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RADIATIVE RECOIL CORRECTIONS TO HYPERFINE SPLITTING:
POLARIZATION INSERTIONS IN THE ELECTRON FACTOR
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We consider three-loop radiative recoil corrections to hyperfine splitting in muonium due to insertions of the
one-loop polarization operator in the electron factor. The contribution generated by electron polarization in-
sertions is a cubic polynomial in the large logarithm of the electron-muon mass ratio. The leading logarithm
cubed and logarithm squared terms are well known for some time. We calculate all single-logarithmic and
nonlogarithmic radiative recoil corrections of the order a®(m/M)Er generated by diagrams with the electron

and muon polarization insertions.

1. INTRODUCTION

Leading three-loop logarithm cubed and logarithm
squared radiative recoil contributions to hyperfine split-
ting (HFS) in muonium were calculated long time ago
(see, e.g., reviews [1, 2]). Recently, we started the cal-
culation of all single-logarithmic and nonlogarithmic
radiative recoil corrections (see review [3]). Below, we
consider single-logarithmic and nonlogarithmic radia-
tive recoil corrections due to insertions of electron and
muon polarization operators in the radiative photon
line, shown in Figs. 1 and 2.

Three-loop diagrams in Figs. 1 and 2 can be ob-
tained from the diagrams with two-photon exchanges
by insertion of radiative corrections in Fig. 3. The
two-photon diagrams in Fig. 3 produce the leading ra-
diative recoil correction when the loop momentum is
much larger than the electron mass, and the insertion
of a radiative correction can only increase the integra-
tion momentum. Therefore, calculating the diagrams
in Figs. 1 and 2 we may forget about external virtu-
alities and calculate matrix elements in the scattering
regime between the free electron and muon spinors. To
turn the matrix element into contribution to HFS, we
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Fig. 1. Electron polarization insertions

multiply the scattering matrix element by the squared
Coulomb-Schrédinger bound state wave function at the
origin and calculate the difference between spin-one and
spin-zero states. We use the Feynman gauge to obtain
matrix elements of the gauge invariant sets of diagrams
in Figs. 1 and 2. Each of the diagrams in Figs. 1 and 2
contains a polarization operator insertion in one of the
radiative photon lines. We account for this insertion
using the massive photon propagator for radiative pho-
tons (but not for exchanged photons) with the photon
mass squared

4m?
a2 =
1 -2
or
4M2
a2 =
1—ov?2’

where m and M respectively are the electron and muon
masses. Insertion of the polarization operator in the
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Fig.2. Muon polarization insertions
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Fig.3. Two-photon exchanges

radiative photon line is accompanied by an additional
integration over velocity v with the weight

1

dv v?
/1—7_)2 v (1-3)
0

Besides single-logarithmic and nonlogarithmic con-
tributions, the diagrams in Fig. 1 also generate well
known much larger nonrecoil and logarithm-squared re-
coil contributions [1]. We calculate the contributions of
the diagrams in Figs. 1 and 2 with linear accuracy in
the small electron-muon mass ratio m/M. In particu-

(1)

lar, we reproduce the nonrecoil and logarithm-squared
recoil contributions, which serves as an additional check
of our new results. The paper is organized as follows.
In Sect. 2, we describe calculations of the diagrams
with the electron polarizations in Fig. 1, and Sect. 3
deals with the diagrams with the muon polarizations
in Fig. 2. The results are collected in the last section.

