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RADIATIVE RECOIL CORRECTIONS TO HYPERFINE SPLITTING:POLARIZATION INSERTIONS IN THE ELECTRON FACTORM. I. Eides a*, V. A. Shelyuto b**aDepartment of Physi
s and Astronomy, University of Kentu
kyKY 40506, Lexington, USAbMendeleev Institute of Metrology190005, St. Petersburg, RussiaRe
eived July 9, 2009We 
onsider three-loop radiative re
oil 
orre
tions to hyper�ne splitting in muonium due to insertions of theone-loop polarization operator in the ele
tron fa
tor. The 
ontribution generated by ele
tron polarization in-sertions is a 
ubi
 polynomial in the large logarithm of the ele
tron�muon mass ratio. The leading logarithm
ubed and logarithm squared terms are well known for some time. We 
al
ulate all single-logarithmi
 andnonlogarithmi
 radiative re
oil 
orre
tions of the order �3(m=M)EF generated by diagrams with the ele
tronand muon polarization insertions.1. INTRODUCTIONLeading three-loop logarithm 
ubed and logarithmsquared radiative re
oil 
ontributions to hyper�ne split-ting (HFS) in muonium were 
al
ulated long time ago(see, e.g., reviews [1, 2℄). Re
ently, we started the 
al-
ulation of all single-logarithmi
 and nonlogarithmi
radiative re
oil 
orre
tions (see review [3℄). Below, we
onsider single-logarithmi
 and nonlogarithmi
 radia-tive re
oil 
orre
tions due to insertions of ele
tron andmuon polarization operators in the radiative photonline, shown in Figs. 1 and 2.Three-loop diagrams in Figs. 1 and 2 
an be ob-tained from the diagrams with two-photon ex
hangesby insertion of radiative 
orre
tions in Fig. 3. Thetwo-photon diagrams in Fig. 3 produ
e the leading ra-diative re
oil 
orre
tion when the loop momentum ismu
h larger than the ele
tron mass, and the insertionof a radiative 
orre
tion 
an only in
rease the integra-tion momentum. Therefore, 
al
ulating the diagramsin Figs. 1 and 2 we may forget about external virtu-alities and 
al
ulate matrix elements in the s
atteringregime between the free ele
tron and muon spinors. Toturn the matrix element into 
ontribution to HFS, we*Also at Petersburg Nu
lear Physi
s Institute, 188300,Gat
hina, St. Petersburg Russia; E-mail: eides�pa.uky.edu,eides�thd.pnpi.spb.ru**E-mail: shelyuto�vniim.ru

+2 +Fig. 1. Ele
tron polarization insertionsmultiply the s
attering matrix element by the squaredCoulomb�S
hrödinger bound state wave fun
tion at theorigin and 
al
ulate the di�eren
e between spin-one andspin-zero states. We use the Feynman gauge to obtainmatrix elements of the gauge invariant sets of diagramsin Figs. 1 and 2. Ea
h of the diagrams in Figs. 1 and 2
ontains a polarization operator insertion in one of theradiative photon lines. We a

ount for this insertionusing the massive photon propagator for radiative pho-tons (but not for ex
hanged photons) with the photonmass squared �2 = 4m21� v2or �2 = 4M21� v2 ;wherem andM respe
tively are the ele
tron and muonmasses. Insertion of the polarization operator in the24
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tions to hyper�ne splitting : : :
+2 +Fig. 2. Muon polarization insertions

+Fig. 3. Two-photon ex
hangesradiative photon line is a

ompanied by an additionalintegration over velo
ity v with the weight1Z0 dv1� v2 v2�1� v23 � : (1)Besides single-logarithmi
 and nonlogarithmi
 
on-tributions, the diagrams in Fig. 1 also generate wellknown mu
h larger nonre
oil and logarithm-squared re-
oil 
ontributions [1℄. We 
al
ulate the 
ontributions ofthe diagrams in Figs. 1 and 2 with linear a

