия

^с Институт радиотехники и электроники им. В. А. Котельникова Российской академии наук 125009, Москва, Россия

Поступила в редакцию 6 мая 2009 г.

Изучены особенности кинетики фононов субтерагерцевого диапазона частот в образцах керамики на основе твердых электролитов $Ce_{1-x}Gd_xO_{2-y}$ в области гелиевых температур. Показано, что аномалии транспортных характеристик фононов в данной системе обусловлены образованием структурных дефектов, связанных с положением вакансий в анионной подрешетке относительно примесных катионов. Из анализа экспериментальных результатов определена энергия активации соответствующей двухуровневой системы $\Delta = 8.53$ K.

1. ВВЕДЕНИЕ

В последнее время керамики и композиты на их основе находят широкое применение не только в качестве новых конструкционных материалов, но и как рабочие элементы высокотехнологичных устройств. Возможность реализовать свойства исходного материала в структуре керамики открывает широкие перспективы, связанные с экономичностью, реализацией сложных конструкционных форм, большой апертуры, создания новых приборов и устройств, материалы для которых не могут быть синтезированы в виде монокристаллов значительного размера. В работах [1,2] было показано, что использование керамики на основе твердых растворов $Ce_{1-x}Gd_xO_{2-y}$ позволяет реализовать изменение условий ионной проводимости, зависящей не только от молярного состава твердого раствора, но и от особенностей структуры самой керамики, что делает ее перспективным материалом для широкого спектра электрохимических устройств, работающих в условиях температур 600-800°С [3, 4].

дых растворов электролитов, определяющим наряду с ионной проводимостью и их стабильность, является распределение вакансий по неэквивалентным узлам анионной подрешетки. (Согласно условию электронейтральности в системах Re⁴⁺-O:Re³⁺-O, где Re — редкоземельный металл в степени окисления 4+ или 3+, на каждые два катиона в степени окисления 3+ приходится одна вакансия в анионной подрешетке.) В последние годы этой проблеме посвящено много как экспериментальных, так и теоретических работ, большинство из которых выполнено для иттрий-стабилизированного диоксида циркония ZrO₂:Y₂O₃ (YSZ) [5–10], который, обладая уникальными прочностными характеристиками, широко применяется в различных областях науки и техники. Экспериментальные исследования системы $\operatorname{Ce}_{1-x}\operatorname{Gd}_x\operatorname{O}_{2-y}$ ограничены высокотемпературными свойствами [11–13], а спектроскопические исследования, которые дают надежные данные для теории, представлены в литературе крайне недостаточно. Кроме того, теоретические расчеты этой системы в стандартном приближении функционала локальной плотности с хаббардовской параметризаци-

Важным микроскопическим параметром твер-

^{*}E-mail: taranov@mail.cplire.ru, AVAT@mail.ru

ей (LDA+U) [14], хотя и возможны в принципе, но затруднены необходимостью релаксировать кислородную вакансию и одновременно манипулировать двумя хаббардовскими параметрами для f-электронов на узлах Се и Gd.

Поэтому необходимо развитие новых экспериментальных методов для определения энергетических параметров кристаллической структуры этих сложных систем. Используемый в данной работе метод фононной спектроскопии позволяет получать информацию как о структуре неупорядоченных систем, так и о релаксационных процессах в том случае, если энергия релаксации сопоставима с энергией фононов. Так, исследования особенностей структуры твердых растворов замещения иттрий-редкоземельных алюминиевых гранатов $Y_{3-x}Re_xAl_5O_{12}$ (Re = Er, Ho) методом фононной спектроскопии в субтерагерцевом диапазоне частот, проведенные в работах [15, 16], показали, что транспортные кинетические характеристики фононов могут зависеть не только от количества примеси замещения, но и от энергии образования вакансии в анионной подрешетке, которая в твердых растворах определяется их положением относительно примесных атомов. Если разница энергий двух конфигураций оказывается близка к энергии инжектируемых фононов и переходы между ними эффективно влияют на транспортные свойства фононов, то из анализа транспортных характеристик фононов можно делать выводы об энергетических характеристиках точечных дефектов в системе.

