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ELECTRIC FIELD ENHANCEMENT BETWEEN TWO PARALLELCYLINDERS DUE TO PLASMONIC RESONANCEP. E. Vorobev *Landau Institute for Theoretial Physis Russian Aademy of Sienes119334, Mosow, RussiaReeived September 25, 2009We theoretially examine the eletri �eld enhanement in the narrow gap between two parallel ylinders dueto the plasmoni resonane. The resonane ondition and the �eld enhanement fator are found expliitly. Itis shown that the resonane ours at the frequenies lower than the plasma frequeny. This e�et results fromthe speial geometry: the gap width between parallel ylinders is muh smaller than their radii. It is also shownthat the enhanement oe�ient is muh larger than the one for a single ylinder and is determined togetherwith the resonane frequeny by the system geometry.1. INTRODUCTIONEletrodynami properties of materials onsistingof metal granules immersed into a dieletri mediumattrat great experimental interest. There are nume-rous experiments where eletromagneti waves propa-gate through suh systems (we refer to monograph [1℄for an introdution to the subjet). In the ase wherethe geometry of metal grains is suh that there are nar-row gaps between separate grains, the �eld enhane-ment e�et is observed, whih is as follows. The �eldvalue in the narrow gaps is muh larger than the in-ident wave �eld and exhibits peak values at partiu-lar frequenies of the inident wave. In a disorderedmetal�dieletri omposite, a number of sharp peaksare observed in the spatial distribution of the eletri�eld when the system is exposed to an external eletro-magneti wave [2�4℄.There is an extensive literature on the problem oftwo metalli or dieletri spheres in an eletri �eld.The problem of two metalli spheres in a dieletrimedium was onsidered in Ref. [5℄. The same prob-lem for two dieletri spheres was studied in [6℄. Theproblem of two ylinders in homogeneous �eld an befound in [7℄. All those works, however, do not onsiderthe e�et of plasmoni resonane. It was onsidered fortwo remote metalli spheres in [8℄ using the perturba-tion theory, whih is not appropriate for lose spheresor ylinders. The problem of two lose metalli spheres*E-mail: petro999�list.ru

exposed to an eletromagneti wave was investigatedin [9�11℄, where a system of reurrent relations wassolved numerially.In this paper, we theoretially examine the e�et ofplasmoni resonane for the �eld between two parallelylinders. We �nd expliit expressions for the �eld, theresonane onditions, and the �eld enhanement oef-�ients. We also propose the general method of inves-tigating suh e�ets in more ompliated 2D-geometrysystems: ylinders of arbitrary ross setions. We sup-ply our analyti solution with general physial onside-rations providing a qualitative explanation of the prob-lem.2. PROBLEM FORMULATION AND GENERALCONSIDERATIONSWe onsider the system of two parallel in�nitelylong metalli ylinders in a dieletri medium. Weinvestigate the eletri �eld distribution between andaround these ylinders when a linearly polarized waveis inident on the system, with its eletri �eld vetordireted perpendiular to the ylinder axes and parallelto the line onneting the enters of their ross setions(Fig. 1). In this ase, the problem is e�etively two-di-mensional: the �eld is the same in any plane perpen-diular to the ylinders. We use the Cartesian oordi-nates with the z axis direted along the ylinders axes,the y axis direted along the line onneting the ylin-220
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Fig. 1. Narrow gap between metalli ylindersder ross-setion enters, and the x line passes betweenthe ylinders perpendiular to their axes (Fig. 1).We assume the wavelength � in the dieletrimedium to be larger than the ylinder radius a, �� a.We �rst onsider the ylinders of the same radius, andlet Æ be the gap width. The wave �eld an be writ-ten as Re(E0e�i!t). Due to the smallness of the ylin-der radii ompared to the wavelength, the eletri �eldan be desribed in the quasistati approximation; wetherefore onsider the problem of metalli ylinders ina homogeneous eletri �eld. The eletri �eld an beonsidered to be potential and an be desribed, disre-garding the magneti �eld, in terms of a salar poten-tial: E = �r�. Then the equation for the potential isr2� = 0.To formulate the boundary onditions, let "d be thepermittivity of the dieletri medium, assumed to beof the order of unity, and "m be the permittivity of themetal. We assume that the imaginary part of "d anbe negleted and that the imaginary part of "m is smallompared to its real part. The permittivities of bothmetal and dieletri are funtions of frequeny. Welet " = "m="d be the permittivity ontrast. Then theboundary onditions are as follows: the potential mustbe ontinuous on the metal surfae, whih is equivalentto the ondition that the tangential eletri �eld beontinuous and the normal derivatives of the potentialdi�er by the fator ":�out = �in; (1)

