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GATE-TUNABLE BANDGAP IN BILAYER GRAPHENEL. A. Falkovsky *Landau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es117334, Mos
ow, RussiaInstitute of the High Pressure Physi
s, Russian A
ademy of S
ien
es142190, Troitsk, Mos
ow Region, RussiaRe
eived August 22, 2009The tight-binding model of bilayer graphene is used to �nd the gap between the 
ondu
tion and valen
e bands,as a fun
tion of both the gate voltage and the doping by donors or a

eptors. The total Hartree energy isminimized and an equation for the gap is obtained. This equation for the ratio of the gap to the 
hemi
alpotential is determined only by the s
reening 
onstant. Therefore, the gap is stri
tly proportional to the gatevoltage or the 
arrier 
on
entration in the absen
e of donors or a

eptors. But in the 
ase where the donors ora

eptors are present, the gap demonstrates an asymmetri
 behavior on the ele
tron and hole sides of the gatebias. A 
omparison with experimental data obtained by Kuzmenko et al. demonstrates a good agreement.1. INTRODUCTIONBilayer graphene has attra
ted mu
h interest partlydue to the opening of a tunable gap in its ele
troni
spe
trum by an external ele
trostati
 �eld. Su
h a phe-nomenon was predi
ted in Refs. [1, 2℄ and 
an be ob-served in opti
al studies 
ontrolled by applying a gatebias [3�10℄. In Refs. [11, 12℄, within the self-
onsistentHartree approximation, the gap was derived as a near-linear fun
tion of the 
arrier 
on
entration inje
ted inthe bilayer by the gate bias. Re
ently, this problemwas numeri
ally 
onsidered in Ref. [13℄ using the den-sity fun
tional theory (DFT) and in
luding the external
harge doping due to impurities. The DFT 
al
ulationgives the gap that is roughly half the gap obtained inthe Hartree approximation. This disagreement was ex-plained in Ref. [13℄ as a result of both the inter- andintralayer 
orrelations.In this work, we study this problem within the sameHartree approximation as in Refs. [11, 12℄, but in
lud-ing the e�e
t of external doping. We 
al
ulate the 
ar-rier 
on
entration on both sides of the bilayer in the
ase where the 
arrier 
on
entration in the bilayer isless than 1013 
m�2. We then minimize the total energyof the system and self-
onsistently �nd both the 
hemi-
al potential and the gap indu
ed by the gate bias. Ourresults 
ompletely di�er from those in Refs. [11, 12℄,*E-mail: falk�itp.a
.ru
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Fig. 1. Bilayer latti
ewhere the external doping is disregarded. In the pres-en
e of dopants, the dependen
e of the gap on the 
ar-rier 
on
entration, i. e., on the gate voltage, exhibits anasymmetry at the ele
tron and hole sides of the gatebias.2. TIGHT-BINDING MODEL OF BILAYERGRAPHENEThe graphene bilayer latti
e is shown in Fig. 1.Atoms in one layer, i. e., A and B in the unit 
ell, are
onne
ted by solid lines, and in the other layer, e. g.,361



L. A. Falkovsky ÆÝÒÔ, òîì 137, âûï. 2, 2010Table. Parameter values of the ele
tron spe
trum inele
tronvoltsParameter Experiment [10℄ DFT 
al
ulation [16℄
0 3:16� 0:30 2:598� 0:015
1 0:381� 0:003 0:34� 0:02
3 0:38� 0:06 0:32� 0:02
4 0:14� 0:03 0:177� 0:025� 0:011� 0:002 0:012� 0:05A1 and B1, by dashed lines. An atom A (A1) di�ersfrom B (B1) be
ause it has a neighbor just below it inthe adja
ent layer, whereas the atom B (B1) does not.We re
all the main results of the Slon
hew-ski�Weiss�M
Clure model [14, 15℄. In the tight-bindingmodel, the Blo
h fun
tions of the bilayer are writtenas  a = 1pN Xj exp(ik � aj) 0(aj � r); b = 1pN Xj exp (ik � aj) 0(aj + a� r); a1 = 1pN Xj exp(ik � aj) 0(aj + 
� r); b1 = 1pN Xj exp(ik � aj) 0(aj + 
+ a� r); (1)
where the sums are taken over the latti
e ve
tors ajand N is the number of unit 
ells. The ve
tors a and 
respe
tively 
onne
t the nearest atoms in the layer andin the neighbor layers.For the nearest neighbors, the e�e
tive Hamiltonianin the spa
e of fun
tions (1) 
an be written asH(k) == 0BBBB� U +� 
0f� 
1 
4f
0f U �� 
4f 
3f�
1 
4f� �U +� 
0f
4f� 
3f 
0f� �U �� 1CCCCA ; (2)wheref = 
0 hexp(ikxa)+2 exp(�ikxa=2) 
os�kyap3=2�i :The values of hopping integrals 
0, 
1, 
3, 
4, and �are given in the Table. The largest of them, 
0, de-termines the band dispersion near the K point in the

