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The tight-binding model of bilayer graphene is used to find the gap between the conduction and valence bands,
as a function of both the gate voltage and the doping by donors or acceptors. The total Hartree energy is
minimized and an equation for the gap is obtained. This equation for the ratio of the gap to the chemical
potential is determined only by the screening constant. Therefore, the gap is strictly proportional to the gate
voltage or the carrier concentration in the absence of donors or acceptors. But in the case where the donors or
acceptors are present, the gap demonstrates an asymmetric behavior on the electron and hole sides of the gate
bias. A comparison with experimental data obtained by Kuzmenko et al. demonstrates a good agreement.

1. INTRODUCTION

Bilayer graphene has attracted much interest partly
due to the opening of a tunable gap in its electronic
spectrum by an external electrostatic field. Such a phe-
nomenon was predicted in Refs. [1, 2] and can be ob-
served in optical studies controlled by applying a gate
bias [3-10]. In Refs. [11, 12], within the self-consistent
Hartree approximation, the gap was derived as a near-
linear function of the carrier concentration injected in
the bilayer by the gate bias. Recently, this problem
was numerically considered in Ref. [13] using the den-
sity functional theory (DFT) and including the external
charge doping due to impurities. The DFT calculation
gives the gap that is roughly half the gap obtained in
the Hartree approximation. This disagreement was ex-
plained in Ref. [13] as a result of both the inter- and
intralayer correlations.

In this work, we study this problem within the same
Hartree approximation as in Refs. [11, 12], but includ-
ing the effect of external doping. We calculate the car-
rier concentration on both sides of the bilayer in the
case where the carrier concentration in the bilayer is
less than 10'® em~2. We then minimize the total energy
of the system and self-consistently find both the chemi-
cal potential and the gap induced by the gate bias. Our
results completely differ from those in Refs. [11, 12],

*E-mail: falk@itp.ac.ru

361

Fig.1. Bilayer lattice

where the external doping is disregarded. In the pres-
ence of dopants, the dependence of the gap on the car-
rier concentration, i.e., on the gate voltage, exhibits an
asymmetry at the electron and hole sides of the gate
bias.

2. TIGHT-BINDING MODEL OF BILAYER
GRAPHENE

The graphene bilayer lattice is shown in Fig. 1.
Atoms in one layer, i.e., A and B in the unit cell, are
connected by solid lines, and in the other layer, e.g.,
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Table. Parameter values of the electron spectrum in
electronvolts

Parameter | Experiment [10] | DFT calculation [16]
Yo 3.16 £ 0.30 2.598 +£0.015
7 0.381 + 0.003 0.34 £0.02
V3 0.38 £ 0.06 0.32£0.02
Ya 0.14£+0.03 0.177 £ 0.025
A 0.011 £ 0.002 0.012£0.05

Ay and By, by dashed lines. An atom A (A;) differs
from B (B;) because it has a neighbor just below it in
the adjacent layer, whereas the atom B (B;) does not.

We recall the main results of the Slonchew-
ski-Weiss—McClure model [14, 15]. In the tight-binding
model, the Bloch functions of the bilayer are written
as

1
Ve = Wi ;eXp(ik -aj)to(a; — 1),

0y = Tlﬁ ;exp (ik - a;) Yo(aj +a — 1),
. (1)

VN
Vp = \/Lﬁ ;exp(ik -aj)o(aj +c+a—r),

Va1 Z exp(ik - a;j)o(a; + ¢ —r),
J

where the sums are taken over the lattice vectors a;
and N is the number of unit cells. The vectors a and ¢
respectively connect the nearest atoms in the layer and
in the neighbor layers.

For the nearest neighbors, the effective Hamiltonian
in the space of functions (1) can be written as

H(k) =
U+A yf” ol vaf
_ f U-A Yaf v3.f* )
no nufr U+A yf ’
Yaf*  f Yf* “U-A
where

f = |exp(ik,a)+2exp(—ik,a/2) cos (kya\/g/Z)] .

The values of hopping integrals 7o, 71, 73, 74, and A
are given in the Table. The largest of them, 7p, de-
termines the band dispersion near the K point in the
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Brillouin zone, where the matrix element 7 f can be
expanded as

70f = U(ka - ky)v

with a velocity parameter v = 37ypa/2. The parameters
~v3 and 4 giving a correction to the dispersion are less
than 79 by a factor of 10. The parameters 7; and A
result in the position of levels at K, but A is much less
than ;. In addition, the parameter U induced by the
gate voltage is associated with the asymmetry of two
layers in the external electrostatic field. This parame-
ter plays a role of the potential energy —e dE between
two layers, where d is the interlayer distance and E is
electric field induced both by the gate voltage and the
external dopants in the bilayer.