ura
y inthe small ele
tron�muon mass ratio m=M . In parti
u-lar, we reprodu
e the nonre
oil and logarithm-squaredre
oil 
ontributions, whi
h serves as an additional 
he
kof our new results. The paper is organized as follows.In Se
t. 2, we des
ribe 
al
ulations of the diagramswith the ele
tron polarizations in Fig. 1, and Se
t. 3deals with the diagrams with the muon polarizationsin Fig. 2. The results are 
olle
ted in the last se
tion.2. ELECTRON POLARIZATION OPERATOR2.1. Cal
ulation of the mass operator
ontributionWe 
al
ulate matrix elements of ea
h of the dia-grams in Fig. 1 separately. The respe
tive integrals
an be obtained by inserting radiative 
orre
tions inthe expression for the 
ontribution of the skeleton di-agrams in Fig. 3 to HFS. Contribution of the diagramwith the self-energy insertion in Fig. 1 has the form(
f. [4℄)

��� = 3i8�2�2 1Z0 dx xZ0 dy 1Z0 dv1� v2 v2�1� v23 ��� Z d4kk4 2k2k4 � ��2k20 1�k2 + 2k0 + a21(x; y)� i0 �� �h1(x; y)k0 � h2(x; y)3 (2k2 + k20)� �� ���1 +���2; (2)where the dimensionless energy ��� is related to theenergy shift �E� as1)�E� = �2(Z�)�3 mMEF���;� = m=(2M), k is the dimensionless Minkowski ex-
hange momentum, ���1 and ���2 are the integrals
orresponding to the two terms in the square bra
kets,and h1(x; y) = 1 + xy ;h2(x; y) = 1� xy �1� 2(1 + x)yx2 + �2(1� x)� ;a21(x; y) = x2 + �2(1� x)(1� x)y : (3)The integration over v in Eq. (2) a

ounts for the ele
-tron loop that is in
luded in the integrand via the �nitemass � = p4=(1� v2) of the radiative photon. We
al
ulate two leading terms in the expansion of the di-mensionless energy ��� in Eq. (2) with respe
t to thesmall parameter � (the term of the order 1=� and theterm independent of �).2.1.1. Nonrelativisti
 
ontributionAs a �rst step of the 
al
ulation, we obtain the lead-ing term of the order 1=� from the expression for ���in Eq. (2). This term gives the leading nonre
oil 
ontri-bution to HFS and arises, as all nonre
oil 
ontributions,in the external �eld approximation. To extra
t the non-re
oil 
ontribution from the expression in Eq. (2), wetake the residue at the muon pole, whi
h with a lineara

ura
y in � amounts to the substitution2k2k4 � ��2k20 ! �2�i�Æ(k0 � �k2): (4)Then we obtain the nonrelativisti
 
ontribution for themuon in the form1) The Fermi energy is de�ned as EF = (8=3)(Z�)4(m=M)m.25



M. I. Eides, V. A. Shelyuto ÆÝÒÔ, òîì 137, âûï. 1, 2010���(NR) = 34�� 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2�1�v23 ��� Z d3kk2[k2(1 + 2�) + a21(x; y)℄ �� ��h1(x; y) + 23h2(x; y)� : (5)This last integral 
ontains both re
oil and nonre
oil
ontributions. The re
oil 
ontribution is be treated onequal grounds with other re
oil 
ontributions 
onsid-ered below. Integrating over the momentum in Eq. (5)and expanding the result with respe
t to the small pa-rameter �, we obtain���(NR) = 1Z0 dx xZ0 dy 1Z0 dv1� v2 v2 �1� v23 ��� � 1� �a1(x; y)h2(x; y) ++ �2a1(x; y) (3h1(x; y)� 2h2(x; y))� == 0:4462� + 2:2372 � ��(�)� (NR) + ��(
)� (NR): (6)2.1.2. �- and 
-integralsWe return to the 
al
ulation of the �rst two termsin the expansion of the 
ontributions to HFS in Eq. (2)with respe
t to �. An attempt to 
al
ulate the integralin Eq. (2) with the help of Feynman parameters leadsto the integrands that do not admit expansion in thesmall parameter � before the integration. Therefore,we use another approa
h to the 
al
ulation of the inte-gral in Eq. (2) (as well as to the 
al
ulation of other in-tegrals of this type below), and dire
tly integrate overthe ex
hange momentum k in four-dimensional polar
oordinates. After the Wi
k rotation and integrationover angles (and omitting some higher-order terms in�), we obtain an integral representation for the 
ontri-butions ���1 and���2 de�ned in Eq. (2). The integralrepresentation for ���1 (
f. [5℄) is���1 = �3 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2�1�v23 �h1(x; y)�� 1Z0 dk2 � 1(k2 + a21)2 ��kp1 + �2k2 � �2k2� �� 14k2 � 1k2 + a21q(k2 + a21)2 + 4k2 � 1�� ; (7)