2. ELECTRON POLARIZATION OPERATOR

2.1. Calculation of the mass operator
contribution

We calculate matrix elements of each of the dia-
grams in Fig. 1 separately. The respective integrals
can be obtained by inserting radiative corrections in
the expression for the contribution of the skeleton di-
agrams in Fig. 3 to HFS. Contribution of the diagram
with the self-energy insertion in Fig. 1 has the form

(cf. [4]
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3 1 z 1 d 5
i v, v
AEE:W/dx/dy/l—UZU <1—§>X
0 0 0
d*k 2k2 1

- — X
k* k* — p—2kd —k? 4 2ko + a3 (x,y) — i0

X |:h1(x,y)k0 h2(x7y)

3

(2K + kg)}
= Aegl + Aezg,

(2)

where the dimensionless energy Aey, is related to the
energy shift AFx, as")

a?(Za)
3

m
AEX) = MEFAEE,

uw = m/(2M), k is the dimensionless Minkowski ex-
change momentum, Aex; and Aexs are the integrals
corresponding to the two terms in the square brackets,
and

hl(xay): lzxa
l-x 2(1+2)y
h2(1',y)— _$2+A2(1—$) ) (3)
) 22+ N (1 —x)
ai(z,y) = W

The integration over v in Eq. (2) accounts for the elec-
tron loop that is included in the integrand via the finite
mass A = /4/(1 —v?) of the radiative photon. We
calculate two leading terms in the expansion of the di-
mensionless energy Aey in Eq. (2) with respect to the
small parameter u (the term of the order 1/u and the
term independent of p).

2.1.1. Nonrelativistic contribution

As a first step of the calculation, we obtain the lead-
ing term of the order 1/u from the expression for Aey
in Eq. (2). This term gives the leading nonrecoil contri-
bution to HFS and arises, as all nonrecoil contributions,
in the external field approximation. To extract the non-
recoil contribution from the expression in Eq. (2), we
take the residue at the muon pole, which with a linear
accuracy in g amounts to the substitution

2k

(4)

Then we obtain the nonrelativistic contribution for the
muon in the form

1) The Fermi energy is defined as Ep = (8/3)(Za)*(m/M)m.
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AEE (NR) =

3
g

2
2?)2 <1_%> X
—v

X

1 1
d d

[ ]

o 0 0

A3k

. / I[C(1 + 200) + a2 (2, 9)]
x [uhl(x,y) + §h2(x7y)} - (5)

This last integral contains both recoil and nonrecoil
contributions. The recoil contribution is be treated on
equal grounds with other recoil contributions consid-
ered below. Integrating over the momentum in Eq. (5)
and expanding the result with respect to the small pa-
rameter i, we obtain

1 x 1
2
AegNRz/dx/dy/ dv <1—v—>><
1-— 3
0 0
1 b
X | = ———hs(z,y) +
[u ar(z,y) ()

+ m(?’hl(xvy) - 2h2(x,y))] =

04462 | 5 9372 = Al (NR) + Al

— (NR). (6)

2.1.2. p- and c-integrals

We return to the calculation of the first two terms
in the expansion of the contributions to HFS in Eq. (2)
with respect to u. An attempt to calculate the integral
in Eq. (2) with the help of Feynman parameters leads
to the integrands that do not admit expansion in the
small parameter y before the integration. Therefore,
we use another approach to the calculation of the inte-
gral in Eq. (2) (as well as to the calculation of other in-
tegrals of this type below), and directly integrate over
the exchange momentum k in four-dimensional polar
coordinates. After the Wick rotation and integration
over angles (and omitting some higher-order terms in
1), we obtain an integral representation for the contri-
butions Aey; and A€y defined in Eq. (2). The integral
representation for Aesy (cf. [5]) is

2
U2 <1—%> hi(z,y)x

1—0v2

1

T 1
A621=—3/d /dy/

0 0 0

x /dk2{(k2 (uk\/1+u2k2 ,u2k2) -

0

1 1
1
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and the integral representation for Aeyo (cf. [4]) is

1 z 1
2
AN =/dx/dy/ 1 21}2 <1—%> ha(x,y)x
0 0 0
i 1 I1
i — 1+ p2k? —
X/ {k2+a% [uk s
0
(uk\/1+u2k2 —,quQ)} +

(k% +a3)? + 4k?
(k* + af)?

dv

1
2

+

+ 8—%( (k2+a§)2+4k2—(k2+a§)>]}. (8)

