ДИСПЕРСИЯ НЕЙТРИНО В ЗАРЯДОВО-СИММЕТРИЧНОЙ ПЛАЗМЕ

М. С. Андреев, Н. В. Михеев^{*}, Е. Н. Нарынская^{**}

Ярославский государственный университет им. П. Г. Демидова 150000, Ярославль, Россия

Поступила в редакцию 7 августа 2009 г.

Исследовано влияние зарядово-симметричной замагниченной плазмы на дисперсию нейтрино. Получено общее выражение для вклада замагниченной плазмы в дополнительную энергию нейтрино. Подробно рассмотрены физические условия слабо замагниченной, относительно слабо и сильно замагниченной плазмы. Показано, что результат для дополнительной энергии нейтрино в случае промежуточных магнитных полей существенно отличается от результатов, представленных в литературе ранее.

1. ВВЕДЕНИЕ

Физика элементарных частиц в плотной плазме в присутствии внешнего электромагнитного поля является предметом активных обсуждений на протяжении нескольких последних десятилетий. Интерес к исследованиям такого рода обусловлен, с одной стороны, возможными астрофизическими и космологическими приложениями, поскольку одновременно обе компоненты активной среды — плазма и внешнее магнитное поле — могли бы присутствовать в астрофизических объектах, а так же в условиях ранней Вселенной. С другой стороны, исследования квантовых процессов во внешней активной среде несомненно представляют интерес с точки зрения фундаментальной физики частиц, так как совместное влияние плотной плазмы и электромагнитного поля может не только повлиять на свойства самих частиц, но и существенно изменить их кинематику, открывая процессы, запрещенные в вакууме. Влияние магнитных полей становится особенно существенным в случае «сильных полей», когда напряженность магнитного поля становится сравнимой или даже значительно превосходит критическое значение поля для электрона¹⁾

$$B_e = m_e^2/e = 4.41 \cdot 10^{13}$$
 Fc.

В лабораторных условиях такие поля пока не

достижимы. Однако по современным представлениям поля такого и даже большего масштаба могли бы существовать в некоторых астрофизических объектах. Например, при взрыве сверхновой величина магнитного поля, развиваемого при коллапсе ядра звезды, достигает значений $10^{13}-10^{14}$ Гс, учет вращения звезды может увеличить это магнитное поле на дополнительный фактор 10^3-10^4 [1, 2]. Механизмы генерации таких магнитных полей, напряженностью вплоть до $10^{15}-10^{17}$ Гс, в настоящее время широко обсуждаются [3–8].

Одним из актуальных вопросов физики элементарных частиц во внешней среде является вопрос о влиянии внешней активной среды на дисперсионные свойства нейтрино. Анализ такого влияния основывается на вычислении собственно-энергетического оператора нейтрино $\Sigma(p)$ в замагниченной плазме, из которого, в частности, можно извлечь и закон дисперсии нейтрино. Следует отметить, что вычисление оператора $\Sigma(p)$ проводилось ранее в целом ряде работ, см., например, [9–13].

В частности, дополнительная энергия электронного нейтрино в зарядово-симметричной слабо замагниченной плазме в физических условиях

$$m_W^2 \gg T^2 \gg eB \gg m_e^2 \tag{1}$$

описывается выражением

^{*}E-mail: mikheev@uniyar.ac.ru

^{**}E-mail: elenan@uniyar.ac.ru

¹⁾ Мы используем естественную систему единиц, в которой

 $c=\hbar=1, \, e>0$ — элементарный заряд.

$$\frac{\Delta E}{|\mathbf{p}|} = -\frac{7\sqrt{2} G_F \pi^2 T^4}{45} \left(\frac{1}{m_Z^2} + \frac{2}{m_W^2}\right) + \frac{\sqrt{2} G_F T^2 eB}{3m_W^2} \cos\phi + \frac{\sqrt{2} G_F (eB)^2}{6\pi^2 m_W^2} \times \ln\left(\frac{T^2}{m_e^2}\right) \sin^2\phi. \quad (2)$$

Здесь E и **р** — энергия и импульс нейтрино, m_e, m_Z , *m_W* — массы электрона, Z-бозона и W-бозона, *T* температура плазмы, ϕ — угол между направлением магнитного поля В и вектором импульса р. Первое слагаемое в выражении (2) описывает дополнительную энергию нейтрино в плазме без магнитного поля [9], а второе [10] и третье [11] слагаемые обусловлены одновременным присутствием плазмы и магнитного поля. Как видно из выражения (2), слагаемое, пропорциональное квадрату напряженности магнитного поля, содержит усиление логарифмическим фактором $\ln(T^2/m_e^2)$, что в физических условиях (1), вообще говоря, вызывает сомнения. Действительно, в условиях (1) вклад в энергию нейтрино определяется плазменными электронами и позитронами, заселяющими высшие уровни Ландау. Энергия таких электронов и позитронов на *n*-м уровне Ландау выражается формулой

$$\omega_n = \sqrt{m_e^2 + k_3^2 + 2eBn}, \quad n \gg 1.$$
 (3)

Поскольку в предполагаемых условиях масса электрона является самым маленьким параметром задачи, в выражении для энергии (3) ею можно пренебречь, поэтому маловероятно, чтобы масса электрона присутствовала в окончательном ответе в главном приближении. Таким образом, представляет интерес независимое вычисление дисперсии нейтрино в замагниченной плазме.