��out�n = "��in�n ; (2)where �out and �in are the respetive potentials in themetal and the dieletri. Both onditions are to be im-posed on the surfae of ylinders. We therefore have theproblem of �nding the harmoni potential that satis�esonditions (1) and (2) on the ylinder surfaes.To rigorously demonstrate the physial e�et of theresonane, we �rst onsider the �eld in the systemwith only one ylinder. The potential is then givenby well-known formulas [12℄�out = �E0 � �+ "� 1"+ 1a2E0 � ��2 ; (3)�in = � 21 + "E0 � �; (4)where � is the two-dimensional radius vetor. It followsfrom these formulas that the resonane value is " = �1.In the optial spetral region, the permittivity of agood metal an be approximated by the Drude�Lorentzformula "m � ��!p! �2�1� i!� � ; (5)where !p is the plasma frequeny and � is the elet-ron relaxation time (we assume that !� � 1). There-fore, the resonane ours at a frequeny lose to theplasma one [13, 14℄. We also note that as an be seenfrom (3), the �eld is loalized inside the ylinder andaround it, gradually deaying with the distane. Theenhanement oe�ient is of the order of 1="00 and isindependent of the ylinder radius.We now investigate the �eld in the system with twoylinders separated by a narrow gap, seeking resonan-es that our at large negative values of the permitti-vity. We expet the enhaned �eld to be on�ned in thegap, whih an be aounted for as follows. In seekingthe resonane due to the gap, we have to �nd the stand-ing waves that an exist in this gap. The gap appro-ximately retains the onstant width Æ at the distanesof the order of paÆ from its enter. Hene, we are to�nd the standing waves in the �at gap of the width Æand length paÆ between two metals. It is known thatthe propagation onstant � of an eletromagneti wavealong a narrow gap is related to the metal permittivityas " = � th(�Æ=2) [15℄. The standing wave ondition(taking into aount that j"j � 1) an be written as�paÆ � �n, where n is an integer. We thus arrive atthe following estimate of the resonane permittivity:"res � � 1nraÆ ; (6)221



P. E. Vorobev ÆÝÒÔ, òîì 137, âûï. 2, 2010whih is large due to the ondition a � Æ. We notethat the resonane permittivity is determined by thegap geometry.We now estimate the order of magnitude of the �eldenhanement oe�ient. We assume that we are loseto the resonane orresponding to n = 1 in (6), i. e.," � �pa=Æ. We let E denote the �eld strengthin the enter of the gap and E0 the external �eld.The �eld on the x axis is E(x). The �eld inside thegap, i. e., at x � paÆ, is approximately onstant,equal to E. In the region a � x � paÆ, the dis-tane between the ylinders is of the order of x2=a,and hene the potential di�erene between the ylin-ders at these distanes is (��)out � E(x)x2=a. On theother hand, the potential hange inside the metal anbe estimated as (��)in � E(x)x=". It follows that(��)in=(��)out � paÆ=x � 1. We onlude thatthe potential di�erene between the ylinders is on-stant in the region x � paÆ, i. e., (��)out = onst.We then expliitly write the �eld dependene on x,E(x) � (��)outa=x2. This potential di�erene bet-ween the ylinders gives rise to a dipole moment (perunit length) of the system, whih an be estimated asd � aZpaÆ dxE(x)x2a � (��)outa: (7)The �eld far from the ylinders, x � a, is determinedby this dipole and is E(x) � (��)outa=x2, whih is thesame as the �eld in the region a � x � paÆ. Thus,there are only two asymptoti regions, x � paÆ andx� paÆ, with the �eld values given byE � E; x� paÆ; (8)E � (��)outa=x2; x� paÆ: (9)Relating these asymptoti formulas, we an estimate(��)out � EÆ.In order to estimate the relation between E andE0, we have to alulate the energy dissipation in thesystem. Most dissipation ours in the metal near thegap, where �eld penetrates the metal at a depth of theorder of paÆ. We write the dissipation rate per unitlength aording to the standard formula [16℄Q � !"00E2 (1="0)2aÆ: (10)At the resonane permittivity "0 �pa=Æ, we �ndQ � !"00E2 Æ2: (11)