Each integrand in Eq. (7) and Eq. (8) is a sum of u-de-
pendent and p-independent integrals, and we calculate
them separately. While both integrals are convergent,
a naive separation of u-dependent and p-independent
terms in the integrands sometimes leads to integrals
that are ultravioletly divergent at large integration mo-
menta k. For example, the integral over k of the p-de-
pendent term in the integrand in Eq. (7) converges at
large integration momenta, while the respective inte-
gral in Eq. (8) diverges. This divergence arises because
p-dependent terms in the integrand become p-indepen-
dent constants at high momenta. In such cases, we re-
define the u-dependent terms in the integrand by sub-
tracting the leading asymptotic constant, and add this
constant to the p-independent terms in the integrand.
A universal recipe for such restructuring of the inte-
grands in Eqs. (7) and (8) is described by the substitu-
tions

14 p2k? — ,u_lk (\/1+,u2k2 —uk),
(,u/m/ 14+ p2k? — ,u2k2) —
— <,uk 1+ p2k2 — p2k® — %) .

We subtract 1 in the first case, and 1/2 in the second
case. In both cases, we add the terms corresponding
to these constants to the p-independent terms in the
integrands. After this restructuring (when needed), we
write integrals (7) and (8) as sums of what we call p-
and c-integrals,
Ae = Ael + Ael®), (10)
We consider first the calculation of the p-integrals.
The integral over k in Eq. (7) converges, the integrand
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does not require any restructuring, and the p-integral
has the form

Ae(zul

1 T 1
2
y dv v
0
00
X/
0

This integral is of the order p, and therefore, with our
accuracy, it does not give any contribution

,uk 1+u2k2—p2k2). (11)

A =0, (12)

We next calculate the p-integral arising from the inte-

gral in Eq. (8):
2
2 <1_%> hZ(xvy)X

k) -
T %)] . (13)

Unlike in the case of Ae(E“l), the naive integral over k
of the p-dependent terms in Eq. (8) diverges at large
k, and we restructure the integrand in accordance with
Eq. (9). Besides the recoil contribution, the integral in
Eq. (13) also contains the nonrelativistic contribution
Ae(E“ )(NR) that we calculated separately in Eq. (5).
This nonrelativistic contribution is generated by the
leading 1/(uk) term in the small-uk expansion of the
expression in the square brackets in Eq. (13). Tt coin-
cides with the contribution generated by the first term
in the square brackets in Eq. (6). To avoid double
counting, we subtract this contribution from the in-
tegrand in Eq. (13) by the substitution

1 1
il 2.2 _y 2.2 _
e 14+ p2k —>Mk(\/1+,uk 1)

T

fo

k2+2

dv
2

1
AG(E“2 = /dx
0

x/dk2

0

1
/5
0

o (VIR

1

(14)

in the integrand. This substitution gives a universal
recipe for subtracting the nonrecoil corrections in all
u-integrals to be considered below. We emphasize that
it is needed only in the first of the two typical structures
with square roots in Eq. (9) that arise in the expres-
sions for u-integrals. The leading term in the small-uk
expansion of the second structure is nonsingular and
does not generate a nonrecoil contribution.

27

Finally, the second p-integral for the mass operator
insertion in the electron line has the form

1 T
At — AW (NR) / dx / dy x
0
1 o]
/ 2 (122 by [ =22
3 )Y k% + a?
0 0

« {E (VI+ i — ki —1) —

T %)] . (15)

Other integrals of this type arise in calculations of
other contributions to HFS below. To extract the
first term in the small-p expansion of integrals of this
type, we introduce an auxiliary parameter o, such that
1< o< 1/p (see, e.g., [6, 4]). Then we separate the
large and small integration momenta regions with the
help of this parameter o and use different approxima-
tions in the different regions. In the region of small
integration momenta 0 < k < o, we expand the inte-
grand with respect to uk < 1 and obtain

1

1
— AE)(NR) ~ -2

589
+ <—7r2 + ﬁ) Ino +1.3220. (16)