Данная статья посвящена исследованию влияния зарядово-симметричной замагниченной плазмы на дисперсию нейтрино в присутствии внешнего магнитного поля. В разд. 2 вычисляется общее выражение для собственно-энергетического оператора нейтрино $\Sigma(p)$. В разд. 3 подробно анализируется дисперсия нейтрино в физических условиях слабо замагниченной плазмы, относительно слабо замагниченной плазмы и сильно замагниченной плазмы. В Приложении представлены результаты вычисления матрицы плотности плазменного электрона.

ЖЭТФ, том **137**, вып. 2, 2010

2. СОБСТВЕННО-ЭНЕРГЕТИЧЕСКИЙ ОПЕРАТОР НЕЙТРИНО В ЗАМАГНИЧЕННОЙ ПЛАЗМЕ

Для того чтобы получить выражение для собственно-энергетического оператора нейтрино $\Sigma(p)$, необходимо рассмотреть процесс рассеяния нейтрино вперед, амплитуда которого связана с оператором $\Sigma(p)$ следующим соотношением:

$$M_{(\nu \to \nu)} = -\bar{U}(p)\Sigma(p)U(p). \tag{4}$$

Изменение энергии нейтрино, обусловленное его рассеянием вперед в среде, может быть выражено через амплитуду этого процесса

$$\Delta E = -\frac{M_{(\nu \to \nu)}}{2E} =$$

= $\frac{1}{4E} \operatorname{Sp} \left\{ ((p\gamma) + m_{\nu})(1 + (s\gamma)\gamma_5)\Sigma(p) \right\},$ (5)

где $E = \sqrt{p_3^2 + m_\nu^2}$ — энергия нейтрино в вакууме, m_ν — масса нейтрино, s^μ — 4-вектор спина нейтрино. Здесь и далее у 4-векторов и тензоров, стоящих внутри круглых скобок, тензорные индексы полагаются свернутыми последовательно, например: $(p\gamma) = (p_\mu \gamma^\mu).$

Общий вид оператора $\Sigma(p)$ может быть представлен с помощью различных параметризаций, однако в присутствии плазмы и однородного магнитного поля оператор $\Sigma(p)$ содержит три независимые структуры, поэтому в замагниченной плазме в качестве параметризации массового оператора нейтрино удобно выбрать следующую:

$$\Sigma(p) = (\mathcal{A}(p\gamma) + \mathcal{B}(u\gamma) + \mathcal{C}(p\tilde{\varphi}\gamma))L.$$
(6)

Здесь $\mathcal{A}, \mathcal{B}, \mathcal{C}$ — численные коэффициенты, u^{μ} — 4-вектор среды, $\tilde{\varphi}_{\alpha\beta} = \tilde{F}_{\alpha\beta}/B$ — приведенный к безразмерному виду дуальный тензор внешнего магнитного поля, $L = (1+\gamma_5)/2$. При такой параметризации коэффициенты $\mathcal{A}, \mathcal{B}, \mathcal{C}$ имеют простой физический смысл. Действительно, зная связь дополнительной энергии нейтрино с амплитудой его рассеяния вперед и подставляя $\Sigma(p)$ в виде (6) в выражение (5) для ультрарелятивистского нейтрино, получаем

$$\Delta E \approx \mathcal{B} \frac{1 - (\mathbf{n} \cdot \boldsymbol{\xi})}{2} - \mathcal{C} \frac{m_{\nu}}{2B} (\mathbf{B} \cdot [\mathbf{n} \times [\boldsymbol{\xi} \times \mathbf{n}]]), \quad (7)$$

где **n** — единичный вектор в направлении импульса нейтрино, **ξ** — удвоенный вектор среднего спина нейтрино. В выражении (7) опущены слагаемые, пропорциональные квадрату массы нейтрино.

Таким образом, задача нахождения дополнительной энергии, приобретаемой нейтрино в процессе

Диаграммы Фейнмана, описывающие процесс рассеяния нейтрино вперед в замагниченной плазме

рассеяния вперед в замагниченной плазме, сводится к вычислению параметров *B* и *C*.

Слагаемое, пропорциональное массе нейтрино в первой степени, соответствует дополнительной энергии нейтрино, обусловленной магнитным моментом нейтрино μ_{ν} ,

$$\mu_{\nu} = \frac{\mathcal{C}m_{\nu}}{2B}$$

Следовательно, можно говорить, что параметр *С* определяет дополнительный магнитный момент нейтрино в замагниченной плазме.

Из выражения (7) видно, что в случае левого безмассового нейтрино дополнительная энергия нейтрино в среде определяется только параметром \mathcal{B} :

$$\Delta E = \mathcal{B}.$$

Поскольку дополнительная энергия нейтрино, будучи физической величиной, является калибровочно инвариантной, вычисления будем проводить в унитарной калибровке, удобство которой состоит в том, что в ней отсутствует вклад скалярных бозонов. В этой калибровке амплитуда процесса рассеяния $\nu \to \nu$ в замагниченной плазме может быть представлена в виде суммы двух слагаемых:

$$M_{(\nu \to \nu)} = M^{W}_{(\nu \to \nu)} + M^{Z}_{(\nu \to \nu)}, \qquad (8)$$

где первое слагаемое соответствует амплитуде рассеяния нейтрино вперед на плазменных электронах и позитронах среды через W-бозон, второе слагаемое обусловлено процессом перехода $\nu \rightarrow \nu$ через Z-бозон (см. рисунок). Процесс рассеяния нейтрино вперед на плазменных нейтрино, изображенный на второй диаграмме, не чувствителен к присутствию внешнего магнитного поля, его вклад в дополнительную энергию нейтрино исследовался ранее и был получен в работе [9]:

$$\frac{\Delta E^Z}{|\mathbf{p}|} = -\frac{7\sqrt{2}G_F \pi^2 T^4}{45m_Z^2}.$$
(9)

Отметим, что на рисунке не приведены диаграммы, в которых 4-импульс промежуточного Z-бозона равен нулю. Это связано с тем, что такие диаграммы дают только локальный вклад, который равен нулю в зарядово-симметричной плазме.