This dissipation should be balaned by the work pro-dued by the external �eld E0 on the system. Thepower of this work is P � ! dE0. Comparing this withthe dissipation rate, we �ndEE0 � 1"00 aÆ : (12)Formulas (6) and (12) are the results of our estima-tions. They show that the resonane in our systemours at larger negative values of permittivity, i. e., atlower frequenies than in the system of one ylinder.The enhanement oe�ient is larger than in the aseof a single ylinder and depends on the geometry of thesystem (ylinder radii and the gap width). It an beshown that in the ase of two lose ylinders of greatlydi�erent radii, the e�et of the resonane is determinedby the smallest radius (whih determines the geometryof the gap).We thus estimated the resonane onditions and theenhanement oe�ient from the general physial rea-soning. We emphasize that the resonane permittivityvalue is mostly determined by the narrow gap geomet-ry (its width and length), while the enhanement o-e�ient is determined by the geometry of the wholesystem.It is worth estimating the losses due to radiation.The radiation intensity per unit length an be writtenas [17℄ I � !32 d2 � !32 E2 Æ2a2; (13)where d is the dipole moment (per unit length). In ourestimation of the �eld enhanement, we assumed theseradiation losses to be small ompared to Ohmi ones,given by formula (11). This leads to the ondition"00 � (a=�)2 : (14)3. ANALYTIC SOLUTIONWe now turn to a rigorous solution of the problemof two ylinders in an external eletri �eld. We let �0denote the potential of the external eletri �eld of thestrength E0. Let �in be the potential inside the ylin-ders and �outind the indued potential due to the preseneof the ylinders. The full potential outside the ylindersis �0 +�outind.Beause we onsider the external wave polarized inthe xy plane (see Fig. 1) perpendiular to the ylindersaxis, the problem is essentially two-dimensional. To222
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ξ = −ξ0Fig. 2. Lines � = onst in bipolar oordinatessolve the Laplae equation, we use the so-alled bipo-lar oordinate system in the xy plane [7℄. We de�nedimensionless bipolar oordinates � and � asx = C sin �h � � os � ; y = C sh �h � � os � ; (15)�1 < � <1; 0 < � < 2�; (16)where C is the transformation onstant. Coordinatelines � = onst are irles (Fig. 2):x2 + (y � C th �)2 = (C= sh �)2: (17)Let �0 and ��0 orrespond to the lines of ross setionsof the metalli ylinders. We then �nd C = a sh(�0=2).It an be veri�ed that the ondition a� Æ orrespondsto �0 � 1, �0 �pÆ=a.The Laplae operator in this oordinate system isgiven by r2 � 1h2(�; �) � �2��2 + �2��2� ; (18)where h = C=(h � � os �) is the saling funtion.We now an separate the variables in the Laplaeequation. The eigenfuntions of operator (18) areexp(�n�) osn� or exp(�n�) sinn�. Using the sym-metry of the external potential (symmetri with respetto the y axis and antisymmetri with respet to the xaxis), we �nd the following expressions for potentials:�in = E0aXAne�n� osn�; � > 0; (19)

�outind = E0aXBn shn� osn�; (20)where the unknown oe�ients An and Bn are to befound from the boundary onditions.We need to expand the external �eld potential �0 �� �E0y into a series of Laplae eigenfuntions. Simpleintegration yields�0 = �sign � E0a�� sh �0 1X1 2e�nj�j osn� + 1! : (21)The boundary onditions are�in(�0) = �0(�0) + �outind(�0); (22)"��in�� �����0 = ��0�� �����0 + ��outind�� �����0 : (23)We an now �nd the oe�ients An and Bn:Bn = �2(1� ") exp(�n�0) sh �0("+ thn�0) shn�0 ; (24)An = � 2 exp(n�0) sh �0("+ thn�0) shn�0 : (25)Hene, the resonane onditions are" = � thn�0: (26)This expression is formally exat beause we did notuse the smallness of the gap between the ylinders. Forsmall gaps �0 � 1, we �nd" � �1=n�0 (27)for not very large n. Beause �0 �pÆ=a, we an write"res � � 1nraÆ ; (28)whih is onsistent with formula (6) found from generalphysial onsiderations.We next investigate the struture of the eletri �eldwith the potential given by formulas (20) and (24). Weassume that we are lose to the resonane with n = 1,i. e., "0 � �pa=Æ. Then we an disregard all the termsin sum (20) exept the �rst one. We also onsider onlythe indued �eld. Aording to (20) and (24), the po-tential an be written as�outind = �2E0a(1� ") exp(��0)"+ th �0 sh � os �: (29)223