9
<
Ae(;2 ) 1n3a+ﬂln20+

In the region of large integration momenta & < o, we
expand the integrand with respect to 1/k < 1 and ob-
tain

1

—1n?(2
g
21572

144

1
— Ae?)(NR) ~ g’ (2n)
335

i ) In (20) + () -

1
1n3a—£ln20+ (71'2

In the intermediate region k ~ ¢, both approximations
uk < 1 and 1/k < 1 are valid simultaneously, and all
dependence on the auxiliary parameter o cancels in the
sum of the contributions in Eq. (16) and Eq. (17):

Ae(z’f) 1) +
1372

+(12

103 1
+

+

8

589

Aelly) — Acl) (NR) ~ %ln3 (2u) + 2—14 In? (2p2) +
137 335 1 21572
+ ( 12 - %) IH(QM)"‘ _C(B) - m +
1
+ % +1.3220. (18)
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We next turn to the c-integrals defined in Eqgs. (10),
(7), and (8). We easily perform the momentum inte-

gration in the integral for Aegl),

1 T 1
c 3 dv v?
Ae(m) = Z/dx/dy/ 1_U2v2 <1—§> hi(x,y)x
0 0 0

Td2T 1
X / k‘2 [m (k2 + a%)2 + 4]€2 — 1:| =

0

1 x

02
v? <1 — E) hi(x,y) x

1 1 1, 1+a?
X {—tgl———ln Rl

A ao)

ay

Asin the case of the u-integrals above, we want to avoid
double counting, and subtract the respective nonrela-
tivistic contribution already accounted for in Eq. (6).
This nonrelativistic contribution has the form

1 T
Aegl)(NR)z?)/dx/dyx
0 0

1
d 2
X / (1L
1-— 3
0
We now see that due to the identity

1
(@)
ay

subtraction of the nonrelativistic contribution from the
integral in Eq. (19) reduces to the substitution

hl (SU, y)
ay ’

(20)

7T
= —tg !
D) g

(21)

This is a universal rule for subtraction of nonrela-
tivistic contributions in all c-integrals considered below
(cf. [5]). Finally, the first c-integral is

1
d 2
X / - _Uv2v2 <1 - %) hi(z,y) x
0
1 2
x [—3 tg= a1 — Sn +2a1] = —2.6215. (22)
a1 aj

Next, we turn to the second c-integral defined in

28

Eq. (10) and Eq. (8), and start with the momentum
integration (cf. [4])

T 1
2
Ae(;Q 2 (1—%) ha(z,y)x
0
°°de (k2 +a}) — /(2 T )2 1 4k
X (k2+a2)2
] 1
2k>
(1/k2+a 244k — (k2+a%)—7k2+a%> =
; 2
dv
/dx/dy/ — 2V <1— E) ha(x,y) x
o 0
2 ;1 3 1+a2 1 a 1—}—a1
— 42 S 4y L@
x{ —tg a1+4naf t17 2 2 (23)

Subtraction of the nonrecoil contribution is needed to
avoid double counting, and it is done with the help of
universal rule Eq. (21). Then we obtain

Ae(;% Ae(;% NR) /dx/dyx

/ d 2 2

v, v .

X/l_vzv ( _§>h2(xay) L_ltg ap +

0

3. 1+a? 1 a2 1-|-a1

-1 ———l =0.4370. (24
+ylns ot g e 0.4370. (24)

We now collect all contributions in Eqs. (6), (12),
(18), (22), and (24) to obtain the total result for the
contribution of the diagram with the self-energy inser-
tion in Fig. 1:

Aes = Aes(NR) + (A — Aé™ (NR)) +
+(Ad) — AdL)(NR)) +

i (Aegg — A9 (NR)) + (Ae(;?% — AN R)) =

04462 1 4 1.5
= -|-61n (2u)+24ln (2u) +
1372 335
-I-( 12 36)1n (2u) — 0.1856. (25)

