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ELECTRIC FIELD ENHANCEMENT BETWEEN TWO PARALLELCYLINDERS DUE TO PLASMONIC RESONANCEP. E. Vorobev *Landau Institute for Theoreti
al Physi
s Russian A
ademy of S
ien
es119334, Mos
ow, RussiaRe
eived September 25, 2009We theoreti
ally examine the ele
tri
 �eld enhan
ement in the narrow gap between two parallel 
ylinders dueto the plasmoni
 resonan
e. The resonan
e 
ondition and the �eld enhan
ement fa
tor are found expli
itly. Itis shown that the resonan
e o

urs at the frequen
ies lower than the plasma frequen
y. This e�e
t results fromthe spe
ial geometry: the gap width between parallel 
ylinders is mu
h smaller than their radii. It is also shownthat the enhan
ement 
oe�
ient is mu
h larger than the one for a single 
ylinder and is determined togetherwith the resonan
e frequen
y by the system geometry.1. INTRODUCTIONEle
trodynami
 properties of materials 
onsistingof metal granules immersed into a diele
tri
 mediumattra
t great experimental interest. There are nume-rous experiments where ele
tromagneti
 waves propa-gate through su
h systems (we refer to monograph [1℄for an introdu
tion to the subje
t). In the 
ase wherethe geometry of metal grains is su
h that there are nar-row gaps between separate grains, the �eld enhan
e-ment e�e
t is observed, whi
h is as follows. The �eldvalue in the narrow gaps is mu
h larger than the in-
ident wave �eld and exhibits peak values at parti
u-lar frequen
ies of the in
ident wave. In a disorderedmetal�diele
tri
 
omposite, a number of sharp peaksare observed in the spatial distribution of the ele
tri
�eld when the system is exposed to an external ele
tro-magneti
 wave [2�4℄.There is an extensive literature on the problem oftwo metalli
 or diele
tri
 spheres in an ele
tri
 �eld.The problem of two metalli
 spheres in a diele
tri
medium was 
onsidered in Ref. [5℄. The same prob-lem for two diele
tri
 spheres was studied in [6℄. Theproblem of two 
ylinders in homogeneous �eld 
an befound in [7℄. All those works, however, do not 
onsiderthe e�e
t of plasmoni
 resonan
e. It was 
onsidered fortwo remote metalli
 spheres in [8℄ using the perturba-tion theory, whi
h is not appropriate for 
lose spheresor 
ylinders. The problem of two 
lose metalli
 spheres*E-mail: petro999�list.ru

exposed to an ele
tromagneti
 wave was investigatedin [9�11℄, where a system of re
urrent relations wassolved numeri
ally.In this paper, we theoreti
ally examine the e�e
t ofplasmoni
 resonan
e for the �eld between two parallel
ylinders. We �nd expli
it expressions for the �eld, theresonan
e 
onditions, and the �eld enhan
ement 
oef-�
ients. We also propose the general method of inves-tigating su
h e�e
ts in more 
ompli
ated 2D-geometrysystems: 
ylinders of arbitrary 
ross se
tions. We sup-ply our analyti
 solution with general physi
al 
onside-rations providing a qualitative explanation of the prob-lem.2. PROBLEM FORMULATION AND GENERALCONSIDERATIONSWe 
onsider the system of two parallel in�nitelylong metalli
 
ylinders in a diele
tri
 medium. Weinvestigate the ele
tri
 �eld distribution between andaround these 
ylinders when a linearly polarized waveis in
ident on the system, with its ele
tri
 �eld ve
tordire
ted perpendi
ular to the 
ylinder axes and parallelto the line 
onne
ting the 
enters of their 
ross se
tions(Fig. 1). In this 
ase, the problem is e�e
tively two-di-mensional: the �eld is the same in any plane perpen-di
ular to the 
ylinders. We use the Cartesian 
oordi-nates with the z axis dire
ted along the 
ylinders axes,the y axis dire
ted along the line 
onne
ting the 
ylin-220
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Fig. 1. Narrow gap between metalli
 