and the integral representation for ���2 (
f. [4℄) is���2 = 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2�1�v23 �h2(x; y)�� 1Z0 dk2( 1k2 + a21 � 1�kp1 + �2k2 �� 12 ��kp1 + �2k2 � �2k2��++ "�p(k2 + a21)2 + 4k2(k2 + a21)2 ++ 18k2 �q(k2 + a21)2 + 4k2 � (k2 + a21)�#) : (8)Ea
h integrand in Eq. (7) and Eq. (8) is a sum of �-de-pendent and �-independent integrals, and we 
al
ulatethem separately. While both integrals are 
onvergent,a naive separation of �-dependent and �-independentterms in the integrands sometimes leads to integralsthat are ultravioletly divergent at large integration mo-menta k. For example, the integral over k of the �-de-pendent term in the integrand in Eq. (7) 
onverges atlarge integration momenta, while the respe
tive inte-gral in Eq. (8) diverges. This divergen
e arises be
ause�-dependent terms in the integrand be
ome �-indepen-dent 
onstants at high momenta. In su
h 
ases, we re-de�ne the �-dependent terms in the integrand by sub-tra
ting the leading asymptoti
 
onstant, and add this
onstant to the �-independent terms in the integrand.A universal re
ipe for su
h restru
turing of the inte-grands in Eqs. (7) and (8) is des
ribed by the substitu-tions 1�kp1 + �2k2 ! 1�k �p1 + �2k2 � �k� ;��kp1 + �2k2 � �2k2�!! ��kp1 + �2k2 � �2k2 � 12� : (9)We subtra
t 1 in the �rst 
ase, and 1=2 in the se
ond
ase. In both 
ases, we add the terms 
orrespondingto these 
onstants to the �-independent terms in theintegrands. After this restru
turing (when needed), wewrite integrals (7) and (8) as sums of what we 
all �-and 
-integrals, �� = ��(�) +��(
): (10)We 
onsider �rst the 
al
ulation of the �-integrals.The integral over k in Eq. (7) 
onverges, the integrand26
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oil 
orre
tions to hyper�ne splitting : : :does not require any restru
turing, and the �-integralhas the form��(�)�1 = �3 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2 �1�v23 �h1(x; y)�� 1Z0 dk2(k2 + a21)2 ��kp1 + �2k2 � �2k2� : (11)This integral is of the order �, and therefore, with oura

ura
y, it does not give any 
ontribution��(�)�1 = 0: (12)We next 
al
ulate the �-integral arising from the inte-gral in Eq. (8):��(�)�2 = 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2 �1�v23 �h2(x; y)�� 1Z0 dk2 1k2 + a21 � 1�k �p1 + �2k2 � �k� �� 12 ��kp1 + �2k2 � �2k2 � 12�� : (13)Unlike in the 
ase of ��(�)�1 , the naive integral over kof the �-dependent terms in Eq. (8) diverges at largek, and we restru
ture the integrand in a

ordan
e withEq. (9). Besides the re
oil 
ontribution, the integral inEq. (13) also 
ontains the nonrelativisti
 
ontribution��(�)� (NR) that we 
al
ulated separately in Eq. (5).This nonrelativisti
 
ontribution is generated by theleading 1=(�k) term in the small-�k expansion of theexpression in the square bra
kets in Eq. (13). It 
oin-
ides with the 
ontribution generated by the �rst termin the square bra
kets in Eq. (6). To avoid double
ounting, we subtra
t this 
ontribution from the in-tegrand in Eq. (13) by the substitution1�kp1 + �2k2 ! 1�k �p1 + �2k2 � 1� (14)in the integrand. This substitution gives a universalre
ipe for subtra
ting the nonre
oil 
orre
tions in all�-integrals to be 
onsidered below. We emphasize thatit is needed only in the �rst of the two typi
al stru
tureswith square roots in Eq. (9) that arise in the expres-sions for �-integrals. The leading term in the small-�kexpansion of the se
ond stru
ture is nonsingular anddoes not generate a nonre
oil 
ontribution.

