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NUCLEAR QUADRUPOLE SPIN�LATTICE RELAXATION INBi4Ge3O12 SINGLE CRYSTALS DOPED WITH ATOMS OF d OR fELEMENTS. CRYSTAL FIELD EFFECTS IN COMPOUNDSEXHIBITING ANOMALOUS MAGNETIC PROPERTIESV. G. Orlov a;b*, G. S. Sergeev a;b, Tetsuo Asaji 
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ademy of S
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es119991, Mos
ow, RussiaRe
eived August 19, 2009The nu
lear quadrupole spin�latti
e relaxation was studied in the range 4:2�300 K for single 
rystals ofBi4Ge3O12 doped with minor amounts (the tenth fra
tions of mol%) of paramagneti
 atoms of Cr, Nd, andGd. Unusual spin dynami
 features were re
ently found for these 
rystals at room temperature: a dramati
 (upto 8-fold) extension of the e�e
tive nu
lear quadrupole spin�spin relaxation time T �2 o

urred upon doping thepure Bi4Ge3O12 sample. Unlike T �2 , the e�e
tive spin�latti
e relaxation time T �1 at room temperature di�ersinsigni�
antly for both doped and pure samples. But at lower temperatures, the samples exhibit 
onsiderablydi�erent behavior of the spin�latti
e relaxation with temperature, whi
h is 
aused by di�erent 
ontributionsto the relaxation pro
ess of the dopant paramagneti
 atoms. The distin
tive maximum in the temperaturedependen
e of the spin�latti
e relaxation time for the Nd-doped 
rystal is shown to result from the 
rystalele
tri
 �eld e�e
ts.1. INTRODUCTIONBi4Ge3O12 (BGO) belongs to the group of bis-muth (III) oxide 
ompounds of the general 
omposi-tion BikAlOmXn (A = Al, B, Ge, Ba and X = Cl, Br),some of whi
h exhibit anomalous magneti
 propertiesin
ompatible with their 
lassi�
ation as diamagneti

ompounds [1℄. The results of 
omputer modeling the209Bi NQR Zeeman patterns [2℄ as well as spin e
hoenvelope (SEE) modulations in BGO [3℄ pointed to theexisten
e of a lo
al magneti
 �eld Hlo
 of the order of20�30 G in this 
ompound. This �eld originates fromthe ele
troni
 system of the 
rystal be
ause it 
onsider-*E-mail: orlov�mbslab.kiae.ru

ably ex
eeds the nu
lear lo
al magneti
 �elds (severalG), although is inferior to Hlo
 in 
onventional magnets
omprising atoms with un�lled d- or f -ele
tron shells(103�106 G). In weak (below 500 Oe) 
onstant exter-nal magneti
 �elds Hext, the spin e
ho intensity in the209Bi NQR spe
trum of BGO in
reased dramati
ally(by about an order of magnitude) [2℄. Su
h behaviorwas shown to 
orrelate with the spin dynami
s features:in Hext, the e�e
tive time T �2 of nu
lear quadrupolespin�spin relaxation markedly extended [3; 4℄. This re-sulted in the fourfold in
rease in the spin e
ho ampli-tude even in the �elds as small as Hext � 15 Oe atthe pulse separation �� � 125 �s [3; 4℄. This �ndingstimulated a spin dynami
s study on the BGO single336
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lear quadrupole spin�latti
e relaxation : : :
rystal doped with the �magneti
� atoms of transitionor rare earth elements. It was shown that even mi-nor amounts (several tenths of mol%) of Cr, Pr, Nd,and Gd atoms inserted into the samples resulted in astrong (up to the 8-fold) elongation of the SEE de
ay(in
rease in T �2 ), whereas the values of the quadrupole
oupling 
onstant e2Qqzz=h and the EFG asymmetryparameter � at the Bi nu
leus remained un
hanged [4℄.We note that normally, the insertion of paramagneti
atoms shortens T �2 , a
ting as an additional sour
e ofrelaxation. For 
ompounds of the spe
i�ed type, thisresult pointed to the doping as a pro
edure for in
reas-ing the spin�spin relaxation time T �2 , whi
h is an impor-tant time s
ale in quantum 
omputing and spintroni
s
hara
terizing the spin phase de
oheren
e time. Theelongation of the de
oheren
e time is one of the 
ru
ialproblems in both mentioned �elds.Naturally, the question of the in�uen
e of paramag-neti
 dopants on the nu
lear spin-latti
e relaxation inthe BGO 
rystal was also interesting. A �attened mi-nimum, found between 5�7 K by 
arefully studying thetemperature dependen
e of the spin�latti
e relaxationrate T�11 in a nondoped BGO 
rystal, was understoodas a dire
t eviden
e for the existen
e of the paramag-neti
 