2.2. Calculation of the spanning photon
contribution

The contribution of the spanning photon diagrams
in Fig. 1 is obtained from the contribution of the skele-
ton diagrams in Fig. 3 by insertion of a radiative photon
with the polarization bubble, and is described by the
expression (cf. [4])
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1 x 1
i dv v?
AEE:—W/dx/dy(x—y)/l_UZU (1—§>X
0 0 0
d*k 1 1
— 2(3k5 — 2k?
X/k‘* (k2+,u—1k0+i0+k2—u—1ko+i0){ (8k = 2k7)
W [1=3y | R y) + 2bkoy’(1—y) 2422 - 0)A —y)] _
A A2
3(1 - Ey(1—y)(2 —y) — 2bkoy(1 — y)? 2—x2)(1—
~ Gbky -y Kyl -y»2-y) oy( y): +22-x)(1—-y) (26)
A A2
where contribution of the diagram with the spanning photon
Az, y) = y(1 — y) (=K + 2bko + a2 — i0), insertion in Fig. 1 in the form
‘ 24 N1 —2) 1—z (27) 0.4139 1 5
a2x7y:x—7 bx7y: - A:Z - _132 __122
2
We simplify this expression using the identities — E _
‘ + D + 36 In(2u) — 0.6314.  (30)
—k2y* (1—y)+2bkoy” (1—y)+a(2—2)(1—y) =
_ _ _ 2 \2(1 =
—2yA +t2(l-y) - A Z)y’ 2.3. Calculation of the vertex contribution
ky(1—y)(2 —y) — 2bkoy (L —y)” +
(28) The contribution of the diagram with the vertex in-

+22—-2)(1—-y)=—-(2—-y)A+
+ 2bkoy(1 — y) + 22(1 —y) + 2° +
+)‘2(1 - 56)(2 - y)7

and obtain

T

1
i
167T2M2/dx/dy(x—y)x
0 0
1 p 5
v, v
1- 2
(oY
0

1— 02
1 + 1 y
k2 + Mflko + 10 k2 — uflk‘o + 10

Ae

U]

d*k
a

</

1-2y  —2+2z(1—y)—2?
X {2(3k§—2k2) { At A +
—\2(1-2)y 1-2y 2z(l—y)+a?
+ T} —6bkg { N +
N(1—2)(2—y)  2bkoy(l — y)] } _
A2 A2 a
= Aezq + A€z, (29)

where the contributions Aez; and Aezs correspond to
the expressions in the first and second square brackets
in the right-hand side of (29).

To calculate the integrals in Eq. (29), we use the
same tricks as in the case of the mass operator con-
tribution. We skip the calculation details and collect
intermediate results in Table 1. Finally, we obtain the

29

sertion in Fig. 1 is obtained from the contribution of
the skeleton diagrams in Fig. 3 by insertion of the ver-
tex function instead of one of the skeleton vertices. We
have derived a convenient expression for the one-loop
vertex function with a massive photon

x {(k = 2ko) (@ = ) (1 = 29) +y(1 - )] +
+2 (1—93—5”—22) A;OAO
(= m)a(l —z) 220

+ 2k [1—x+(ac—y)2] —(,ﬁ—}(—m)(l—x)}

Ay
=5
=> AP, (31)
i=1

_|_

where
Ag(x) = 2% + N2(1 — x)

and the terms Aff) correspond to the five terms in the
braces in Eq. (31).

This is essentially the same expression as the one
in [4]. But unlike the respective expression in [4], where
the photon mass merely served as a regularization pa-
rameter and was preserved only when necessary, we
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Table 1.  Spanning photon contributions
=1 =2
0.41386
Ae(NR) —0.1186 0.7213
1 5) 2 13 1 5729
Ael®) — Ae(N —In*(2p) — = In*(2 — +—1]In(2 - - 24052

€ e(NR) 6n(,u) 24:n(u)—k 12+36 n(,u)+4§(3) i 8+0559 0

Ael®) — Ae(NR) 0.1201 —0.7130

here restored the full dependence on the finite pho-
ton mass A that effectively describes the polarization
operator insertion. It can be shown that the gauge in-
variant anomalous magnetic moment does not generate
radiative recoil corrections (see, e.g., [5, 7]). Therefore,
the anomalous magnetic moment and some other terms
that do not contribute to HFS are omitted in Eq. (31).