Таким образом, наша задача сводится к вычислению вклада замагниченной плазмы в дополнительную энергию нейтрино, обусловленного обменом W-бозоном.

3. ВКЛАД ЗАМАГНИЧЕННОЙ ЭЛЕКТРОН-ПОЗИТРОННОЙ ПЛАЗМЫ В СОБСТВЕННО-ЭНЕРГЕТИЧЕСКИЙ ОПЕРАТОР НЕЙТРИНО

В этом разделе мы вычисляем плазменный вклад в собственно-энергетический оператор нейтрино, обусловленный процессом рассеяния нейтрино вперед на электронах и позитронах среды.

Процесс рассеяния, соответствующий первой диаграмме, обусловлен лагранжианом

$$L = \frac{g}{2\sqrt{2}} \left(\bar{\Psi}_e \gamma_\alpha (1+\gamma_5) \Psi_{\nu_e} \right) W_\alpha + \frac{g}{2\sqrt{2}} \left(\bar{\Psi}_{\nu_e} \gamma_\alpha (1+\gamma_5) \Psi_e \right) W_\alpha^*.$$
(10)

Здесь Ψ_e , Ψ_{ν_e} , W_{α} — квантованные поля электрона, нейтрино и W-бозона, g — константа электрослабого взаимодействия в Стандартной Модели.

S-матричный элемент процесса рассеяния нейтрино вперед на плазменных электронах следует из лагранжиана (10):

$$S^{W}_{\nu e^- \to \nu e^-} = \frac{g^2}{8} \sum_{n} \int \frac{d^4 x d^4 x'}{\sqrt{2EV}\sqrt{2E'V}} \times \exp(i(px' - p'x)) \times \bar{U}(p')Q_{\alpha}R_n(x,x')Q_{\beta}U(p)G^{W}_{\beta\alpha}(x',x), \quad (11)$$

где $V = L_1 L_2 L_3$ — нормировочный объем, $p^{\mu} = (E, \mathbf{p})$ и $p'^{\mu} = (E', \mathbf{p}')$ — 4-импульсы начального и конечного нейтрино, U(p) — биспинорная амплитуда нейтрино, $Q_{\alpha} = \gamma_{\alpha}(1 + \gamma_5)$, $G^W_{\beta\alpha}(x', x)$ пропагатор W-бозона в магнитном поле, $R_n(x, x')$ — матрица плотности плазменного электрона с фиксированным номером уровня Ландау $n^{(2)}$:

$$R_n(x, x') = \sum_s \int \frac{dk_2 \, dk_3}{(2\pi)^2} L_2 L_3 f(\omega_n) \psi_e(x) \bar{\psi}_e(x'). \quad (12)$$

Здесь $\psi_e(x)$ — решения уравнения Дирака во внешнем магнитном поле,

$$\omega_n = \sqrt{k_3^2 + 2eBn + m_e^2}$$

— энергия электрона на *n*-м уровне Ландау, L_2 , L_3 — вспомогательные параметры, определяющие нормировочный объем $V = L_1 L_2 L_3$, k_3 — кинетический импульс вдоль третьей оси, k_2 — обобщенный импульс, определяющий положение $x_0 = -k_2/eB$ центра гауссова пакета на первой оси, $f(\omega_n)$ — функция распределения электронов, учитывающая наличие плазмы. В системе покоя плазмы она имеет вид

$$f(\omega) = [\exp((\omega_n - \mu)/T) + 1]^{-1}$$

где μ — химический потенциал плазмы, а T — ее температура.

Подробное вычисление функции $R_n(x, x')$ представлено в Приложении. В постоянном однородном магнитном поле она может быть приведена к виду

$$R_{n}(x, x') = \exp(-i\Phi(x', x)) \times \\ \times (-1)^{n} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{f(\omega_{n})}{\omega_{n}} e^{-u} \exp(-ik(x - x')) \times \\ \times [(\hat{k}_{\parallel} + m_{e})(L_{n}(2u)\Pi_{-} - L_{n-1}(2u)\Pi_{+}) + \\ + 2\hat{k}_{\perp}L_{n-1}^{1}(2u)], \quad (13)$$

$$\Phi(x',x) = \frac{eB}{2}(x_1 + x_1')(x_2 - x_2').$$
(14)

Здесь формально введен 4-вектор $k^{\mu} = (\omega_n, \mathbf{k}),$ при этом

$$\hat{k}_{\parallel} = (k\tilde{\varphi}\tilde{\varphi}\gamma) = \omega_n\gamma_0 - k_3\gamma_3,$$
$$\hat{k}_{\perp} = (k\varphi\varphi\gamma) = k_1\gamma_1 + k_2\gamma_2, \quad \varphi_{\alpha\beta} = \frac{F_{\alpha\beta}}{B},$$
$$\tilde{\varphi}_{\alpha\beta} = \frac{\varepsilon_{\alpha\beta\rho\sigma}\varphi_{\rho\sigma}}{2}$$