enters in BGO [5℄. An examination of the 
on-tribution of su
h 
enters to the spin�latti
e relaxationrate and evaluation of the 
hara
teristi
 extent of split-ting of their ele
tron levels (� � 35�40 K) in the BGO
rystal ele
tri
 �eld (CEF) enabled us to suggest thatthese 
enters are the holes in the p-ele
tron shell ofthe oxygen atoms [5℄. In this paper, the results of astudy of the spin�latti
e relaxation time T1 vs. tempe-rature are presented for BGO 
rystals doped with theCr (0.015 mol%), Gd (0.2 mol%), and Nd (0.5 mol%)atoms. 2. EXPERIMENTALThe 209Bi nu
lear spin�latti
e relaxation time in thedoped Bi4Ge3O12 single 
rystals was measured between4.2�300 K using a home-built pulse NQR spe
trometerbased on Mate
 gated ampli�er 515A and 525 whi
hoperates in the range 2�60 MHz. The values of T1 weredetermined from the amplitude of e
ho signals observedafter the pulse sequen
e 180Æ� � �90Æ� �e�180Æ (theinversion�re
over pro
edure) for the �m = 1=2� 3=2and �m = 3=2 � 5=2 transitions in the 209Bi NQRspe
trum of Bi4Ge3O12. The nondoped single 
rys-tal of Bi4Ge3O12 was grown as des
ribed in Ref. [2℄.The doped 
rystals were prepared by mixing Bi2O3 andGeO2 with the appropriate amount of M2O3 (M = Cr,

Nd, Gd) powder followed by growing a sample in Pt
ru
ibles a

ording to the Czo
hralski method. Theraw materials 
ontained less than 10�6 mass% of im-purities. 3. RESULTS AND DISCUSSIONAs was shown previously, the nu
lear quadrupolespin�latti
e relaxation for the nu
leus with spinI = 9=2 
an be adequately des
ribed by thesingle e�e
tive spin�latti
e relaxation time T �1 forea
h of the four quadrupole transitions (�m == 1=2 � 3=2; : : : ; 7=2 � 9=2) instead of the fourrelaxation times T1i (i = 1; 2; 3; 4) [6℄.Figure 1 shows the measured and modeled 
urves ofthe temperature dependen
e of the spin�latti
e relaxa-tion time T �1 for the transition �m = 3=2� 5=2 in the209Bi NQR spe
trum of the nondoped and doped BGO
rystals. It 
an be seen that near room temperature,T �1 markedly shortens as the temperature in
reases, therelaxation me
hanism being mainly related to latti
emotions. In this temperature region, the T �1 values forall the samples di�er insigni�
antly.Near 4.2 K, the latti
e 
ontributions to the relaxa-tion pro
ess be
ome negligible, and notable 
ontribu-tion into T �1 from the intera
tion of nu
lear spins withparamagneti
 