We insert the vertex in Eq. (31) into the skeleton
expression for the contribution to HFS and obtain five
integrals corresponding to the five terms in the right-
hand side of (31). These integrals are calculated along
the same lines as in the case of the mass operator dis-
cussed above in detail. We collect all intermediate re-
sults in Table 2. The total contribution of the diagram
with the vertex insertion in Fig. 1 is given by

1.1968 1 11
Aep = — — —1n®*(2 —In*(2
€A . 6n(u)+24n(u)+
1372 80
+<— = +3> In(24) + 3.9489.  (32)

We now collect all the contributions in Eqs. (25),
(30), and (32) generated by the diagrams with electron
polarization insertions in Fig. 1 to obtain

1.
Ae® = Aes + 2Aep + Aez = — 5335 +
3, , 53
+ Zln (2u) + | =7 + 5 In(2u) + 7.0807. (33)

The first term in the right-hand side is the well-known
nonrecoil contribution to HFS [8], the second term is
the leading logarithm squared contribution obtained
in [9], and the single-logarithmic and constant terms
are the subject of this work.

3. MUON POLARIZATION OPERATOR

Insertion of the muon polarization operator in the
radiative photons in the diagrams in Fig. 2 lifts charac-
teristic integration momenta to the scale of the muon

30

mass. Hence, these diagrams do not generate nonre-
coil contributions to HFS, all of which originate from
the region of nonrelativistic muon momenta. Moreover,
due to high characteristic momenta, these diagrams do
not even generate recoil contributions logarithmic in
the mass ratio that originate from the wide integration
region between the electron and muon masses. As a
result, the leading recoil contributions of the diagrams
in Fig. 2 are pure numbers, and their calculation is
significantly simpler than in the case of the electron
polarization insertions in Fig. 1.

As in the previous section, insertion of the muon
polarization operator in the diagrams in Fig. 2 is ac-
counted for by the introduction of a photon mass, fol-
lowed by an additional integration over the velocity
with the weight in Eq. (1). For the muon polarization,
the effective photon mass in the integrals is large,

32— 4M?
1— 02
in dimensional units and it determines characteristic
momenta in all the integrals. We can obtain the ex-
pressions for the energy shift due to muon polariza-
tion from the formulas for the respective electron po-
larization contributions above by rescaling the dimen-
sionless integration momenta k& — k/u (we recall that
uw = m/2M). In addition, we should adjust the ex-
pression for the photon mass; in terms of the rescaled
integration momenta measured in units of 20/, it is
1

21— 07)
After these substitutions, the expressions for the di-
mensionless contributions to HFS that are due to elec-
tron polarization become the expressions for the con-
tributions due to muon polarization.

a. Mass operator contribution. To obtain an ex-
plicit expression for the diagrams with the mass op-
erator insertions in Fig. 2, we rescale the integration
momentum k& — k/u in Eqgs. (7) and (8), and redefine
the photon mass squared as

M=
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Table 2.  Vertex contributions
Ae(NR) Ael®) — Ae(NR) Ael®) — Ae(NR)
1.1356 1 11 . . ) 19
AL | - 103385 | —tmlem+ Lmeew + (=7 £ 2 2w + 3.2201 ~0.3315
6 24 12 8
0.0507 272 469 M
A2 | - +0.1007 22 ) = 40.0371 —0.0604
3 72 m
0.0104 72 119
A3 — 0.0160 3= - — —0.0106
+ < 3 36 )
A4 3.0460 0 —2.4323
A5 —1.1758 0 1.1540
=1 7
w2 (1 —v?) Aez _/dx/dy/dvv (1——) /dk2 (z—y)x
The auxiliary functions used in Eqs. (7) and (8) are 19 0
defined in Eq. (3). After rescaling, they simplify as X — 4y —
1 BPyl—y)(1l—v2)+1—2
-z
ho(z,y) = ——, a1(z,y) > —————. 34 1—2
o(9) = ) s (34) B (Y 1+
[FPy(1—y)(1 —v?) +1-2]