 — безразмерные тензор и дуальный тензор внешнего магнитного поля, соответственно,

$$\Pi_{\pm} = \frac{1}{2} (1 \pm i \gamma_1 \gamma_2)$$

— проекционные операторы, $u = k_{\perp}^2/eB$, $L_n^{n'}(u)$ — присоединенные полиномы Лагерра, нормированные условием

$$\int_{0}^{\infty} e^{-u} u^k L_n^k(u) L_m^k(u) du = \frac{(n+k)!}{n!} \delta_{nm}$$

Пропагатор W-бозон
а $G^W_{\beta\alpha}(x',x)$ в общем случае может быть представлен в виде

$$G^{W}_{\beta\alpha}(x',x) = \exp(i\Phi(x',x)) \times \int \frac{d^4q}{(2\pi)^4} \exp(-iq(x'-x))G^{W}_{\beta\alpha}(q), \quad (15)$$

где $G^W_{\beta\alpha}(q)$ — фурье-образ трансляционно инвариантной части пропагатора W-бозона. Явный вид фазы определяется выбором потенциала, и в выбранной калибровке $A^{\mu} = (0, 0, Bx, 0)$ она описывается выражением (14).

После подстановки функции $R_n(x, x')$ в виде (13), пропагатора W-бозона (15) в выражение (11) и интегрирования по 4-координатам, S-матричный элемент процесса $\nu e^- \rightarrow \nu e^-$ может быть приведен к виду

$$S_{\nu e^- \to \nu e^-}^W = \frac{g^2 (2\pi)^4 \delta^4 (p-p')}{8\sqrt{2EV}\sqrt{2E'V}} \times \\ \times \sum_n (-1)^n \int \frac{d^3k}{(2\pi)^3} \frac{f(\omega_n)}{\omega_n} e^{-u} G_{\beta\alpha}^W (k-p) \times \\ \times \bar{U}(p) Q_\alpha [\hat{k}_{\parallel} (L_n (2u) \Pi_- - L_{n-1} (2u) \Pi_+) + \\ + 2\hat{k}_{\perp} L_{n-1}^1 (2u)] Q_\beta U(p).$$
(16)

В S-матричном элементе выделилась четырехмерная δ-функция, соответствующая закону сохранения энергии и импульса. Поэтому можно воспользоваться стандартной связью S-матричного элемента и инвариантной амплитуды перехода [14]:

$$S_{if} = \frac{i(2\pi)^4 \delta^{(4)}(q-q')}{2\omega V} M_{if}$$
(17)

и выделить инвариантную амплитуду процесса рассеяния нейтрино на плазменных электронах в виде

$$M^{W}_{\nu e^{-} \to \nu e^{-}} = \frac{-ig^{2}}{8} \times \sum_{n} (-1)^{n} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{f(\omega_{n})}{\omega_{n}} e^{-u} G^{W}_{\beta\alpha}(k-p) \times \bar{U}(p) Q_{\alpha}[\hat{k}_{\parallel}(L_{n}(2u)\Pi_{-} - L_{n-1}(2u)\Pi_{+}) + 2\hat{k}_{\perp} L^{1}_{n-1}(2u)] Q_{\beta}U(p).$$
(18)

 $^{^{2)}}$ Мы проводим вычисления в калибровке $A^{\mu} = (0, 0, Bx, 0),$ магнитное поле направлено вдоль третьей оси $\mathbf{B} = (0, 0, B).$

Вычисление амплитуды $M^W_{\nu e^+ \to \nu e^+}$, соответствующей процессу рассеяния нейтрино на позитронах плазмы, полностью аналогично вычислению амплитуды $M^W_{\nu e^- \to \nu e^-}$. Как оказалось, в зарядово-симметричной плазме результат для амплитуды перехода $M^W_{\nu e^+ \to \nu e^+}$ отличается от (18) общим знаком и заменой $k_\mu \to -k_\mu$ в аргументе пропагатора W-бозона.

С учетом когерентного рассеяния на всех плазменных электронах и позитронах для амплитуды процесса рассеяния $\nu e \rightarrow \nu e$ в замагниченной плазме получаем:

$$M_{\nu e \to \nu e}^{W} = M_{\nu e^- \to \nu e^-}^{W} + M_{\nu e^+ \to \nu e^+}^{W} = = \frac{-ig^2}{8} \sum_{n} (-1)^n \int \frac{d^3k}{(2\pi)^3} \frac{f(\omega_n)}{\omega_n} \times \times e^{-u} (G_{\beta\alpha}^W(k-p) - G_{\beta\alpha}^W(-k-p)) \times \times \bar{U}(p) Q_\alpha [\hat{k}_{\parallel} (L_n(2u)\Pi_- - L_{n-1}(2u)\Pi_+) + + 2\hat{k}_{\perp} L_{n-1}^1(2u)] Q_\beta U(p).$$
(19)

Используя выражение для амплитуды (4), находим вклад плазменных электронов и позитронов в собственно-энергетический оператор нейтрино

$$\Sigma^{W}(p) = \frac{ig^{2}}{8} \sum_{n} (-1)^{n} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{f(\omega_{n})}{\omega_{n}} \times e^{-u} (G^{W}_{\beta\alpha}(k-p) - G^{W}_{\beta\alpha}(-k-p)) \times Q_{\alpha} [\hat{k}_{\parallel}(L_{n}(2u)\Pi_{-} - L_{n-1}(2u)\Pi_{+}) + 2\hat{k}_{\perp} L^{1}_{n-1}(2u)]Q_{\beta}.$$
 (20)