Экспериментальные исследования керамических образцов дополнительно затруднены зависимостью их физических свойств от (микро)наноструктуры материала, которая, в свою очередь, определяется как свойствами исходных порошков, так и методом их синтеза. С целью изучения структурных характеристик керамик на основе твердых растворов $Ce_{1-x}Gd_xO_{2-y}$ (x = 0.09 - 0.3) в данной работе исследовались особенности транспорта тепловых фононов субтерагерцевых частот.

2. ХАРАКТЕРИСТИКИ ИССЛЕДУЕМЫХ ОБРАЗЦОВ

Исходные нанопорошки синтезировались методом испарения мишени излучением CO₂-лазера и методом химического сжигания (образцы 806XC и 997XC). Как показали исследования, все порошки являлись однофазным твердым раствором состава Ce_{1-x}Gd_xO_{2-y} с варьированной молярной долей Gd x = 0.09-0.3 и кубическим типом решетки ($a_0 = 0.5424$ нм при x = 0.20). Технологические условия синтеза керамик на основе Ce_{1-x}Gd_xO_{2-y}, результаты рентгеноструктурного и фазового анализа состава, электронной микроскопии, электропроводности исследуемых образцов изложены в работе [1]. Все образцы имели плотность, близкую к теоретической (0.99). Основные технологические и структурные параметры образцов приведены в таблице.

3. МЕТОД ИССЛЕДОВАНИЯ И ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Метод фононной спектроскопии в субтерагерцевом диапазоне частот основан на анализе транспорта слабонеравновесных тепловых фононов в исследуемом образце в области гелиевых температур, когда сочетание высокой эффективности рассеяния фононов на дефектах структуры и малой вероятности неупругих процессов фонон-фононного взаимодействия в условиях гелиевых температур позволяет реализовать режим диффузионного распространения, при котором тепловые фононы после взаимодействия с дефектами структуры регистрируются измерительной системой до того, как успеют провзаимодействовать друг с другом [17].

Исследуемые образцы представляли собой плоскопараллельные полированные пластинки толщиной $L = (2-3) \cdot 10^{-2}$ см и площадью 0.5 см². Пленки инжектора фононов из золота и детектора (олово) наносились на противоположные грани образцов методом термического напыления в вакууме. Эксперименты проводились в жидком гелии в диапазоне температур 2.4-3.8 К. Изменение температуры осуществлялось методом откачки паров гелия. Точность измерений температуры была не хуже 10⁻³ К. Рабочая точка болометра смещалась в результате наложения слабого магнитного поля. Измеряемой в эксперименте величиной являлось время прихода на детектор (болометр) максимума диффузионного сигнала t_m тепловых фононов, инжектированных из пленки металла, расположенной на противоположной грани образца и нагреваемой коротким (порядка 10⁻⁷ с) импульсом тока до температуры T_h ($\Delta T = T_h - T_0 \ll T_0, T_0$ — температура термостата). Такой подход позволял, считая $T_h \approx T_0$ и меняя температуру термостата, получить температурную зависимость $t_m(T)$. В условиях плоской геометрии источника фононов $(L \gg d, d - линейный размер$ источника)

№ образца	$T/t, ^{\circ}\mathrm{C}/$ мин	x	R, нм	$D_{T=3.76 \text{ K}}, \mathrm{cm}^2/\mathrm{c}$	$l_{tr}, 10^{-6} \text{ cm}$	$l_0, 10^{-4} \text{ cm}$	$v,10^3$ cm/c
911	1300/0	0.091	200	0.570	4.62	1.33	3.71
913	1300/0	0.126	200	0.425	3.48	1.23	3.66
917	1300/0	0.151	200	0.176	1.45	0.63	3.63
904	1300/0	0.2	200	0.260	2.18	1.23	3.57
905	1300/0	0.2	200	0.365	3.07	1.65	3.57
801	1300/0	0.3	≥ 200	0.195	1.70	1.15	3.43
519	1200/0	0.2	110	0.152	1.28	0.68	3.57
997 XC	1460/60	0.2	$\gg 200$	0.69	5.80	2.87	3.57
806 XC	1300/100	0.3	> 200	0.212	1.85	1.58	3.43