The parameter U and the chemical potential p
should be self-consistently calculated for the given gate
voltage. For this, we can keep only the parameters vy
and 71, neglecting the small effect of 3, 74, and A on
the gap U. In this approximation, the effective Hamil-
tonian can be written in the simple form

U vky m 0
k_ U 0 0
Hi)=| " . )
Y1 0 -U wvk_
0 0 wvky -U

where ki = Fik, — ky in the vicinity of the K points.
The Hamiltonian gives four energy bands:

2 1/2
61,4(q):i(771+U2+q2+W) ,

72 1/2 (4)
5273(q)=:|:<?1+U2+q2—W> ,

where

n

1/2
yERa Sl +4U2)q2>

v

and we set ¢> = (vk)?2.

The band structure is shown in Fig. 2. The

minimal value of the upper energy e; is /U? + 2.
The e5 band takes the maximal value |U| at ¢ = 0

and the minimal value U = ,|U|/\/7} +40U2 at
® = 2U%(v} + 2U?%)/(7? + 4U?). Because the value
of U is much less than v, the distinction between U
and U is small and the gap between the bands £, and
e3 approximately takes the value 2|U].



MKITD, Tom 137, BHm. 2, 2010

Gate-tunable bandgap in bilayer graphene

W
AN

Fig.2. Band structure of a bilayer
3. EIGENFUNCTIONS AND CARRIER

CONCENTRATION

The four eigenfunctions C corresponding to eigen-
values (4) of Hamiltonian (3) are given by

(U —en)l(en + U)? - q2]

1 —q[(en +U)* = ¢]
©=c n(U? - &) -
Y1q+(U = €n)

where the C norm squared is

C? =[(en +U)? = PPllen — U + %) +

+7(En —U)l(en +U) +¢%].

It follows from Egs. (1) that the probability p; to find
an electron, for instance, on the first layer is

= |Ch]* +1Ca)?,

where the subscript in C; numerates the elements of
column (5).

We assume that carriers occupy only the bands ¢ 3,
so the chemical potential p and the gap 2|U| are less
than the distance between the bands ¢; and e,, i.e.,

(I, 2]U]) < ~1. The electron dispersion for the eo 3
bands can be expanded in powers of ¢?:
U2 q4

- 4—2q2 + =5, (6)
M

ex(q) =U?
Y1

n

where n = 2 stands for the electron conductivity and
n = 3 for the hole conductivity. Then, for ¢> > 4U?,
we can omit the second term here and use the simple
relations

¢ =il — U2, (7)

neglecting the small effect of the “mexican hat”.

Keeping only the leading terms, we find from Eq. (5)
that the probabilities p; 2 to find an electron on the lay-
ers are

= |C1)? +|0s]* < ¢f = A} (2 — U?)%/2

= |C3* + 10 < 77 (U —en)® =
=i (en = UMV (U = en)?.
Therefore, the normalized probability to find an elec-
tron, for instance, on the first layer can be written as
(3 = U2
D@ - @ U RU )

=(en+U)/2e,. (8)

Within the approximation in (7)—-(8), many observable
effects can be evaluated analytically for the interme-
diate carrier concentration, 4U? < y1y/pu? — U2 < 3.

At zero temperature, the carrier concentration on
the sides of the bilayer is found with the help of Eq. (8)
as

Ni2 = #/I)m qdq =
_ U (Ve —14m (24 Va2 —1)] . (9

2m

where the integration limits are given by ¢ = 0 and the
chemical potential u, and we set

ng = v /mh*v? = 1.03-10"* em 2,
z = |p/U.