Фурье-образ пропагатора W-бозона в унитарной калибровке имеет достаточно громоздкий вид. В рассматриваемых физических условиях, когда масса W-бозона является самым большим физическим параметром задачи, фурье-образ пропагатора может быть представлен в виде разложения по обратным степеням массы W-бозона:

$$G^{W}_{\beta\alpha}(q) \approx \frac{ig_{\beta\alpha}}{m_{W}^{2}} - \frac{3eF_{\beta\alpha}}{2m_{W}^{4}} - \frac{iq_{\beta}q_{\alpha}}{m_{W}^{4}} + \frac{iq^{2}g_{\beta\alpha}}{m_{W}^{4}} + O\left(\frac{1}{m_{W}^{6}}\right). \quad (21)$$

Здесь первое и второе слагаемые, не зависящие от импульса, обусловливают вклад в локальном пределе, который в зарядово-симметричной плазме оказывается равным нулю [9], что явно видно из выражения (21). Третье и четвертое слагаемые учитывают нелокальность взаимодействия. Как показывает анализ, третье слагаемое в (21) дает вклад только в параметр \mathcal{A} и, следовательно, не дает вклада в дополнительную энергию нейтрино.

Подставляя в выражение (20) пропагатор W-бозона в виде (21) и опуская в нем слагаемые, не дающие вклада в дополнительную энергию нейтрино, получаем

$$\begin{split} \Sigma^{W}(p) &= \frac{g^{2}g_{\alpha\beta}}{2m_{W}^{4}} \sum_{n} (-1)^{n} \int \frac{d^{3}k}{(2\pi)^{3}} \, \frac{f(\omega_{n})}{\omega_{n}} (pk) e^{-u} \times \\ &\times Q_{\alpha}[\hat{k}_{\parallel}(L_{n}(2u)\Pi_{-} - L_{n-1}(2u)\Pi_{+}) + 2\hat{k}_{\perp} L_{n-1}^{1}(2u)] Q_{\beta}. \end{split}$$

Переходя в этом выражении к интегрированию по переменной $u = k_{\perp}^2 / eB$,

$$\int_{-\infty}^{\infty} d^3k = \pi e B \int_{-\infty}^{\infty} dk_3 \int_{0}^{\infty} du,$$

и выполняя интегрирование по переменной *u* с использованием соотношений

$$\int_{0}^{\infty} du \, e^{-u} L_n(2u) = (-1)^n,$$
$$2uL_{n-1}^1(2u) = n(L_{n-1}(2u) - L_n(2u)),$$

окончательно получаем

$$\Sigma^{W}(p) = \frac{g^{2}eB}{2\pi^{2}m_{W}^{4}} \sum_{n=0}^{\prime} \int_{-\infty}^{\infty} \frac{dk_{3}f(\omega_{n})}{\omega_{n}} \times \left\{ (p\gamma)eBn - (p\tilde{\varphi}\gamma) \left(\frac{k\tilde{\varphi}p}{\omega_{n}E} (k_{3}^{2} - eBn) - \delta_{n0}\omega_{n}^{2} \right) - (u\gamma) \left(E(\omega_{n}^{2} + eBn + \frac{p_{3}^{2}}{E^{2}} (k_{3}^{2} - eBn)) - \delta_{n0}p_{3}(k_{3}^{2} + \omega_{n}^{2}) \right) \right\}. \quad (22)$$

Здесь δ_{n0} — символ Кронекера, отличный от нуля только для основного уровня Ландау, сумма по уровням Ландау (со штрихом) определена следующим образом:

$$\sum_{n=0}^{\prime} F(n) = \frac{1}{2}F(n=0) + \sum_{n=1}^{\infty} F(n)$$

Сравнивая результат (22) с параметризацией (6), находим вклад в дополнительную энергию нейтрино, обусловленный его рассеянием вперед на электронах и позитронах замагниченной плазмы:

$$\mathcal{B}^{W} = -\frac{2\sqrt{2}G_{F}eBE}{\pi^{2}m_{W}^{2}} \sum_{n=0}^{\prime} \int_{-\infty}^{\infty} \frac{dk_{3}f(\omega_{n})}{\omega_{n}} \times (\omega_{n}^{2} + eBn + \cos^{2}\phi(k_{3}^{2} - eBn) - - \delta_{n0}\cos\phi(k_{3}^{2} + \omega_{n}^{2})), \quad (23)$$

где ϕ — угол между направлением магнитного поля и вектором импульса нейтрино.

Выражение (23) является основным результатом нашей работы. Далее мы рассмотрим некоторые предельные случаи, которые могут представлять интерес с точки зрения возможных астрофизических приложений.

4. ДОПОЛНИТЕЛЬНАЯ ЭНЕРГИЯ НЕЙТРИНО В ПРЕДЕЛЬНЫХ СЛУЧАЯХ

Общее выражение для дополнительной энергии нейтрино в зарядово-симметричной замагниченной плазме получается суммированием вкладов от процессов, обусловленных обменом Z-бозоном и W-бозоном и может быть представлено в виде однократного интеграла:

$$\begin{split} \frac{\Delta E}{|\mathbf{p}|} &= -\frac{7\sqrt{2}G_F\pi^2 T^4}{45m_Z^2} - \frac{2\sqrt{2}G_FeB}{\pi^2 m_W^2} \times \\ &\times \sum_{n=0}^{\prime} \int\limits_{-\infty}^{\infty} \frac{dk_3 f(\omega_n)}{\omega_n} \left(\omega_n^2 + eBn + \cos^2\phi (k_3^2 - eBn) - \right. \\ &\left. - \delta_{n0}\cos\phi (k_3^2 + \omega_n^2) \right). \end{split}$$
(24)

Следует отметить, что выражение (24) описывает вклад замагниченной плазмы в дополнительную энергию нейтрино. Для того чтобы получить полное выражение для энергии нейтрино в замагниченной плазме необходимо к результату (24) прибавить чисто полевой вклад, который был вычислен в работе [13].