Таблица

 $\Pi pumevanue. T/t$ — температура и время выдержки при спекании образцов, R — средний размер зерна керамики, v — средняя по поляризациям скорость акустических волн в образцах с соответствующей концентрацией x примеси Gd, l_0 — расчетное значение длины свободного пробега фононов при T = 3.76 К в предположении отсутствия двухуровневой системы.

$$t_m = \frac{L^2}{2D(T)}, \quad D(T) = \frac{1}{3}l_{tr}v,$$
 (1)

где *D* — коэффициент диффузии, *v* — средняя скорость фононов, l_{tr} — длина свободного пробега тепловых фононов. В области гелиевых температур длины свободного пробега тепловых фононов в монокристаллах оксидов достигают долей сантиметра. В плотных диэлектрических керамиках на их основе средние размеры зерна (кристаллита) R лежат в интервале 10⁻⁵-10⁻³ см. Поэтому причиной изотропизации потока тепловых фононов является их рассеяние на межзеренных границах [18]. В условиях данной модели, когда $qR \gg 1$ (q — волновой вектор фонона), межзеренную границу можно рассматривать как плоский слой конечной толщины с акустическим импедансом, отличным от акустического импеданса материала зерна. При этом, как правило, наблюдается $l_{tr}/R \gg 1$, $\partial D/\partial T < 0$ и $D \sim Rv f_{\omega}$ (f_{ω} — вероятность прохождения тепловых фононов через межзеренную границу). Модель [18] позволяет оценить толщину и акустический импеданс межзеренной границы.

На рис. 1 представлены сигналы регистрируемого болометром импульса тепловых фононов для ряда температур в образце керамики состава $Ce_{0.909}Gd_{0.091}O_{2-y}$. По мере роста температуры фононов наблюдается уменьшение времени прихода максимума t_m (рост коэффициента диффузии фононов). Абсолютные значения длины свободного пробега при T = 3.76 К составляли $l = 4.6 \cdot 10^{-6}$ см и уменьшались по мере уменьшения энергии

Рис.1. Сигнал фононной неравновесности при различных температурах термостата для образца 911: 1-T=3.76 K, 2-3.64 K, 3-3.44 K, 4-3.13 K, 5-2.81 K

тепловых фононов. При среднем размере зерна $R \approx 200$ нм выполнялось условие $R \gg l_{tr}$, что свидетельствовало об интенсивном рассеянии фононов внутри зерна. В условиях эксперимента $qR \gg 1$ фононный спектр керамики аналогичен фононному спектру материала зерна, поэтому средняя по поляризациям скорость фононов в твердых растворах различного состава определялась согласно выражению

$$v^{-3} = \frac{1}{3}(v_l^{-3} + 2v_t^{-3}).$$
(2)

Рис. 2. Температурная зависимость длины свободного пробега в образцах различной длины с содержанием примеси x = 0.2 (*a*) и x = 0.3 (*б*). Значения длины образцов: $2.6 \cdot 10^{-2}$ см (519), $2.7 \cdot 10^{-2}$ см (905), $2.7 \cdot 10^{-2}$ см (904), $2.65 \cdot 10^{-2}$ см (997), $2.6 \cdot 10^{-2}$ см (806), $2.6 \cdot 10^{-2}$ см (801)

Продольная v_l и сдвиговая v_t скорости акустических волн были рассчитаны на основании данных [19] по измерению модулей упругости с учетом изменений плотности и конечной пористости в образцах состава CeO₂:10; 20 % Gd₂O₃ с пролонгацией зависимостей v(x) до x = 0.3. Данные v для исследованных образцов, а также кинетические характеристики рассеяния тепловых фононов при T = 3.76 К представлены в таблице.