For the total carrier concentration n in the bilayer, we
obtain

(10)

ViE T2 = ”°U¢ (11)

h22

363



L. A. Falkovsky

MITD, Tom 137, BHm. 2, 2010

4. MINIMIZATION OF THE TOTAL ENERGY

To find the chemical potential p and the gap 2|U|
at the given gate voltage

eV, = —edE — ed,E, , (12)

where d is the interlayer distance and d,, is the wafer
thickness, we minimize the total energy containing both
the energy V(©) of the carriers and the energy V (/) of
the electrostatic field. Within the Hartree approxima-
tion, when no electron correlations are taken into ac-
count, the filled bands do not contribute to the energy
of the system, because the electron charge of the filled
bands is compensated by the ion charge and this energy
has to be regarded as the ground state energy. The ex-
citation energy owes its origin to the carriers in unfilled
bands. Electrons in the €5 band or holes in the £3 band
contribute the energy

(e

2
) / len(q)|qdg =

= noU”? [gg\/xQ —1+In(zx+ Va2 - 1)] (13)

2m

to the total energy of the system. The energy of the
electrostatic field (Fig. 3)

v = %(dﬁ + ewdwE2) (14)

can be written in terms of the carrier concentrations
with the help of relations

dre(ny — Ny) = E, 4me(n — N) = e,E,,  (15)

where €,, is the dielectric constant of the wafer, and
N7 and N» are the respective concentrations of the ac-
ceptor or donor impurities on the left and right layers,
with the total dopant concentration on the bilayer be-
ing N = N;+ N>. All these numbers are supposed to be
positive or negative for the electron or hole doping re-
spectively. We emphasize that the dielectric constant
e of bilayer graphene depends on the substrate. For
simplicity, we put € = 1 in definition (14).
We seek the minimum of the total energy

VD 4+ V© 4 \(eV, + edE + edy,E.,)

as a function of U, u, and the Lagrange multiplier A.
Differentiation with respect to \ gives the gate voltage
constraint (12). Minimization with respect to U and z
gives

ni nao —Nn
E E,
e _—>
d dw

Fig.3. Electrostatic model; d is the interlayer distance
and d,, is the wafer thickness

4me® [(ny — N)niud + (n — N)nyudu /ew] +

+ VL + 4re®A(n1ud + nudw/€w) = 0

and a similar equation with the substitution v — =z,
where the subscripts v and z denote the derivatives
with respect to the corresponding variables. The La-
grange multiplier A\ can be eliminated from these two
equations. Then, the equation obtained should be ex-
panded in d/d,,, since the thickness d of the bilayer is
much less than the thickness d,, of the substrate.
Thus, we obtain the equation

() ()
4re®d (ny — N») (nﬂ - w) ¥V . (16)
Ny zn Ny Ny

We emphasize that this equation is invariant under the
simultaneous sign change in n;» and N2, which ex-
presses the charge invariance of the problem. At the
fixed external doping N; 2, the gap on the electron and
hole sides of the gate bias is not symmetric.

The derivatives in Eq. (16) are calculated with the
help of Egs. (9)—(15). As a result, Eq. (16) becomes

N.
o2 _ S 14

U’I’LO

T
0 s v

with the function f(z) =In (2 + V22 — 1) and the di-
mensionless screening constant

e2yid

A= ()2

(18)
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For the parameters of graphene d = 3.35 A, o=
=0.381eV, and v = 1.02-:10% cm/s, we obtain A = 0.41.

5. THE GAP IN UNDOPED AND DOPED
BASED BILAYER

5.1. Undoped bilayer

We first consider an ideal undoped bilayer with
N; = N = 0. We obtain a nonzero solution for U
if the right-hand side of Eq. (17) vanishes. This con-
dition is fulfilled only for the minus sign in Eq. (17),
which defines the polarity of the layers (see Eq. (9)).
We obtain the solution 2 = xy = 6.61. According to
Eq. (11), the gap as a function of the carrier concen-
tration takes a very simple form:

U 2n —11 2
2| —|=—F——=1.13-10 meV -cm”, (19
n| ngyri-1 (19)

where the right-hand side does not depend at all on the
gate bias, but depends only on the screening constant
A. This dependence is shown in Fig. 4 in dashed lines;
it is symmetric on the electron and hole sides.

With the help of Eq. (10), we obtain the chemical
potential as a linear function of the carrier concentra-
tion:

2/U[/m
0.5 : . . . .
N\
N\
0.4 N ]

Minimal

0.3 dc conductivity , -
/
0.2 / i
AN
0.1 4
Obicm e N Y]
i
o
—0.1} Hole side | Electron side 7
i
—02 L L L | 1 1
-20 —-15 —-10 —-05 O 0.5 1.0 15
n, 10" cm=2
Fig.4. The gap in units of 71 = 0.381 eV ver-

sus the carrier concentration in the absence of do-
ping (dashed line) and for the hole doping level
Ny = —2.5-10" cm™2 (solid line); the positive (nega-
tive) values of n correspond to the electron (hole) con-
ductivity. The difference between values of n marked as
“gate bias = 0" and “minimal dc conductivity” is 2N
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Y1Zo

e nov/x3 — .

where n is positive (negative) for the electron (hole)
conductivity.