Finally, the se
ond �-integral for the mass operatorinsertion in the ele
tron line has the form��(�)�2 ���(�)�2 (NR) = 1Z0 dx xZ0 dy �� 1Z0 dv1� v2 v2�1� v23 �h2(x; y) 1Z0 dk2k2 + a21 �� � 1�k �p1 + �2k2 � �k � 1� �� 12 ��kp1 + �2k2 � �2k2 � 12�� : (15)Other integrals of this type arise in 
al
ulations ofother 
ontributions to HFS below. To extra
t the�rst term in the small-� expansion of integrals of thistype, we introdu
e an auxiliary parameter �, su
h that1 � � � 1=� (see, e.g., [6, 4℄). Then we separate thelarge and small integration momenta regions with thehelp of this parameter � and use di�erent approxima-tions in the di�erent regions. In the region of smallintegration momenta 0 � k � �, we expand the inte-grand with respe
t to �k � 1 and obtain��(�<)�2 ��E(�<)�2 (NR) � �16 ln3 � + 1924 ln2 � ++���2 + 58972 � ln� + 1:3220: (16)In the region of large integration momenta k � �, weexpand the integrand with respe
t to 1=k � 1 and ob-tain��(�>)�2 ���(�>)�2 (NR) � 16 ln3 (2�) + 124 ln2 (2�) ++�13�212 � 33536 � ln (2�) + 14�(3)� 215�2144 ++ 1038 + 16 ln3 � � 1924 ln2 � +��2 � 58972 � ln�: (17)In the intermediate region k � �, both approximations�k � 1 and 1=k � 1 are valid simultaneously, and alldependen
e on the auxiliary parameter � 
an
els in thesum of the 
ontributions in Eq. (16) and Eq. (17):��(�)�2 ���(�)�2 (NR) � 16 ln3 (2�) + 124 ln2 (2�) ++�13�212 � 33536 � ln (2�) + 14�(3)� 215�2144 ++ 1038 + 1:3220: (18)27
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-integrals de�ned in Eqs. (10),(7), and (8). We easily perform the momentum inte-gration in the integral for ��(
)�1,��(
)�1 = 34 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2�1�v23 �h1(x; y)�� 1Z0 dk2k2 � 1k2 + a21q(k2 + a21)2 + 4k2 � 1� == 3 1Z0 dx xZ0 dy 1Z0 dv1� v2 v2�1� v23 �h1(x; y)�� � 1a1 tg�1 1a1 � 12 ln 1 + a21a21 � : (19)As in the 
ase of the �-integrals above, we want to avoiddouble 
ounting, and subtra
t the respe
tive nonrela-tivisti
 
ontribution already a

ounted for in Eq. (6).This nonrelativisti
 
ontribution has the form��(
)�1(NR) = 3 1Z0 dx xZ0 dy �� 1Z0 dv1� v2 v2�1� v23 � h1(x; y)a1 : (20)We now see that due to the identitytg�1� 1a1� = �2 � tg�1 a1;subtra
tion of the nonrelativisti
 
ontribution from theintegral in Eq. (19) redu
es to the substitutiontg�1� 1a1�! � tg�1 a1: (21)This is a universal rule for subtra
tion of nonrela-tivisti
 
ontributions in all 
-integrals 
onsidered below(
f. [5℄). Finally, the �rst 
-integral is��(
)�1 ���(
)�1(NR) = 1Z0 dx xZ0 dy �� 1Z0 dv1� v2 v2�1� v23 �h1(x; y)�� �� 3a1 tg�1 a1 � 32 ln 1 + a21a21 � = �2:6215: (22)Next, we turn to the se
ond 
-integral de�ned in