Brillouin zone, where the matrix element 
0f 
an beexpanded as 
0f = v(ikx � ky);with a velo
ity parameter v = 3
0a=2. The parameters
3 and 
4 giving a 
orre
tion to the dispersion are lessthan 
0 by a fa
tor of 10. The parameters 
1 and �result in the position of levels at K, but � is mu
h lessthan 
1. In addition, the parameter U indu
ed by thegate voltage is asso
iated with the asymmetry of twolayers in the external ele
trostati
 �eld. This parame-ter plays a role of the potential energy �e dE betweentwo layers, where d is the interlayer distan
e and E isele
tri
 �eld indu
ed both by the gate voltage and theexternal dopants in the bilayer.The parameter U and the 
hemi
al potential �should be self-
onsistently 
al
ulated for the given gatevoltage. For this, we 
an keep only the parameters 
0and 
1, negle
ting the small e�e
t of 
3, 
4, and � onthe gap U . In this approximation, the e�e
tive Hamil-tonian 
an be written in the simple formH(k) = 0BBBB� U vk+ 
1 0vk� U 0 0
1 0 �U vk�0 0 vk+ �U 1CCCCA ; (3)where k� = �ikx � ky in the vi
inity of the K points.The Hamiltonian gives four energy bands:"1;4(q) = ��
212 + U2 + q2 +W�1=2 ;"2;3(q) = ��
212 + U2 + q2 �W�1=2 ; (4)where W = �
414 + (
21 + 4U2)q2�1=2and we set q2 = (vk)2.The band stru
ture is shown in Fig. 2. Theminimal value of the upper energy "1 is pU2 + 
21 .The "2 band takes the maximal value jU j at q = 0and the minimal value ~U = 
1jU j=p
21 + 4U2 atq2 = 2U2(
21 + 2U2)=(
21 + 4U2): Be
ause the valueof U is mu
h less than 
1, the distin
tion between Uand ~U is small and the gap between the bands "2 and"3 approximately takes the value 2jU j.362
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ture of a bilayer3. EIGENFUNCTIONS AND CARRIERCONCENTRATIONThe four eigenfun
tions C 
orresponding to eigen-values (4) of Hamiltonian (3) are given byC = 1C 0BBBB� (U � "n)[("n + U)2 � q2℄�q�[("n + U)2 � q2℄
1(U2 � "2n)
1q+(U � "n) 1CCCCA ; (5)where the C norm squared isC2 = [("n + U)2 � q2℄2[("n � U)2 + q2℄ ++ 
21("n � U)2[("n + U)2 + q2℄ :It follows from Eqs. (1) that the probability p1 to �ndan ele
tron, for instan
e, on the �rst layer isp1 = jC1j2 + jC2j2 ;where the subs
ript in Ci numerates the elements of
olumn (5).We assume that 
arriers o

upy only the bands "2;3,so the 
hemi
al potential � and the gap 2jU j are lessthan the distan
e between the bands "1 and "2, i. e.,