We can compare Eq. (19) with the corresponding
result in Ref. [11]:

(20)

U

n

B e2d

€o

L
no

Aln@

2
|

(21)

128

Both equations give approximately the same results at
In| &~ 0.1ng ~ 10'> em 2. But unlike Eq. (19), Eq. (21)
contains the carrier concentration in the right-hand
side, giving rise to a more rapid increase in the gap
with |n| < ng. This increase also contradicts the DFT
calculations [13].

Two reasons can result in the disagreement, of our
theory with Ref. [11]. First, in Ref. [11], the filled bands
are supposed to create the electric field in the bilayer,
which is incorrect, as was explained in the previous
section. Second, the minimization should be done with
respect to two variables p and U, but only one of them
seems to be used in Ref. [11].

5.2. Doped bilayer

For a bilayer with acceptor or donor dopants,
Eq. (17) has the solution w = 29, N5/Uny as a func-
tion of . We obtain, evidently, small values of w for
x close to xg = 6.61. Since xg > 1, we can expand the
function in the right-hand of Eq. (17) in 1/2z. In this
region of relatively large |U|, Eqs. (11) and (17) again
yield the linear dependence

27 _

NoTo

=1.13|n — 2Ny|- 10" meV - em?. (22)

The value of the carrier concentration n = 2N cor-
responds to the zero bias voltage, where U = 0 (see
Fig. 4). Therefore, in contrast to the undoped case,
the gap demonstrates an asymmetric behavior on the
electron and hole sides. If the bilayer contains accep-
tors with a concentration N,, the gap decreases lin-
early with the hole concentration and vanishes when
the gate bias is not applied and the hole concentration
equals 2Ny (—5-10'? cm 2 in Fig. 4). Starting from
this point, the gap increases and, thereafter, becomes
small again (equal to zero in Fig. 4) at the carrier con-
centration corresponding to the minimal value of the
dc conductivity, where n = 0. Therefore, the difference
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2|U], eV
Minimal
0.10 |dc conductivity i
i
i
i
0.05 :
0 :
i
Holes i Electrons
i
1 1 1 i 1 1 1 1
—-06-04-02 0 02 04 06 08 1.0

n, 10" cm™2

Fig.5. The gap in electronvolts versus the carrier con-
centration for the electron doping with the concentra-
tion No = 0.78 - 10'* cm™? (our theory); the positive
(negative) values of n correspond to the electron (hole)
conductivity; squares are experimental data [10]

(1.56 - 10'> ecm~2 in Fig. 5) observed in Refs. [9,10]
between these two values of carrier concentrations, at
the zero bias and at the minimal conductivity, di-
rectly gives the donor/acceptor concentration 2N, on
the layer close to the substrate. Then, for the gate bias
applied in order to increase the electron concentration,
the gap rapidly opens as electrons appear.

We see that an asymmetry arises between the elect-
ron and hole sides of the gate bias. This asymmetry
can simulate a result of the hopping integral A in the
electron spectrum [17]. To obtain the gap dependence
in the case of electron doping, N> > 0, the reflection
transformation n — —n has to be made. This case
is shown in Fig. 5, where the experimental data from
Ref. [10] are displayed.

The gap in the vicinity of the minimal conductivi-
ty value could indeed reach a finite value due to seve-
ral reasons. One of them is the form of the “mexican
hat” shown in Fig. 2. Second, the trigonal warping is
substantial at low carrier concentrations. Finally, the
graphene electron spectrum is unstable with respect to
the Coulomb interaction at low momentum values. For
a graphene monolayer, as shown in Ref. [18], logarith-
mic corrections occur at small momenta. In the case of
a bilayer, the electron self-energy contains linear cor-
rections, as can be found using the perturbation theory.
Similar linear terms resulting in a nematic order were
also obtained in the framework of the renormalization
group [19].
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6. CONCLUSION

The gap opening in the gated graphene bilayer
has an intriguing behavior as a function of carrier
concentration. In the presence of an external doping
charge, i.e., donors or acceptors, this function is
asymmetric on the hole and electron sides of the gate
bias and it is linear only for a large gate bias. The
difference between two values of carrier concentrations,
i.e., at the zero bias and at the minimal conductivity,
directly gives the sign and concentration of the charged
dopants on the bilayer.
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