enters is observed for all the samplesin
luding the nondoped BGO, the T �1 values for it 
on-siderably (by 2�3 orders of magnitude) ex
eeding thosefor the doped samples.In the temperature range from 4.2 to 77 K, all thesamples studied exhibit an essentially di�erent beha-vior of T �1 with temperature. For the nondoped 
rystal,the 
urve T �1 (t) shows a �attened maximum between5�7 K [5℄. The 
urve T �1 (t) for the Nd-doped sampleshows a distin
tive maximum in the range 30�40 K,whi
h is shown below to originate from the CEF ef-fe
t. Near 4.2 K, this 
urve approa
hes a 
onstant.For the Gd-doped 
rystal, the 
urve T �1 (t) is virtuallyindependent of temperature due to the absen
e of theCEF e�e
ts. It reveals a notable 
ontribution to thespin�latti
e relaxation of the ele
tron me
hanism basedon the temperature-independent ele
tron spin-�ip pro-
ess [7℄.Although the temperature behaviors of the 
urvesin Fig. 1 di�er from ea
h other, their basi
 features atlow temperatures 
an be des
ribed using the formulasused previously for the analysis of the spin�latti
e re-laxation rate in the nondoped BGO:T�11 = (T�11 )e + (T�11 )l: (1)9 ÆÝÒÔ, âûï. 2 337
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103/t, K−1Fig. 1. Temperature dependen
e of the nu
learspin�latti
e relaxation time for the transition �m == 3=2 � 5=2 in the 209Bi NQR spe
trum of the BGO
rystals. The measured data: ? � nondoped, Æ �doped with Nd, N� doped with Cr, + � doped withGd; solid lines are the modeled 
urvesThe se
ond term in (1) is the 
ontribution of the latti
evibrations, whi
h was taken in [5℄ in the form(T�11 )l = btn: (2)The values of b = 1:5 � 10�4 s�1/Kn and n = 2:5 foundfrom the high-temperature part of T �1 (t) [5℄, are used inwhat follows for the analysis of all the 
urves in Fig. 1assuming that small amounts of paramagneti
 dopantsdo not a�e
t the latti
e properties of doped BGO single
rystals.As 
an be seen form Fig. 1, the rate of relaxation atthe intrinsi
 paramagneti
 
enters, whi
h are the holesin the p-ele
tron shells of the oxygen atoms [5℄, is 2�3orders of magnitude lower than the rate 
aused by f ord ele
trons of the dopant atoms. Hen
e, for the dopedBGO 
rystals, we take only the ele
tron 
ontributionof paramagneti
 
enters into a

ount in the �rst termof (1) [8℄: (T�11 )e = K�e; (3)where �e is the 
orrelation time for the ele
tron spinof the dopant atom and K, as in [5℄, is an adjustableparameter. Similarly, the ele
tron spin 
orrelation time�e is the sum of the 
ontributions,��1e = T�11e + ��1s ; (4)where �s is the temperature-independent 
hara
teristi
time of the ele
tron spin �ip [7℄ and T1e is the spin�
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Fig. 2. Temperature dependen
e of the nu
learspin�latti
e relaxation time for the transition �m == 1=2�3=2 in the 209Bi NQR spe
trum of the Nd-do-ped BGO 
rystal: � � the measured data; the solidline is modeled using the parameters in Tablelatti
e relaxation time of the ele
tron spins of the para-magneti
 
enter, T1e = ae�=t: (5)In (5), a is an adjustable parameter, � is the spa
ebetween the ground level and the �rst ex
ited ele
tronlevel of the paramagneti
 
enter split by the CEF. Theanalysis of the measured 
urves T �1 (t) using the aboveformulas gives the parameter values for Bi4Ge3O12listed in Table.The solid lines in Fig. 1 were 
al
ulated using for-mulas (1)�(5) and the appropriate values of the para-meters in Table. Figure 2 shows the measured dataand the modeled 
urve for the Nd-doped BGO 
rystalin linear axes.The parameter � for the Nd-doped BGO 
rystal
an be evaluated from the known 209Bi NQR datafor BGO [2℄ and the 
rystal potential model [9℄. TheHamiltonian of intera
tion between the CEF and thenu
lear ele
tri
 quadrupole moment for the CEF ofsingle-axis symmetry isĤQ = QeVzz(1� 
)4I(2I � 1) �3I2z � I(I + 1)� ; (6)where Q is the nu
lear ele
tri
 quadrupole moment,I is the nu
lear spin, z is the prin
ipal axis of theEFG tensor for the CEF, Vzz is the z-
omponent of theEFG tensor, and 
 is the Sternheimer antishielding fa
-tor [10℄. As follows from the 
rystal potential model [9℄,338