(j�j; 2jU j) < 
1: The ele
tron dispersion for the "2;3bands 
an be expanded in powers of q2:"2n(q) = U2 � 4U2
21 q2 + q4
21 ; (6)where n = 2 stands for the ele
tron 
ondu
tivity andn = 3 for the hole 
ondu
tivity. Then, for q2 � 4U2,we 
an omit the se
ond term here and use the simplerelations q2 = 
1("2n � U2)1=2; (7)negle
ting the small e�e
t of the �mexi
an hat�.Keeping only the leading terms, we �nd from Eq. (5)that the probabilities p1;2 to �nd an ele
tron on the lay-ers arep1 = jC1j2 + jC2j2 / q6 = 
31("2n � U2)3=2 ;p2 = jC3j2 + jC4j2 / q2
21(U � "n)2 == 
31("2n � U2)1=2(U � "n)2 :Therefore, the normalized probability to �nd an ele
-tron, for instan
e, on the �rst layer 
an be written asp1 = ("2n � U2)3=2("2n � U2)3=2 + ("2n � U2)1=2(U � "n) == ("n + U)=2"n : (8)Within the approximation in (7)�(8), many observablee�e
ts 
an be evaluated analyti
ally for the interme-diate 
arrier 
on
entration, 4U2 � 
1p�2 � U2 � 
21 .At zero temperature, the 
arrier 
on
entration onthe sides of the bilayer is found with the help of Eq. (8)asn1;2 = 2�~2v2 Z p1;2 q dq == n0U2
1 hpx2 � 1� ln�x+px2 � 1�i ; (9)where the integration limits are given by q = 0 and the
hemi
al potential �, and we setn0 = 
21=�~2v2 = 1:03 � 1013 
m�2 ;x = j�=U j: (10)For the total 
arrier 
on
entration n in the bilayer, weobtainn = 
1�~2v2p�2 � U2 = n0U
1 px2 � 1 : (11)363



L. A. Falkovsky ÆÝÒÔ, òîì 137, âûï. 2, 20104. MINIMIZATION OF THE TOTAL ENERGYTo �nd the 
hemi
al potential � and the gap 2jU jat the given gate voltageeVg = �e dE � e dwEw ; (12)where d is the interlayer distan
e and dw is the waferthi
kness, we minimize the total energy 
ontaining boththe energy V (
) of the 
arriers and the energy V (f) ofthe ele
trostati
 �eld. Within the Hartree approxima-tion, when no ele
tron 
orrelations are taken into a
-
ount, the �lled bands do not 
ontribute to the energyof the system, be
ause the ele
tron 
harge of the �lledbands is 
ompensated by the ion 
harge and this energyhas to be regarded as the ground state energy. The ex-
itation energy owes its origin to the 
arriers in un�lledbands. Ele
trons in the "2 band or holes in the "3 band
ontribute the energyV (
) = 2�~2v2 Z j"n(q)jq dq == n0U22
1 hxpx2 � 1 + ln (x+px2 � 1) i (13)to the total energy of the system. The energy of theele
trostati
 �eld (Fig. 3)V (f) = 18� (dE2 + �wdwE2w) (14)
an be written in terms of the 
arrier 
on
entrationswith the help of relations4�e(n1 �N1) = E; 4�e(n�N) = �wEw ; (15)where �w is the diele
tri
 
onstant of the wafer, andN1 and N2 are the respe
tive 
on
entrations of the a
-
eptor or donor impurities on the left and right layers,with the total dopant 
on
entration on the bilayer be-ingN = N1+N2. All these numbers are supposed to bepositive or negative for the ele
tron or hole doping re-spe
tively. We emphasize that the diele
tri
 
onstant� of bilayer graphene depends on the substrate. Forsimpli
ity, we put � = 1 in de�nition (14).We seek the minimum of the total energyV (f) + V (
) + �(eVg + edE + edwEw)as a fun
tion of U , �, and the Lagrange multiplier �.Di�erentiation with respe
t to � gives the gate voltage
onstraint (12). Minimization with respe
t to U and xgives