На рис. 2 представлены температурные зависимости длины свободного пробега фононов в интервале T = 2.4—3.8 К для образцов двух составов x = 0.2 (рис. 2*a*), x = 0.3 (рис. 2*б*) и с различным размером зерна. Во всех случаях $l_{tr} \ll R$.

Одинаковый характер наблюдаемых зависимостей $l_{tr}(T)$ ($\partial D/\partial T > 0$) свидетельствует об одном и том же механизме рассеяния для образцов, синтезированных в различных условиях из порошков, полученных различными методами. В плотных диэлектрических керамиках на основе оксидов $\partial D/\partial T < 0$, а значения коэффициента диффузии фононов при T = 3.8 К и R = 200 нм, согласно рис. 1 из работы [20], составляют $D \approx 10 \text{ см}^2/\text{с}$, что соответствует значениям $l_{tr} \geq 10^{-4}$ см, и, следовательно, рассеяние на межзеренных границах не может быть ответственным за наблюдаемый эффект. Наблюдается уменьшение l_{tr} с ростом концентрации примеси, которое невозможно объяснить рэлеевским рассеянием на дефекте массы (ионы Gd в катионной решетке Се). Согласно работе [21] при T = 3.8 К оценки длины свободного пробега относительно упругого рассеяния на примеси замещения составляют значения порядка долей сантиметра. Необходимо отметить характерную для керамики корреляцию между длиной свободного пробега и размером зерна: с ростом размера зерна возрастает и l_{tr} .

4. МОДЕЛЬ ДВУХУРОВНЕВОЙ СИСТЕМЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для объяснения полученных результатов обратимся к выполненным в работе расчетам [9,10] энергетических характеристик вакансий в анионной подрешетке иттрий-стабилизированного диоксида циркония (YSZ) — твердого электролита с той же кристаллической структурой, что и $\operatorname{Ce}_{1-x}\operatorname{Gd}_x\operatorname{O}_{2-y}$. Согласно результатам этих работ, энергия образования вакансии в кислородной позиции зависит от ее расположения относительно примесных ионов иттрия. В работе [10] для ряда концентраций оксида иттрия были рассчитаны энергии образования вакансии для всех возможных конфигураций. Оказалось, что наиболее энергетически выгодной конфигурацией (основное состояние с энергией E_0) является такая, в которой два иона иттрия находятся во второй координационной сфере от вакансии. Энергия всех остальных конфигураций, отделенных друг от друга энергетическим барьером высотой порядка $E_b \approx 1$ эВ, больше E_0 на 200–300 К. (Заметим, что разница равновесных энергий между конфигурациями составляет малую величину относительно высоты энергетического барьера и не определяет высокотемпературную электропроводность системы $\sigma(T) \sim \exp(-E_b/T)$.) Ближайшая по энергии к основному состоянию конфигурация с энергией E_1 содержит по одному примесному иону в первой и во второй координационных сферах и возникает при перескоке вакансии из основного состояния E_0 в одно из соседних положений. В работе [10] предполагалось, что переходы вакансии между двумя этими положениями дают малый вклад в макроскопическую (long range) диффузию, т.е. после перехода в высокоэнергетическую конфигурацию E_1 наиболее вероятным является возвращение вакансии назад. Это приводит к тому, что время жизни такого комплекса (V₀-блок в терминологии работы [10]) достаточно большое и поэтому его можно рассматривать как двухуровневую систему (ДУС) с $\Delta = E_1 - E_0 \approx 200$ К. (Схематично образование V₀-блока показано на рис. 3.) Присутствие ДУС в

Рис. 3. Схематичное изображение энергетического профиля при движении вакансии по узлам анионной подрешетки, иллюстрирующее образование V_0 -блоков

системе приводит к дополнительному вкладу в теплоемкость, максимум которой достигается при температуре $T \approx 0.4\Delta$. Вычисленные в работе [10] значения теплоемкости находятся в хорошем соответствии с экспериментальными результатами [5].