Интеграл в выражении (24) может быть вычислен в некоторых предельных случаях, рассмотренных ниже.

1. Предел слабого магнитного поля, когда напряженность магнитного поля является самым малым физическим параметром задачи

$$T^2 \gg m_e^2 \gg eB. \tag{25}$$

Дополнительная энергия нейтрино в такой слабо замагниченной плазме может быть приведена к виду

$$\frac{\Delta E}{|\mathbf{p}|} = \frac{\sqrt{2}G_F}{3m_W^2} \left[-\frac{7\pi^2 T^4}{15} \left(2 + \frac{m_W^2}{m_Z^2} \right) + T^2 eB \cos\phi + \frac{(eB)^2}{2\pi^2} \times \left\{ \sin^2\phi \left(\ln\left(\frac{T^2}{m_e^2}\right) + 0.635 \right) - 1 \right\} \right].$$
 (26)

Выражение (26) содержит логарифмический фактор с массой электрона m_e , однако в рассматриваемых физических условиях (25) масса электрона не является самым малым параметром, следовательно, нельзя исследовать дополнительную энергию нейтрино (26) в пределе $m_e \rightarrow 0$.

2. Предел относительно слабого магнитного поля, когда напряженность поля является малой на масштабе физических параметров среды, но в то же время существенно превышает критическое значение поля для электрона:

$$T^2 \gg eB \gg m_e^2. \tag{27}$$

Такая физическая ситуация могла бы реализоваться, например, в ядре сверхновой после коллапса, где температура плазмы $T \approx 70m_e$ [15]. Подставляя это значение в условия (27), получаем

$$\frac{T^2}{m_e^2} \approx 5 \cdot 10^3 \gg \frac{B}{B_e} \gg 1.$$
(28)

Откуда видно, что даже магнитные поля напряженностью до $B \sim 10^{15} - 10^{16}$ Гс удовлетворяют условию (27) и, следовательно, могут рассматриваться как «относительно слабые».

В физических условиях (27) возбуждается большое число уровней Ландау. В этом пределе для дополнительной энергии нейтрино находим

$$\frac{\Delta E}{|\mathbf{p}|} = \frac{\sqrt{2}G_F}{3m_W^2} \left[-\frac{7\pi^2 T^4}{15} \left(2 + \frac{m_W^2}{m_Z^2} \right) + T^2 eB \cos\phi + \frac{(eB)^2}{2\pi^2} \times \left\{ \sin^2\phi \left(\ln\left(\frac{T^2}{eB}\right) + 2.93 \right) - 1 \right\} \right]. \quad (29)$$

Как видно из выражения (29), в физических условиях (27) дополнительная энергия нейтрино не содержит инфракрасной расходимости в пределе $m_e \to 0$ в отличие от [11].

3. Предел сильного магнитного поля, соответствующий физической ситуации, когда из всех физических параметров, характеризующих замагниченную плазму, самым большим параметром является напряженность магнитного поля:

$$eB \gg T^2, m_e^2. \tag{30}$$

В условиях (30) плазменные электроны и позитроны занимают преимущественно основной уровень Ландау. В пределе сильно замагниченной плазмы для дополнительной энергии нейтрино имеем

$$\frac{\Delta E}{|\mathbf{p}|} = -\frac{\sqrt{2}G_F}{3m_W^2} \left[\frac{7\pi^2 T^4 m_W^2}{15m_Z^2} + \frac{T^2 eB}{2} (1 - \cos\phi)^2 + 3(eB)^2 \left(\frac{2}{\pi}\right)^{3/2} \left(\frac{T^2}{2eB}\right)^{1/4} \times (3 - \cos^2\phi) \exp\left(-\frac{\sqrt{2eB}}{T}\right) \right]. \quad (31)$$

Здесь второе слагаемое обусловлено вкладом основного уровня Ландау, третье слагаемое — вкладом первого уровня Ландау.

5. ЗАКЛЮЧЕНИЕ

В данной работе исследовано влияние зарядово-симметричной замагниченной плазмы на дисперсию нейтрино. Изменение энергии нейтрино в замагниченной плазме может быть выражено через амплитуду процесса рассеяния нейтрино вперед на плазменных электронах (позитронах) и на нейтрино (антинейтрино) среды.

Получено общее выражение для вклада зарядово-симметричной замагниченной плазмы в энергию нейтрино в физических условиях, когда масса W-бозона является самым большим физическим параметром задачи. Рассмотрены предельные физические условия, представляющие интерес с точки зрения возможных астрофизических приложений полученных результатов.

В частности, показано, что в пределе слабого магнитного поля дополнительная энергия нейтрино содержит логарифм с массой электрона. Это однако не приводит к расходимости всего выражения при $m_e \rightarrow 0$, поскольку в условиях слабо замагниченной плазмы, $T^2 \gg m_e^2 \gg eB$, самым малым физическим параметром является напряженность магнитного поля, а не масса электрона, и устремлять массу электрона к нулю при ненулевой напряженности магнитного поля нельзя.