n1 n2 �nE Ewd dw
Fig. 3. Ele
trostati
 model; d is the interlayer distan
eand dw is the wafer thi
kness4�e2 [(n1 �N1)n1ud+ (n�N)nudw=�w℄ ++ V (
)u + 4�e2�(n1ud+ nudw=�w) = 0and a similar equation with the substitution u ! x,where the subs
ripts u and x denote the derivativeswith respe
t to the 
orresponding variables. The La-grange multiplier � 
an be eliminated from these twoequations. Then, the equation obtained should be ex-panded in d=dw, sin
e the thi
kness d of the bilayer ismu
h less than the thi
kness dw of the substrate.Thus, we obtain the equation4�e2d (n2 �N2)�n1xnx � n1unu � = V (
)xnx � V (
)unu : (16)We emphasize that this equation is invariant under thesimultaneous sign 
hange in n1;2 and N1;2, whi
h ex-presses the 
harge invarian
e of the problem. At the�xed external doping N1;2, the gap on the ele
tron andhole sides of the gate bias is not symmetri
.The derivatives in Eq. (16) are 
al
ulated with thehelp of Eqs. (9)�(15). As a result, Eq. (16) be
omes2
1N2Un0 =px2 � 1���f(x) + xf(x)�[xf(x)�px2 � 1℄� (17)with the fun
tion f(x) = ln �x+px2 � 1 � and the di-mensionless s
reening 
onstant� = e2
1d(~v)2 : (18)364



ÆÝÒÔ, òîì 137, âûï. 2, 2010 Gate-tunable bandgap in bilayer grapheneFor the parameters of graphene d = 3:35Å, 
1 == 0:381 eV, and v = 1:02�108 
m/s, we obtain � = 0:41.5. THE GAP IN UNDOPED AND DOPEDBASED BILAYER5.1. Undoped bilayerWe �rst 
onsider an ideal undoped bilayer withN1 = N2 = 0. We obtain a nonzero solution for Uif the right-hand side of Eq. (17) vanishes. This 
on-dition is ful�lled only for the minus sign in Eq. (17),whi
h de�nes the polarity of the layers (see Eq. (9)).We obtain the solution x = x0 = 6:61. A

ording toEq. (11), the gap as a fun
tion of the 
arrier 
on
en-tration takes a very simple form:2 ����Un ���� = 2
1n0px20�1 = 1:13 � 10�11 meV � 
m2 ; (19)where the right-hand side does not depend at all on thegate bias, but depends only on the s
reening 
onstant�. This dependen
e is shown in Fig. 4 in dashed lines;it is symmetri
 on the ele
tron and hole sides.With the help of Eq. (10), we obtain the 
hemi
alpotential as a linear fun
tion of the 
arrier 
on
entra-tion:
d
 
ondu
tivityMinimal
Hole side Ele
tron side�2:0 �1:5 �1:0 �0:5 0:50 1:0 1:50�0:1�0:2

0:10:20:3
0:40:52jU j=
1

n; 1013 
m�2
Gate bias = 0

Fig. 4. The gap in units of 
1 = 0:381 eV ver-sus the 
arrier 
on
entration in the absen
e of do-ping (dashed line) and for the hole doping levelN2 = �2:5 �1012 
m�2 (solid line); the positive (nega-tive) values of n 
orrespond to the ele
tron (hole) 
on-du
tivity. The di�eren
e between values of n marked as�gate bias = 0� and �minimal d
 
ondu
tivity� is 2N2

� = 
1x0n0px20 � 1n ; (20)where n is positive (negative) for the ele
tron (hole)
ondu
tivity.We 
an 
ompare Eq. (19) with the 
orrespondingresult in Ref. [11℄:2 ����Un ���� = e2d2�0 �1 + 2� jnjn0 +� ln n0jnj��1 : (21)Both equations give approximately the same results atjnj � 0:1n0 � 1012 
m�2. But unlike Eq. (19), Eq. (21)
ontains the 
arrier 
on
entration in the right-handside, giving rise to a more rapid in
rease in the gapwith jnj � n0. This in
rease also 
ontradi
ts the DFT
al
ulations [13℄.Two reasons 
an result in the disagreement of ourtheory with Ref. [11℄. First, in Ref. [11℄, the �lled bandsare supposed to 
reate the ele
tri
 �eld in the bilayer,whi
h is in
orre
t, as was explained in the previousse
tion. Se
ond, the minimization should be done withrespe
t to two variables � and U , but only one of themseems to be used in Ref. [11℄.5.2. Doped bilayerFor a bilayer with a