При столь больших значениях $\Delta \approx 200~{
m K}$ в соединении YSZ двухуровневые системы не влияют на распространение субтерагерцевых фононов, что и наблюдалось экспериментально в этой системе [22]. (При T = 3 К энергия тепловых фононов, соответствующих максимуму спектральной плотности планковского распределения, составляет $\hbar \omega = 2.8 k_B T \approx 0.7$ мэВ ≈ 7 К). Предположим, что в системе $\operatorname{Ce}_{1-x}\operatorname{Gd}_x\operatorname{O}_{2-y}$, обладающей такой же структурой, как и YSZ, в тех же условиях эксперимента может реализоваться аналогичная ситуация с другими значениями Δ , при которых взаимодействие фононов с ДУС будет определяющим. Чтобы убедиться в том, что такая ситуация реализуется в исследуемой системе, обратимся к модели диффузионного распространения фононов в системе с ДУС, которая была предложена в работах [23, 24] для объяснения аномалий в температурных и концентрационных зависимостях прихода сигнала фононной неравновесности и его формы в иттрий-алюминиевых гранатах с парамагнитными примесями. Согласно результатам этих работ ДУС являются центрами захвата неравновесных фононов и в уравнении теплопроводности (температуропроводности) могут быть формально описаны как равномерно распределенные в пространстве точечные источники, знак которых меняется в зависимости от координаты и времени. При достижении тепловым импульсом данной точки источник имеет отрицательный знак, отбирая тепловую энергию из фо-

нонной подсистемы, а после прохождения теплового импульса — положительный, отдавая накопленную энергию фононам. При этом сигналы на болометре формируются из двух групп фононов, что приводит в общем случае к двум максимумам на кривой фононной неравновесности. Первый из них (быстрый процесс) формируют фононы, которые в процессе распространения только упруго взаимодействовали с дефектами структуры. Второй же максимум (медленный процесс) формируют фононы, которые успели квазиупруго провзаимодействовать с двухуровневой подсистемой. Значение сигнала фононной неравновесности в этих точках определяется отношением времен $\alpha = t_0 / \tau$, где t_0 — время прихода максимума сигнала в отсутствие ДУС, а τ — время энергообмена между двухуровневой подсистемой и фононами. При медленном энергообмене ($\alpha \ll 1$) двухуровневая подсистема не успевает провзаимодействовать с тепловым импульсом и на болометре регистрируется только быстрый процесс. С ростом а величина второго максимума возрастает (соответственно убывает величина первого) за счет увеличения доли фононов, успевших провзаимодействовать с ДУС. При $\alpha \gg 1$ сигнал фононной неравновесности несет информацию только о медленном процессе и определяется отношением теплоемкостей двухуровневой подсистемы и фононов:

$$D = \frac{D_0}{1 + nc_{tls}/c_{ph}} < D_0, \tag{3}$$

здесь c_{tls} , c_{ph} — теплоемкости соответственно ДУС и фононов, n — количество ДУС, D_0 — коэффициент диффузии в отсутствие ДУС. Физический смысл этого выражения заключается в том, что при большей теплоемкости двухуровневой подсистемы фонон в процессе диффузионного распространения по образцу с коэффициентом диффузии $D_0 = 1/3l_0v$ может многократно захватиться ДУС, накопив тем самым время задержки.

Из рис. 1 следует, что в системе $Ce_{1-x}Gd_xO_{2-y}$ регистрируется информация только об одном процессе, и, согласно проведенным оценкам, это процесс медленный. Таким образом, для описания эксперимента можно пользоваться выражением (3). Зная фононную теплоемкость одного моля вещества

$$c_{ph} = \frac{12}{5} R_g \pi^4 \left(\frac{T}{\Theta}\right)^3,$$

где R_g — универсальная газовая постоянная, Θ — температура Дебая, и теплоемкость ДУС

$$c_{tls} = k_B \left(\frac{\Delta}{T}\right)^2 \frac{\exp(-\Delta/T)}{(1 + \exp(-\Delta/T))^2},$$

Рис. 4. Формирование температурной зависимости длины свободного пробега фононов системы с ДУС. Экспериментальные точки относятся к образцу 917

можно подобрать остальные параметры (Δ , n и l_0).