Исследована дисперсия нейтрино в условиях промежуточного магнитного поля, когда магнитное поле, являясь малым по сравнению с температурой плазмы, тем не менее достаточно велико на масштабе массы электрона, $T^2 \gg m_e^2$. Показано, что плазменный вклад в энергию нейтрино в таких условиях не содержит инфракрасной расходимости в пределе $m_e \to 0$ в отличие от результатов, представленных в литературе ранее [11]. Рассмотрен предел сильного магнитного поля, когда напряженность магнитного поля является доминирующим физическим параметром среды, $eB \gg T^2, m_e^2$. В таких физических условиях плазменные электроны и позитроны заселяют преимущественно основной уровень Ландау. В представленном выражении для дополнительной энергии нейтрино выделен вклад основного уровня Ландау, а также удержан вклад первого уровня Ландау.

ПРИЛОЖЕНИЕ

При исследовании квантовых процессов в замагниченной плазме иногда возникает необходимость в вычислении матрицы плотности плазменного электрона, просуммированной по всем квантовым состояниям кроме номера уровня Ландау. В данном Приложении представлены вычисления этой матрицы, определенной выражением (12).

Волновые функции электрона в выбранной калибровке могут быть записаны в виде [14]

$$\psi_e(x) = \frac{u_s(\xi) \exp(-i(\omega_n x_0 - k_2 x_2 - k_3 x_3))}{\sqrt{2\omega_n(\omega_n + m_e)L_2 L_3}},$$
 (32)

где биспинорные амплитуды, соответствующие двум проекциям спина на направление магнитного поля $s = \pm 1$, имеют вид

$$u_{s=-1}(\xi) = \begin{pmatrix} 0 \\ (\omega_n + m_e)V_n(\xi) \\ -i\sqrt{2eBn}V_{n-1}(\xi) \\ -k_3V_n(\xi) \end{pmatrix},$$
$$u_{s=+1}(\xi) = \begin{pmatrix} (\omega_n + m_e)V_{n-1}(\xi) \\ 0 \\ k_3V_{n-1}(\xi) \\ i\sqrt{2eBn}V_n(\xi) \end{pmatrix}.$$

Здесь

$$V_n(\xi) = \frac{(eB)^{1/4}}{\sqrt{2^n n! \sqrt{\pi}}} e^{-\xi^2/2} H_n(\xi),$$

 $H_n(\xi)$ — полиномы Эрмита,
 ξ — безразмерная координата:

$$\xi = \sqrt{eB} \left(x_1 + k_2 / eB \right).$$

Отметим, что функция $V_n(\xi)$ при отрицательных значениях индекса n полагается равной нулю.

Подставляя явный вид волновых функций (32) в выражение для матрицы плотности (12), можно привести его к виду

$$R_n(x, x') = \exp(-i\Phi(x', x)) \times \\ \times \sum_s R_{n\parallel}(Z_{\parallel}) R_{n\perp}(Z_{\perp}), \quad (33)$$

где введена 4-координата $Z_{\mu} = x_{\mu} - x'_{\mu}$, а также следующие функции:

$$\Phi(x', x) = \frac{eB}{2}(x_1 + x'_1)(x_2 - x'_2),$$
$$R_{n\parallel}(Z_{\parallel}) = \int_{-\infty}^{\infty} \frac{dk_3}{\omega_n(\omega_n + m_e)} f(\omega_n) \exp(-i(kZ)_{\parallel}),$$

$$R_{n\perp}(Z_{\perp}) = \frac{\sqrt{eB}}{8\pi^2} \int_{-\infty}^{\infty} d\xi u_s(\xi) \bar{u}_s(\xi - \sqrt{eB}Z_1) \times \\ \times \exp\left(-i\sqrt{eB}\left(\frac{\sqrt{eB}Z_1Z_2}{2} - \xi Z_2\right)\right)$$

Здесь

$$(Zk)_{\parallel} = (Z\tilde{\varphi}\tilde{\varphi}k) = Z_0\omega_n - Z_3k_3,$$

$$\tilde{\varphi}_{\alpha\beta} = \varepsilon_{\alpha\beta\rho\sigma}\varphi_{\rho\sigma}/2, \quad \varphi_{\alpha\beta} = F_{\alpha\beta}/B$$

 — безразмерные дуальный тензор и тензор внешнего магнитного поля, соответственно.

Функцию $R_{n\perp}(Z_{\perp})$ как функцию двух переменных Z_1, Z_2 можно разложить в интеграл Фурье:

$$R_{n\perp}(Z_{\perp}) = \int \frac{d^2 k_{\perp}}{(2\pi)^2} \exp(i(kZ)_{\perp}) R_{n\perp}(k_{\perp}),$$

$$R_{n\perp}(k_{\perp}) = \int d^2 z_{\perp} \exp(-i(kZ)_{\perp}) R_{n\perp}(Z_{\perp}),$$
(34)

где

$$(Zk)_{\perp} = (Z\varphi\varphi k) = Z_1k_1 + Z_2k_2.$$

Выполняя интегрирование функции $R_{n\perp}(k_{\perp})$ по координатам Z_1, Z_2 и подставляя результат в (33), получаем

$$R_n(x, x') = \frac{\exp(-i\Phi(x', x))}{\sqrt{eB}(2\pi)^3} \int \frac{d^3k f(\omega_n)}{\omega_n(\omega_n + m_e)} \times \exp(-i(kZ)) \exp\left(\frac{2ik_1k_2}{eB}\right) \times \int_{-\infty}^{\infty} d\xi \exp\left(-\frac{2ik_1\xi}{\sqrt{eB}}\right) \sum_s u_s(\xi)\bar{u}_s(\xi'), \quad (35)$$