All the dependence on p becomes explicit after these
manipulations. It turns out that Aex; vanishes to-
gether with u. The total leading recoil contribution
generated by the diagrams with the mass operator in-
sertions in Fig. 2 coincides with Aeys. Its calculation
is straightforward, and we obtain

:0/1 dyjdvv(—%)x
7 — (VIR k) -

)+1{k

-3 (k\/1+k2 -

T

dx/
0

k2 — %)} =0.1329. (35)

b. Spanning photon contribution. We obtain an
expression for the spanning photon contribution with
the muon polarization insertion in Fig. 2 by rescal-
ing the integration momentum and the photon mass

in Eq. (29). Under these transformations, the auxiliary
function A(z,y) in Eq. (27) simplifies as
yI=y) [ 2, wN(1A-2)
Alz,y) > ———= |-k + ————= 36
(®9) IS y(1—y) (36)

After rescaling, only the first and third terms in the
first square bracket in the right-hand side of (29) pro-
duce contributions nonvanishing with p contributions
and we obtain

31

. E (VIR k) -
——(k\/1+—k2

c. Verter contribution. Rescaling the integration
momentum and the photon mass in the expressions cor-
responding to the five terms Aff), we obtain an explicit
expression for the vertex diagram contribution in Fig. 2
to HFS. It is easy to see that after the rescaling, all
the terms in the expression for the vertex function in
Eq. (31) are suppressed by at least one power of p in
comparison with the first term. This means that only
the first term generates the leading recoil correction in
the case of a muon polarization insertion. Explicitly,
the leading recoil correction generated by the vertex
insertions in Fig. 2 has the form

1 z 1
AeA:—/dx/dy/dvU (1——>><
0 0

)} =0.3105. (37)

[ =y (1—2y) +y(1—y)
Xo/dk k2y(1 y)(l—vQ)—l—l—xX

. [% (VIew k) - (km_kz_;)] _

= —0. 8738.

1
2

(38)
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Collecting all the leading radiative recoil corrections
in Egs. (35), (37), and (38) corresponding to the dia-
grams with muon polarization insertions in Fig. 2, we
obtain

A = Aes + 2Aep + Aez = —1.3042. (39)

4. CONCLUSIONS

Restoring the overall dimensional factor in Eq. (33)
and disregarding the nonrecoil and logarithm-squared
terms known earlier, we obtain single-logarithmic and
nonlogarithmic contributions to HFS generated by the
diagrams with one-loop electron polarization insertions
in Fig. 1:

53

M
AE® = [(H - ) In —+ 7.0807] X

2
7
W o) m g

™ M (40)

The radiative recoil contribution generated by the di-
agrams with one-loop muon polarization insertions in
Fig. 2 is nonlogarithmic. We obtain it by restoring the
overall dimensional factor in Eq. (39):

Z%a)(Za)

AE® — _1.3042 & M Ea

w3 M (41)

The total contribution to HFS obtained above can be
written as (Z = 1 in muonium)

AE = AE® + AEW =

53 M a®m
== JIn— +5.7765| — —FEp. (42
[(ﬂ- 6>nm+ ™M (42)
The theoretical accuracy of HFS in muonium is cur-
rently about 70 Hz. A realistic goal is to reduce this un-
certainty to below 10 Hz (see a more detailed discussion
in [1, 2]). The result in Eq. (42) together with other

three-loop radiative recoil results in [10-12] makes this
goal closer.
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