Модель [23, 24] является феноменологическим обобщением микроскопической модели [25] и позволяет получить выражение для коэффициента диффузии в системе с ДУС в самом общем виде, которое может быть использовано для центров захвата любой природы. В частности, в работе [26] в качестве центров захвата были рассмотрены мелкие металлические включения в диэлектрической матрице. В данной работе представление о возможном характере зависимости $l_{tr}(T)$ дает рис. 4.

На рис. 4 качественно показано формирование согласно выражению (3) экспериментально наблюдаемой зависимости $l_{tr}(T)$ в широком температурном интервале. Тонкая линия относится к l_0 и соответствует коэффициенту диффузии в керамиках без ДУС, рассчитанному в модели [27]. Согласно этой модели при малых температурах наблюдается рэлеевское рассеяние фононов на зернах керамики, непрерывно переходящее в геометрическое при возрастании температуры. Если значение Δ таково, что при этих же температурах теплоемкость ДУС достигает максимума и выполняется условие $nc_{tls} \gg c_{ph}$, то зависимость, рассчитанная из выражения (3) (жирная линия), будет близка к экспериментальной.

На рис. 5 точками представлены экспериментальные зависимости $l_{tr}(1/T)$ для образцов с одинаковым размером зерен ($R \sim 200$ нм) и различной концентрацией примеси. Сплошными линиями изображены теоретические зависимости, рассчитанные с использованием формулы (3). При расчетах темпе-

Рис. 5. Температурная зависимость $l_{tr}(1/T)$ для образцов одного размера с R = 200 нм и различным содержанием примеси: x = 0.091 (911), x = 0.126 (913), x = 0.20 (904), x = 0.30 (801)

ратура Дебая для образцов с различной концентрацией примеси вычислялась по формуле [13]

$$\Theta = \frac{\hbar}{k_B} \frac{2\pi}{a} \left(\frac{3N}{4\pi}\right)^{1/3} v,$$

где *а* — постоянная решетки, *N* — число атомов в элементарной ячейке, а значения v для каждой концентрации представлены в таблице. Было найдено, что значение $\Delta = 8.53$ К позволяет получить лучшее для всех образцов соответствие теоретических зависимостей с экспериментом. При этом для всех образцов по порядку величины $l_0 \approx 1.5 \cdot 10^{-4}$ см, а концентрация ДУС (V₀-блоков) пропорциональна концентрации атомов гадолиния, но примерно на порядок меньше — n = 0.08x, что представляется вполне разумным значением с учетом присутствия в рассматриваемой системе ионов церия с различной степенью окисления. Сплошные линии на рис. 2 также вычислены с помощью выражения (3) с теми же значениями Δ и Θ , а найденные значения l_0 представлены в таблице.

5. ВЫВОДЫ

Таким образом, в работе экспериментально исследованы кинетические характеристики субтера-

герцевых фононов в образцах керамики на основе твердых растворов электролитов $Ce_{1-x}Gd_xO_{2-y}$. Для объяснения обнаруженных аномально низких значений и нетривиальной температурной зависимости длины свободного пробега фононов были привлечены результаты теоретических расчетов энергии образования вакансии в анионной подрешетке в зависимости от ее положения относительно примесных ионов в системе YSZ с аналогичной кристаллической структурой. Анализ экспериментальных результатов показал, что если в исследуемой системе, так же как и в системе YSZ, образуются структурные дефекты, связанные с наличием вакансий, то их можно описать как ДУС с энергией $\Delta = 8.53$ К. Полученные результаты могут быть использованы при проведении расчетов полной энергии системы $\operatorname{Ce}_{1-x}\operatorname{Gd}_x\operatorname{O}_{2-y}$.