ÆÝÒÔ, òîì 137, âûï. 2, 2010 Nu
lear quadrupole spin�latti
e relaxation : : :Table. The values of parameters in formulas (2)�(5) that gave the best agreement with the measured dataBGO single 
rystal Transition �, K Ka, s�1 K�s, s�1Nondoped �m = 1=2� 3=2 40� 5 (0:5� 0:1) � 10�5 0:025� 0:005�m = 3=2� 5=2 40� 5 [5℄ (1:5� 0:5) � 10�5 [5℄ 0:045� 0:01 [5℄Doped with �m = 1=2� 3=2 60� 10 0:48� 0:05 450� 50Nd (0.5 mol%) �m = 3=2� 5=2 60� 10 0:28� 0:05 140� 10Doped with �m = 1=2� 3=2 � � 100� 20Gd (0.2 mol%) �m = 3=2� 5=2 � � 50� 10Doped with �m = 1=2� 3=2 15� 2 11:5� 0:5 14� 0:5Cr (0.015 mol%) �m = 3=2� 5=2 15� 2 5:0� 0:2 21� 2apart from the expression for quadrupole Hamiltonian(6), Vzz enters the expression for the 
oe�
ientB02 = �eVzz4 hr2i(1� �2)�J (7)of the Hamiltonian of intera
tion between the CEF and4f ele
trons of rare earth ions residing in the 3-fold axis(the prin
ipal diagonal of the 
ube) in the BGO 
rystalĤCEF = B02O02 +B04O04 +B44O44 +B06O06 +B46O46 : (8)In (7), hr2i is the mean squared radius of the 4f ele
-tron. For the Nd3+ ion, hr2i � 1a2B [11℄, �2 is theSternheimer shielding fa
tor. For Nd3+, no theoreti
alvalue of �2 is known to the authors, but for the neigh-boring Pr3+, �2 = 0:67 [12℄, and we therefore used�2 = 0:6 for Nd3+.The values of numeri
al 
oe�
ients �J are knownfor the ground state of all the rare earth ions [13℄, thatfor the Nd3+ ion being �J = �7=(9 � 121). Therefore,the magnitude of Vzz is to be known for the evaluationof the 
oe�
ient B02 in (7). This 
an be derived fromthe value of the 209Bi quadrupole 
oupling 
onstant forBGO, whi
h is q = 490:3 MHz [2℄:q = QeVzz(1� 
)h : (9)The values of both Q and 
 in (9) are known fromthe literature: Q = �0:4 � 10�24 
m2 [14℄ and
 = �60:78 [15℄. The latter was 
al
ulated for the Bi3+ion using the relativisti
 Hartree�Fo
k�Slater method.From (7) and (8) one 
an evaluate the 
oe�
ient B02 isB02 � 1:5 meV. Be
ause the other 
oe�
ients in CEFHamiltonian (8) are presently unknown, we use onlythe �rst term in (8) for the estimation of the CEF ef-fe
ts, where the operator O02 = 3J2z � J(J +1) and thequantum number J of the total moment of the Nd3+