Eq. (10) and Eq. (8), and start with the momentumintegration (
f. [4℄)��(
)�2 = 1Z0 dx xZ0 dy 1Z0 dv1�v2 v2�1�v23 �h2(x; y)�� 1Z0 dk2 " (k2 + a21)�p(k2 + a21)2 + 4k2(k2 + a21)2 ++ 18k2 �q(k2 + a21)2 + 4k2 � (k2 + a21)� 2k2k2 + a21�# == 1Z0 dx xZ0 dy 1Z0 dv1� v2 v2�1� v23 �h2(x; y)�� �� 2a1 tg�1 1a1+34 ln 1+a21a21 +14�a214 ln 1+a21a21 � : (23)Subtra
tion of the nonre
oil 
ontribution is needed toavoid double 
ounting, and it is done with the help ofuniversal rule Eq. (21). Then we obtain��(
)�2 ���(
)�2(NR) = 1Z0 dx xZ0 dy �� 1Z0 dv1� v2 v2�1� v23 �h2(x; y) � 2a1 tg�1 a1 ++ 34 ln 1 + a21a21 + 14 � a214 ln 1 + a21a21 � = 0:4370: (24)We now 
olle
t all 
ontributions in Eqs. (6), (12),(18), (22), and (24) to obtain the total result for the
ontribution of the diagram with the self-energy inser-tion in Fig. 1:��� = ���(NR) + (��(�)�1 ���(�)�1 (NR)) ++ (��(�)�2 ���(�)�2 (NR)) ++ ���(
)�1 ���(
)�1(NR)�+ ���(
)�2 ���(
)�2(NR)� == 0:4462� + 16 ln3 (2�) + 124 ln2 (2�) ++�13�212 � 33536 � ln (2�)� 0:1856: (25)2.2. Cal
ulation of the spanning photon
ontributionThe 
ontribution of the spanning photon diagramsin Fig. 1 is obtained from the 
ontribution of the skele-ton diagrams in Fig. 3 by insertion of a radiative photonwith the polarization bubble, and is des
ribed by theexpression (
f. [4℄)28



ÆÝÒÔ, òîì 137, âûï. 1, 2010 Radiative re
oil 
orre
tions to hyper�ne splitting : : :��� = � i16�2�2 1Z0 dx xZ0 dy(x� y) 1Z0 dv1� v2 v2�1� v23 ��� Z d4kk4 � 1k2 + ��1k0 + i0 + 1k2 � ��1k0 + i0��2(3k20 � 2k2) �� �1� 3y� + �k2y2(1� y) + 2bk0y2(1� y)� 2 + x(2� x)(1� y)�2 ��� 6bk0 �3(1� y)� + k2y(1� y)(2� y)� 2bk0y(1� y)2 + x(2� x)(1� y)�2 �� ; (26)where�(x; y) = y(1� y)(�k2 + 2bk0 + a2 � i0);a2(x; y) = x2 + �2(1� x)y(1� y) ; b(x; y) = 1� x1� y : (27)We simplify this expression using the identities�k2y2(1�y)+2bk0y2(1�y)+x(2�x)(1�y) == y�+ 2x(1� y)� x2 � �2(1� x)y;k2y(1� y)(2� y)� 2bk0y(1� y)2 ++x(2� x)(1� y) = �(2� y)� ++2bk0y(1� y) + 2x(1� y) + x2 ++�2(1� x)(2� y); (28)and obtain��� = � i16�2�2 1Z0 dx xZ0 dy(x� y)�� 1Z0 dv1� v2 v2�1� v23 ��� Z d4kk4 � 1k2 + ��1k0 + i0 + 1k2 � ��1k0 + i0����2(3k20�2k2) �1�2y� +�2+2x(1�y)�x2�2 ++ ��2(1�x)y�2 ��6bk0 �1�2y� +2x(1�y)+x2�2 ++ �2(1� x)(2� y)�2 + 2bk0y(1� y)�2 �� �� ���1 +���2; (29)where the 
ontributions ���1 and ���2 
orrespond tothe expressions in the �rst and se
ond square bra
ketsin the right-hand side of (29).To 
al
ulate the integrals in Eq. (29), we use thesame tri
ks as in the 
ase of the mass operator 
on-tribution. We skip the 
al
ulation details and 
olle
tintermediate results in Table 1. Finally, we obtain the