eptor or donor dopants,Eq. (17) has the solution w = 2
1N2=Un0 as a fun
-tion of x. We obtain, evidently, small values of w forx 
lose to x0 = 6:61. Sin
e x0 � 1, we 
an expand thefun
tion in the right-hand of Eq. (17) in 1=x. In thisregion of relatively large jU j, Eqs. (11) and (17) againyield the linear dependen
e2jU j = jn� 2N2j 2
1n0x0 == 1:13 jn� 2N2j � 10�11 meV � 
m2: (22)The value of the 
arrier 
on
entration n = 2N2 
or-responds to the zero bias voltage, where U = 0 (seeFig. 4). Therefore, in 
ontrast to the undoped 
ase,the gap demonstrates an asymmetri
 behavior on theele
tron and hole sides. If the bilayer 
ontains a

ep-tors with a 
on
entration N2, the gap de
reases lin-early with the hole 
on
entration and vanishes whenthe gate bias is not applied and the hole 
on
entrationequals 2N2 (�5 � 1012 
m�2 in Fig. 4). Starting fromthis point, the gap in
reases and, thereafter, be
omessmall again (equal to zero in Fig. 4) at the 
arrier 
on-
entration 
orresponding to the minimal value of thed
 
ondu
tivity, where n = 0. Therefore, the di�eren
e365
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ondu
tivityMinimal
0 Ele
tronsHoles n; 1013 
m�20:2 0:4 0:6 0:8 1:0�0:2�0:4�0:600:050:102jU j; eV Gate bias = 0

Fig. 5. The gap in ele
tronvolts versus the 
arrier 
on-
entration for the ele
tron doping with the 
on
entra-tion N2 = 0:78 � 1012 
m�2 (our theory); the positive(negative) values of n 
orrespond to the ele
tron (hole)
ondu
tivity; squares are experimental data [10℄(1:56 � 1012 
m�2 in Fig. 5) observed in Refs. [9; 10℄between these two values of 
arrier 
on
entrations, atthe zero bias and at the minimal 
ondu
tivity, di-re
tly gives the donor/a

eptor 
on
entration 2N2 onthe layer 
lose to the substrate. Then, for the gate biasapplied in order to in
rease the ele
tron 
on
entration,the gap rapidly opens as ele
trons appear.We see that an asymmetry arises between the ele
t-ron and hole sides of the gate bias. This asymmetry
an simulate a result of the hopping integral � in theele
tron spe
trum [17℄. To obtain the gap dependen
ein the 
ase of ele
tron doping, N2 > 0, the re�e
tiontransformation n ! �n has to be made. This 
aseis shown in Fig. 5, where the experimental data fromRef. [10℄ are displayed.The gap in the vi
inity of the minimal 
ondu
tivi-ty value 
ould indeed rea
h a �nite value due to seve-ral reasons. One of them is the form of the �mexi
anhat� shown in Fig. 2. Se
ond, the trigonal warping issubstantial at low 
arrier 
on
entrations. Finally, thegraphene ele
tron spe
trum is unstable with respe
t tothe Coulomb intera
tion at low momentum values. Fora graphene monolayer, as shown in Ref. [18℄, logarith-mi
 
orre
tions o

ur at small momenta. In the 
ase ofa bilayer, the ele
tron self-energy 
ontains linear 
or-re
tions, as 
an be found using the perturbation theory.Similar linear terms resulting in a nemati
 order werealso obtained in the framework of the renormalizationgroup [19℄.

6. CONCLUSIONThe gap opening in the gated graphene bilayerhas an intriguing behavior as a fun
tion of 
arrier
on
entration. In the presen
e of an external doping
harge, i. e., donors or a

eptors, this fun
tion isasymmetri
 on the hole and ele
tron sides of the gatebias and it is linear only for a large gate bias. Thedi�eren
e between two values of 
arrier 
on
entrations,i. e., at the zero bias and at the minimal 
ondu
tivity,dire
tly gives the sign and 
on
entration of the 
hargeddopants on the bilayer.I thank A. M. Dyugaev and Yu. N. Ov
hinnikovfor the helpful dis
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