ion 4f -shell is J = 9=2. Using the standard pro
edurefor �nding the eigenvalues and eigenfun
tions of Hamil-tonian (8), we 
an evaluate the splitting � between theground j � 1=2i and �rst ex
ited level j � 3=2i for 4fele
trons of the Nd3+ ion to be 9 meV = 104 K, whi
his 
onsistent by the order of magnitude with � = 60 Kgiven in Table. This 
on�rms the above suggestion thatthe maxima on the 
urves T �1 (t) between 4.2 and 77 Koriginate from the CEF e�e
ts.The Nd3+ and Gd3+ ions are isovalent to Bi3+ andseem to repla
e them in the BGO latti
e residing inthe threefold axis (the 
ube prin
ipal diagonal). Asa result, the ground 4I9=2 multiplet of the 4f -ele
tronshell, whi
h has the 4f3 
on�guration in the Nd3+ ion,is split into 5 doublets by the BGO CEF of tetrago-nal symmetry (the spa
e group I�43d or T 6d [16℄). Thesplitting extent � between the ground and �rst ex
itedlevels of the 4I9=2 multiplet is one of the basi
 param-eters that determine the ele
tron 
ontribution to T �1 (t)and may be found from the measured data.The 4f7 
on�guration of the Gd3+ ion f -ele
tronshell signi�es the zero 4f -shell total orbital moment. If8S7=2 is the ground state of the Gd3+ ions, then boththe CEF e�e
ts and the intermultiplet splitting of theground spe
tros
opi
 term are absent in the �rst ap-proximation. This 
auses a marked di�eren
e in theT �1 (t) behavior of the Nd- and Gd-doped samples.The Cr3+ and Cr4+ ions of the 3d3 and 3d2 
on-�gurations respe
tively have the ground spe
tros
opi
states 4F3=2 and 3F2, whi
h permits the splitting of the3d-ele
tron levels in the tetragonal CEF into two dou-blets in the former, and a singlet and two doublets inthe latter 
ase. Thus, for the Cr-doped sample of BGO,the CEF e�e
ts are expe
ted to make a 
ontribution tothe nu
lear spin�latti
e relaxation between 4.2 K androom temperature.339 9*
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an therefore yield a fairly
omplete pi
ture of CEF 
ontributions into the tem-perature dependen
e of the nu
lear spin�latti
e relax-ation.From the standpoint of the CEF theory, the e�e
tof the CEF on the Nd3+ 4f ele
trons in BGO may beto a �rst approximation 
onsidered to be weak withrespe
t to the spin�orbit intera
tionĤLS = �L � S; (10)whi
h produ
es the intermultiplet splitting. This is be-
ause the estimation of the 
omplete splitting of theNd3+ ion multiplet 4I9=2 from the �rst term in Hamilto-nian (8) gave the value of the order of 1000 K, whi
h isabout 2.5 times smaller than the distan
e between theground and �rst ex
ited multiplet 4I11=2 of the Nd3+ion.For the 
hromium 3d ele
trons, the CEF e�e
ts inthe appropriate BGO sample seem to be of the sameorder as the spin�orbit intera
tion. Therefore, in a freeCr3+ ion, the 
onstant � = 87 
m�1 = 10:8 meV [17℄,and the evaluation of � for the 4F3=2 and 3F2 statesof the Cr3+ and Cr4+ ions is di�
ult be
ause of thela
k of information on the B04 and B44 
oe�
ients forthe Hamiltonian in the jlsi representationĤ = B02O02 +B04O04 +B44O44 + � l̂ŝ; (11)with the 
onstant � = � � 2S [17℄. Consideringthe relatively small value of the adjustable parameter� = 15 K for the 
hromium ions (see Table), we haveto admit that the 
oe�
ients B04 and B44 in (11) are im-portant for �nding the true s
heme of the 3d-ele
tronlevels in the BGO CEF.4. CONCLUSIONSMinute amounts of paramagneti
 dopants (thetenth and even hundredth fra
tions of mol%) in theBGO single 
rystal strongly a

elerate the nu
learquadrupole 209Bi spin�latti
e relaxation below 77 K.Thus, at 4.2 K, when the 
ontribution to the nu
learspin�latti
e relaxation from the ele
trons of paramag-neti
 
enters be
omes predominant, the e�e
tive spin�latti
e relaxation time T �1 for the nondoped BGO sin-gle 
rystal is 2�3 orders of magnitude longer than thatfor the BGO 
rystals doped with the Cr, Nd, and Gdatoms.In the nondoped BGO single 
rystal, the presen
e ofthe intrinsi
 paramagneti
 
enters, whi
h are the holesin the p-ele
tron shells of the oxygen atoms, was 
learlyeviden
ed by the temperature dependen
e of the nu-
lear quadrupole spin�latti
e relaxation.For the doped BGO 
rystals, the CEF e�e
ts re-sulted in a nonmonotoni
 temperature dependen
e of

the e�e
tive spin�relaxation time T �1 between 77 and4.2 K.Near room temperature, when the 
ontribution ofthe latti
e vibrations to the nu
lear spin�latti
e relax-ation is prevailing, the values of T �1 for both doped andnondoped BGO samples were similar. We note that thesame BGO samples demonstrated a dramati
 (8-fold)in
rease in the e�e
tive nu
lear spin�spin relaxationtime upon doping [4℄.V. G. O. and G. S. S. appre
iate the �nan
ial sup-port from the program Higher S
hool S
ienti�
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