P. E. Vorobev ÆÝÒÔ, òîì 137, âûï. 2, 2010Taking into aount that �0 � 1 and j"0j �pa=Æ � 1,we an rewrite this expression as�outind = �2E0a3=2i"00Æ1=2 sh � os �: (30)To �nd the �eld, we now need to di�erentiate this po-tential with respet to the oordinates. We are mostlyinterested with the �eld on the line perpendiular tothe ylinders axes and passing between them (the xaxis in Cartesian oordinates, see Fig. 1). It is learfrom the symmetry onsiderations (and also apparentfrom alulations) that there is only the y omponentof the �eld on this line. Therefore, we obtainEy = ���outind�� ���y � ��outind�� ���y : (31)Calulating the derivatives, we �ndEy = 2E0i"00 aÆ os �(1� os �): (32)At the origin of Cartesian oordinates, i. e., in the en-ter of the gap, �� = �. Hene,E = �4E0i"00 aÆ ; (33)whih agrees with estimate (12). If follows from (15)that � � 1 orresponds to x� paÆ, and we an there-fore write the �eld in this region asE(x) = 4E0a2i"00 1x2 ; (34)whih orresponds to the �eld 4E0a2=i"00 of the two-di-mensional dipole and is also onsistent with the quali-tative estimaties.Thus, the expliit analyti solution on�rmed ourqualitative estimaties based on the general physialpriniples. Here, we have investigated the �eld betweenand around the ylinders of the same radii with a nar-row gap between them. However, using the above-dis-ussed bipolar oordinate system also allows solving theproblem with two ylinders of arbitrary radii and gapbetween them. These solutions are more umbersomethan the ones for ylinders of the same radii, and wedo not present them here.Finally, we remark on the purely stati problem oftwo metalli ylinders (i. e., with " ! 1) in an ex-ternal �eld. In this ase, there is no �eld inside theylinders, and their potentials are onstant. It followsthat the potential di�erene between the ylinders is�� = 2E0a sh �0. Beause the gap width is Æ, the or-der of magnitude of the �eld inside the gap isE � E0pa=Æ: (35)

This inrease in the �eld strength is due to a geometri-al fator only and is not related to the plasmoni re-sonane. If the ylinder permittivity has a �nite value,then this geometri e�et is still present (although isweaker); it vanishes at " = 1. Thus, we onludethat the enhanement due to plasmoni resonane (ex-pression (33)) is larger than any possible geometri en-hanement.4. CONFORMAL TRANSFORMATIONSThe bipolar oordinates (�; �) an be obtained fromthe Cartesian oordinates (x; y) by the onformal trans-formation � + i� = ln x+ iy � iCx+ iy + iC : (36)This is why the saling funtions of bipolar oordinatesare equal and hene the Laplae operator has the simpleform given by (18). The Laplae operator eigenfun-tions ontain os � or sin � beause the oordinate � hasthe period 2� due to the logarithm in (36). This sim-ple form of the Laplae equation and onsequently thesimple eigenfuntions remain the same for any oordi-nates obtained from the Cartesian system by means ofa onformal map if the � oordinate has the period 2�.This implies that the formal resonane ondition (26)remains the same, although the onstant �0 is relatedto the harateristis of the systems di�erently. Onean think of a transformation that produes ylindersof nonirular ross setion (for example, of a prolateform) or a hain of ylinders.5. CONCLUSIONSWe have investigated the plasmoni resonane in anarrow gap between two metalli ylinders embeddedinto a dieletri medium. We have estimated the resultsusing the general physial reasoning, thus revealing thenature of the e�ets leading to �eld enhanement insuh systems. We then solved the problem rigorouslyby using the so-alled bipolar oordinates. The ana-lyti solution yielded the resonane permittivity givenby (28) and the �eld enhanement ratio given by (33),whih on�rmed our qualitative estimates based ongeneral priniples (formulas (6) and (12)). The mainresult of the study is that ontrarily to the ase ofone ylinder, where the resonane position and theenhanement ratio are determined solely by the per-mittivity value and not by the ylinder radius, in the224
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