ontribution of the diagram with the spanning photoninsertion in Fig. 1 in the form��� = 0:4139� + 16 ln3(2�)� 524 ln2(2�) ++��212 + 1336� ln(2�)� 0:6314: (30)2.3. Cal
ulation of the vertex 
ontributionThe 
ontribution of the diagram with the vertex in-sertion in Fig. 1 is obtained from the 
ontribution ofthe skeleton diagrams in Fig. 3 by insertion of the ver-tex fun
tion instead of one of the skeleton verti
es. Wehave derived a 
onvenient expression for the one-loopvertex fun
tion with a massive photon�� = �2� 1Z0 dx xZ0 dy� 
� �� n(k2 � 2k0)h(x� y)(1� 2y) + y(1� y)i ++ 2�1� x� x22 � ���0�0 ++ (�p�m)x(1� x)���0�0 ++ 2k0h1�x+(x�y)2i�(�p��k�m)(1�x)o == i=5Xi=1 �(i)� ; (31)where �0(x) = x2 + �2(1� x)and the terms �(i)� 
orrespond to the �ve terms in thebra
es in Eq. (31).This is essentially the same expression as the onein [4℄. But unlike the respe
tive expression in [4℄, wherethe photon mass merely served as a regularization pa-rameter and was preserved only when ne
essary, we29
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ontributions�1 �2��(NR) 0:41386� � 0:1186 0:7213��(�) ���(NR) 16 ln3(2�)� 524 ln2(2�) +��212 + 1336� ln(2�) + 14�(3)� 5�2144 � 98 + 0:5259 0��(
) ���(NR) 0:1201 �0:7130here restored the full dependen
e on the �nite pho-ton mass � that e�e
tively des
ribes the polarizationoperator insertion. It 
an be shown that the gauge in-variant anomalous magneti
 moment does not generateradiative re
oil 
orre
tions (see, e.g., [5, 7℄). Therefore,the anomalous magneti
 moment and some other termsthat do not 
ontribute to HFS are omitted in Eq. (31).We insert the vertex in Eq. (31) into the skeletonexpression for the 
ontribution to HFS and obtain �veintegrals 
orresponding to the �ve terms in the right-hand side of (31). These integrals are 
al
ulated alongthe same lines as in the 
ase of the mass operator dis-
ussed above in detail. We 
olle
t all intermediate re-sults in Table 2. The total 
ontribution of the diagramwith the vertex insertion in Fig. 1 is given by��� = �1:1968� � 16 ln3(2�) + 1124 ln2(2�) ++��13�212 + 809 � ln(2�) + 3:9489: (32)We now 
olle
t all the 
ontributions in Eqs. (25),(30), and (32) generated by the diagrams with ele
tronpolarization insertions in Fig. 1 to obtain��(e) = ��� + 2��� +��� = �1:5335� ++ 34 ln2(2�) +���2 + 536 � ln(2�) + 7:0807: (33)The �rst term in the right-hand side is the well-knownnonre
oil 
ontribution to HFS [8℄, the se
ond term isthe leading logarithm squared 
ontribution obtainedin [9℄, and the single-logarithmi
 and 
onstant termsare the subje
t of this work.3. MUON POLARIZATION OPERATORInsertion of the muon polarization operator in theradiative photons in the diagrams in Fig. 2 lifts 
hara
-teristi
 integration momenta to the s
ale of the muon