Авторы благодарны С. А. Останину за обсуждение результатов и полезные замечания.

Работа выполнена при финансовой поддержке РФФИ (грант № 07-02-00391-а).

ЛИТЕРАТУРА

- В. В. Иванов, Ю. А. Котов, В. П. Горелов и др., Электрохимия 11, 694 (2005).
- T. Suzuki, I. Kosacki, and Harlan U. Anderson, Sol. St. Ion. 151, 111 (2002).
- 3. S. M. Haile, Materials Today 3, 24 (2003).
- 4. H. Inaba and H. Tagawa, Sol. St. Ion. 83, 1 (1996).
- T. Tojo, T. Atake, T. Mori, and H. Yamamura, J. Therm Anal. Calorim. 57, 447 (1999).
- D. Vlachos, A. J. Craven, and D. W. McComb, J. Phys.: Condens. Matter 13, 10799 (2001).
- C. Degueldre, P. Tissot, H. Lartigue, and M. Pouchon, Thermochimica Acta 403, 26273 (2003).
- S. A. Ostanin and E. I. Salamatov, JETP Lett. 74, 552 (2001);
 S. Ostanin, E. Salamatov, A. J. Craven et al., Phys. Rev. B 66, 132105 (2002).

- S. Ostanin, A. J. Craven, D. W. McComb et al., Phys. Rev. B 65, 224109 (2002).
- 10. S. Ostanin and E. Salamatov, Phys. Rev. B 68, 172106 (2003).
- H. Hayashi, M. Kanoh, Ch. Ji Quan et al., Sol. St. Ion. 132, 227 (2000).
- T. Hisashige, Y. Yamamura, and T. Tsuji, J. Alloys Comp. 408–412, 1153 (2006).
- 13. Y. Wang, K. Duncan, E. D. Wachsman, and F. Ebrahimi, Sol. St. Ion. 178, 53 (2007).
- V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).
- **15.** С. Н. Иванов, А. В. Таранов, В. А. Ацаркин, В. В. Демидов, ЖЭТФ **94**, 274 (1988).
- 16. С. Н. Иванов, А. Г. Козорезов, А. В. Таранов,
 Е. Н. Хазанов, ЖЭТФ 100, 1591 (1991).
- 17. C. H. Иванов, Ε. Η. Хазанов, Α. Β. Таранов, ΦΤΤ
 29, 672 (1987).
- 18. Ю. Н. Барабаненков, В. В. Иванов, С. Н. Иванов А. В. Таранов, Е. Н. Хазанов, ЖЭТФ 119, 546 (2001).
- 19. A. Atkinson and A. Selcuk, Sol. St. Ion. 134, 59 (2000).
- 20. А. В. Таранов, Е. Н. Хазанов, ЖЭТФ 134, 595 (2008).
- S. N. Ivanov, E. N. Khazanov, T. Paszkiewicz, M. Wilczynski, and A. V. Taranov, Z. Phys. B 99, 535 (1996).
- 22. Ю. Н. Барабаненков, В. В. Иванов, С. Н. Иванов,
 Е. И. Саламатов, А. В. Таранов, Е. Н. Хазанов,
 О. Л. Хасанов, ЖЭТФ 129, 131 (2006).
- 23. Е. И. Саламатов, ФТТ 44, 935 (2002).
- **24**. Е. И. Саламатов, ФТТ **45**, 691 (2003).
- **25**. А. Г. Козорезов, ЖЭТФ **100**, 1577 (1991).
- 26. О. В. Карбань, Е. И. Саламатов, А. В. Таранов,
 Е. Н. Хазанов, О. Л. Хасанов, ЖЭТФ 135, 758 (2009).
- 27. В. В. Иванов, Е. И. Саламатов, А. В. Таранов,
 Е. Н. Хазанов, ЖЭТФ 133, 339 (2008).