где

$$\xi' = \frac{2k_2}{\sqrt{eB}} - \xi.$$

После несложных, хотя и несколько громоздких вычислений с учетом суммирования по спиновым состояниям начального и конечного электронов, занимающих один и тот же уровень Ландау с номером n, произведение биспинорных амплитуд может быть приведено к виду

$$\sum_{s} u_{s}(\xi)\bar{u}_{s}(\xi') = (\omega_{n} + m_{e}) \times \\ \times \left[(\hat{k}_{\parallel} + m_{e})(\Pi_{+}V_{n-1}(\xi)V_{n-1}(\xi') + \Pi_{-}V_{n}(\xi)V_{n}(\xi')) - \sqrt{2eBn}(\Pi_{+}\gamma_{2}V_{n-1}(\xi)V_{n}(\xi') + \Pi_{-}\gamma_{2}V_{n}(\xi)V_{n-1}(\xi')) \right].$$
(36)

Здесь

$$\hat{k}_{\parallel} = (k\tilde{\varphi}\tilde{\varphi}\gamma) = \omega_n\gamma_0 - k_3\gamma_3,$$
$$\Pi_{\pm} = \frac{1}{2}(1\pm i\gamma_1\gamma_2)$$

— проекционные операторы.

Интеграл по переменной ξ в выражении (35) может быть вычислен с помощью формулы

$$J_{n,n'} = \frac{e^{iab/2}}{\sqrt{eB}} \int_{-\infty}^{\infty} d\xi e^{-ia\xi} V_n(\xi) V_{n'}(b-\xi) =$$
$$= (-1)^{n'} e^{-i(n-n')\varphi} F_{n',n}(x), \quad (37)$$

где

$$\operatorname{tg} \varphi = \frac{a}{b}, \quad x = \frac{a^2 + b^2}{2},$$
$$F_{n',n}(x) = \sqrt{\frac{n'!}{n!}} x^{(n-n')/2} e^{-x/2} L_{n'}^{n-n'}(x)$$

а присоединенные полиномы Лагерра определены следующим образом:

$$L_{k}^{l}(x) = \frac{e^{x}x^{-l}}{k!} \frac{d^{k}}{dx^{k}} (e^{-x}x^{k+l})$$

Окончательно, матрица плотности электрона может быть приведена к виду трехкратного интеграла, удобному для дальнейшего использования:

$$R_{n}(x, x') = \exp(-i\Phi(x', x)) \times \\ \times (-1)^{n} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{f(\omega_{n})}{\omega_{n}} e^{-u} \exp(-ik(x - x')) \times \\ \times [(\hat{k}_{\parallel} + m_{e})(L_{n}(2u)\Pi_{-} - L_{n-1}(2u)\Pi_{+}) + \\ + 2\hat{k}_{\perp}L_{n-1}^{1}(2u)], \quad (38)$$

где

$$u = k_{\perp}^2 / eB,$$

$$\hat{k}_{\perp} = (k\varphi\varphi\gamma) = k_1\gamma_1 + k_2\gamma_2.$$

Выражение (38) может быть использовано при исследовании квантовых процессов в плазме в присутствии магнитного поля произвольной напряженности.

Работа выполнена при финансовой поддержке Совета по грантам Президента Российской Федерации для поддержки молодых российских ученых и ведущих научных школ РФ (грант № НШ-497.2008.2), Министерства образования и науки РФ по программе «Развитие научного потенциала высшей школы» (проект № 2.1.1/510) и РФФИ (грант № 07-02-00285-а).

ЛИТЕРАТУРА

- 1. Г. С. Бисноватый-Коган, Астрон. журн. 47, 813 (1970).
- Г. С. Бисноватый-Коган, Физические вопросы теории звездной эволюции, Наука, Москва (1989).
- M. Ruderman, Neutron Stars: Theory and Observation, ed. by J. Ventura and D. Pines, Kluwer Academic Publ., Dordrecht (1991).
- C. Thompson and R. C. Duncan, Astrophys. J. 408, 194 (1993).

- G. S. Bisnovatyi-Kogan, Astron. Astrophys. Trans. 3, 287 (1993).
- M. Bocquet et al., Astron. and Astrophys. 301, 757 (1995).
- S. Akiyama, J. C. Wheeler, D. L. Meier, and I. Lichtenstand, Astrophys. J. 584, 954 (2003).
- N. V. Ardeljan, G. S. Bisnovatyi-Kogan, and S. G. Moiseenko, Mon. Not. R. Astron. Soc. 359, 333 (2005).
- D. Notzold and G. Raffelt, Nucl. Phys. B 307, 924 (1988).
- P. Elmfors, D. Grasso, and G. Raffelt, Nucl. Phys. B 479, 3 (1996).
- A. Erdas, G. W. Kim, and T. H. Lee, Phys. Rev. D 58, 085016 (1998).
- E. Elizalde, E. J. Ferrer, and V. de la Incera, Phys. Rev. D 70, 043012 (2004).
- A. V. Kuznetsov, N. V. Mikheev, G. G. Raffelt, and L. A. Vassilevskaya, Phys. Rev. D 73, 023001 (2006).
- 14. А. И. Ахиезер, В. Б. Берестецкий, *Квантовая электродинамика*, Наука, Москва (1981).
- **15.** G. G. Raffelt, Stars as Laboratories for Fundamental *Physics*, University of Chicago Press (1996).