mass. Hen
e, these diagrams do not generate nonre-
oil 
ontributions to HFS, all of whi
h originate fromthe region of nonrelativisti
 muon momenta. Moreover,due to high 
hara
teristi
 momenta, these diagrams donot even generate re
oil 
ontributions logarithmi
 inthe mass ratio that originate from the wide integrationregion between the ele
tron and muon masses. As aresult, the leading re
oil 
ontributions of the diagramsin Fig. 2 are pure numbers, and their 
al
ulation issigni�
antly simpler than in the 
ase of the ele
tronpolarization insertions in Fig. 1.As in the previous se
tion, insertion of the muonpolarization operator in the diagrams in Fig. 2 is a
-
ounted for by the introdu
tion of a photon mass, fol-lowed by an additional integration over the velo
itywith the weight in Eq. (1). For the muon polarization,the e�e
tive photon mass in the integrals is large,�2 = 4M21� v2in dimensional units and it determines 
hara
teristi
momenta in all the integrals. We 
an obtain the ex-pressions for the energy shift due to muon polariza-tion from the formulas for the respe
tive ele
tron po-larization 
ontributions above by res
aling the dimen-sionless integration momenta k ! k=� (we re
all that� = m=2M). In addition, we should adjust the ex-pression for the photon mass; in terms of the res
aledintegration momenta measured in units of 2M , it is�2 = 1�2(1� v2) :After these substitutions, the expressions for the di-mensionless 
ontributions to HFS that are due to ele
-tron polarization be
ome the expressions for the 
on-tributions due to muon polarization.a. Mass operator 
ontribution. To obtain an ex-pli
it expression for the diagrams with the mass op-erator insertions in Fig. 2, we res
ale the integrationmomentum k ! k=� in Eqs. (7) and (8), and rede�nethe photon mass squared as30



ÆÝÒÔ, òîì 137, âûï. 1, 2010 Radiative re
oil 
orre
tions to hyper�ne splitting : : :Table 2. Vertex 
ontributions��(NR) ��(�) ���(NR) ��(
) ���(NR)�1 �1:1356� + 0:3385 �16 ln3(2�) + 1124 ln2(2�) +��5�212 + 198 � ln (2�) + 3:2201 �0:3315�2 �0:0507� + 0:1007 �2�23 � 46972 � ln Mm + 0:0371 �0:0604�3 �0:0104� + 0:0160 �3��23 � 11936 � �0:0106�4 3:0460 0 �2:4323�5 �1:1758 0 1:1540�2 = 1�2(1� v2) :The auxiliary fun
tions used in Eqs. (7) and (8) arede�ned in Eq. (3). After res
aling, they simplify ash2(x; y)! 1� xy ; a1(x; y)! 1y�2(1� v2) : (34)All the dependen
e on � be
omes expli
it after thesemanipulations. It turns out that ���1 vanishes to-gether with �. The total leading re
oil 
ontributiongenerated by the diagrams with the mass operator in-sertions in Fig. 2 
oin
ides with ���2. Its 
al
ulationis straightforward, and we obtain��� = 1Z0 dx xZ0 dy 1Z0 dv v2�1� v23 ��� 1Z0 dk2 1� xk2y(1� v2) + 1 �1k �p1 + k2 � k� �� 12 �kp1 + k2 � k2 � 12�� = 0:1329: (35)b. Spanning photon 
ontribution. We obtain anexpression for the spanning photon 
ontribution withthe muon polarization insertion in Fig. 2 by res
al-ing the integration momentum and the photon massin Eq. (29). Under these transformations, the auxiliaryfun
tion �(x; y) in Eq. (27) simpli�es as�(x; y)! y(1� y)�2 ��k2 + �2�2 (1� x)y(1� y) � : (36)After res
aling, only the �rst and third terms in the�rst square bra
ket in the right-hand side of (29) pro-du
e 
ontributions nonvanishing with � 
ontributionsand we obtain

��� = 1Z0 dx xZ0 dy 1Z0 dv v2�1�v23 � 1Z0 dk2(x�y)�� � 1� 2yk2y(1� y)(1� v2) + 1� x �� (1� x)y[k2y(1� y)(1� v2) + 1� x℄2 ��� �1k �p1 + k2 � k� �� 12 �kp1 + k2 � k2 � 12�� = 0:3105: (37)
. Vertex 
ontribution. Res
aling the integrationmomentum and the photon mass in the expressions 
or-responding to the �ve terms �(i)� , we obtain an expli
itexpression for the vertex diagram 
ontribution in Fig. 2to HFS. It is easy to see that after the res
aling, allthe terms in the expression for the vertex fun
tion inEq. (31) are suppressed by at least one power of � in
omparison with the �rst term. This means that onlythe �rst term generates the leading re
oil 
orre
tion inthe 
ase of a muon polarization insertion. Expli
itly,the leading re
oil 
orre
tion generated by the vertexinsertions in Fig. 2 has the form��� = � 1Z0 dx xZ0 dy 1Z0 dvv2�1� v23 ��� 1Z0 dk2 (x� y)(1� 2y) + y(1� y)k2y(1� y)(1� v2) + 1� x �� �1k �p1 + k2 � k�� 12 �kp1 + k2 � k2 � 12�� == �0: 8738: (38)31
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ting all the leading radiative re
oil 
orre
tionsin Eqs. (35), (37), and (38) 
orresponding to the dia-grams with muon polarization insertions in Fig. 2, weobtain��(�) = ��� + 2��� +��� = �1:3042: (39)4. CONCLUSIONSRestoring the overall dimensional fa
tor in Eq. (33)and disregarding the nonre
oil and logarithm-squaredterms known earlier, we obtain single-logarithmi
 andnonlogarithmi
 
ontributions to HFS generated by thediagrams with one-loop ele
tron polarization insertionsin Fig. 1:�E(e) = ���2 � 536 � ln Mm + 7:0807��� �2(Z�)�3 mMEF : (40)The radiative re
oil 
ontribution generated by the di-agrams with one-loop muon polarization insertions inFig. 2 is nonlogarithmi
. We obtain it by restoring theoverall dimensional fa
tor in Eq. (39):�E(�) = �1:3042 �(Z2�)(Z�)�3 mMEF : (41)The total 
ontribution to HFS obtained above 
an bewritten as (Z = 1 in muonium)�E = �E(e) +�E(�) == ���2 � 536 � ln Mm + 5:7765� �3�3 mMEF : (42)The theoreti
al a

ura
y of HFS in muonium is 
ur-rently about 70 Hz. A realisti
 goal is to redu
e this un-
ertainty to below 10 Hz (see a more detailed dis
ussionin [1, 2℄). The result in Eq. (42) together with otherthree-loop radiative re
oil results in [10�12℄ makes thisgoal 
loser.

This work was supported by the NSF grantPHY-0757928. V. A. S. was also supported in part bythe RFBR grants 06-02-16156 and 08-02-13516, and bythe DFG grant GZ 436 RUS 113/769/0-3.REFERENCES1. M. I. Eides, H. Grot
h, and V. A. Shelyuto, Theory ofLight Hydrogeni
 Bound States, Springer, Berlin, Hei-delberg, New York (2007).2. M. I. Eides, H. Grot
h, and V. A. Shelyuto, Phys. Rep.342, 63 (2001).3. M. I. Eides, H. Grot
h, and V. A. Shelyuto, Can. J.Phys. 83, 363 (2005).4. S. G. Karshenboim, M. I. Eides, and V. A. Shelyuto,Yad. Fiz. 48, 1039 (1988) [Sov. J. Nu
l. Phys. 48, 661(1988)℄.5. S. G. Karshenboim, V. A. Shelyuto, and M. I. Eides,Zh. Eksp. Teor. Fiz. 92, 1188 (1987) [Sov. Phys.-JETP65, 664 (1987)℄.6. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,Quantum Ele
trodynami
s, 2nd ed., Butterworth-Heinemann, Oxford (1999).7. M. I. Eides, S. G. Karshenboim, and V. A. Shelyuto,Ann. Phys. (NY) 205, 231 (1991).8. M. I. Eides, S. G. Karshenboim, and V. A. Shelyuto,Phys. Lett. B 249, 519 (1990); Pis'ma Zh. Eksp. Teor.Fiz. 52, 937 (1990) [JETP Lett. 52, 317 (1990)℄.9. M. I. Eides, S. G. Karshenboim, and V. A. Shelyuto,Phys. Lett. B 216, 405 (1989); Yad. Fiz. 49, 493 (1989)[Sov. J. Nu
l. Phys. 49, 309 (1989)℄.10. M. I. Eides, H. Grot
h, and V. A. Shelyuto, Phys. Rev.D 65, 013003 (2001).11. M. I. Eides, H. Grot
h, and V. A. Shelyuto, Phys. Rev.D 67, 113003 (2003).12. M. I. Eides, H. Grot
h, and V. A. Shelyuto, Phys. Rev.D 70, 073005 (2004).

32