ylindersder 
ross-se
tion 
enters, and the x line passes betweenthe 
ylinders perpendi
ular to their axes (Fig. 1).We assume the wavelength � in the diele
tri
medium to be larger than the 
ylinder radius a, �� a.We �rst 
onsider the 
ylinders of the same radius, andlet Æ be the gap width. The wave �eld 
an be writ-ten as Re(E0e�i!t). Due to the smallness of the 
ylin-der radii 
ompared to the wavelength, the ele
tri
 �eld
an be des
ribed in the quasistati
 approximation; wetherefore 
onsider the problem of metalli
 
ylinders ina homogeneous ele
tri
 �eld. The ele
tri
 �eld 
an be
onsidered to be potential and 
an be des
ribed, disre-garding the magneti
 �eld, in terms of a s
alar poten-tial: E = �r�. Then the equation for the potential isr2� = 0.To formulate the boundary 
onditions, let "d be thepermittivity of the diele
tri
 medium, assumed to beof the order of unity, and "m be the permittivity of themetal. We assume that the imaginary part of "d 
anbe negle
ted and that the imaginary part of "m is small
ompared to its real part. The permittivities of bothmetal and diele
tri
 are fun
tions of frequen
y. Welet " = "m="d be the permittivity 
ontrast. Then theboundary 
onditions are as follows: the potential mustbe 
ontinuous on the metal surfa
e, whi
h is equivalentto the 
ondition that the tangential ele
tri
 �eld be
ontinuous and the normal derivatives of the potentialdi�er by the fa
tor ":�out = �in; (1)

��out�n = "��in�n ; (2)where �out and �in are the respe
tive potentials in themetal and the diele
tri
. Both 
onditions are to be im-posed on the surfa
e of 
ylinders. We therefore have theproblem of �nding the harmoni
 potential that satis�es
onditions (1) and (2) on the 
ylinder surfa
es.To rigorously demonstrate the physi
al e�e
t of theresonan
e, we �rst 
onsider the �eld in the systemwith only one 
ylinder. The potential is then givenby well-known formulas [12℄�out = �E0 � �+ "� 1"+ 1a2E0 � ��2 ; (3)�in = � 21 + "E0 � �; (4)where � is the two-dimensional radius ve
tor. It followsfrom these formulas that the resonan
e value is " = �1.In the opti
al spe
tral region, the permittivity of agood metal 
an be approximated by the Drude�Lorentzformula "m � ��!p! �2�1� i!� � ; (5)where !p is the plasma frequen
y and � is the ele
t-ron relaxation time (we assume that !� � 1). There-fore, the resonan
e o

urs at a frequen
y 
lose to theplasma one [13, 14℄. We also note that as 
an be seenfrom (3), the �eld is lo
alized inside the 
ylinder andaround it, gradually de
aying with the distan
e. Theenhan
ement 
oe�
ient is of the order of 1="00 and isindependent of the 
ylinder radius.We now investigate the �eld in the system with two
ylinders separated by a narrow gap, seeking resonan-
es that o

ur at large negative values of the permitti-vity. We expe
t the enhan
ed �eld to be 
on�ned in thegap, whi
h 
an be a

ounted for as follows. In seekingthe resonan
e due to the gap, we have to �nd the stand-ing waves that 
an exist in this gap. The gap appro-ximately retains the 
onstant width Æ at the distan
esof the order of paÆ from its 
enter. Hen
e, we are to�nd the standing waves in the �at gap of the width Æand length paÆ between two metals. It is known thatthe propagation 
onstant � of an ele
tromagneti
 wavealong a narrow gap is related to the metal permittivityas " = � 
th(�Æ=2) [15℄. The standing wave 
ondition(taking into a

ount that j"j � 1) 
an be written as�paÆ � �n, where n is an integer. We thus arrive atthe following estimate of the resonan
e permittivity:"res � � 1nraÆ ; (6)221
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h is large due to the 
ondition a � Æ. We notethat the resonan
e permittivity is determined by thegap geometry.We now estimate the order of magnitude of the �eldenhan
ement 
oe�
ient. We assume that we are 
loseto the resonan
e 
orresponding to n = 1 in (6), i. e.," � �pa=Æ. We let E
 denote the �eld strengthin the 
enter of the gap and E0 the external �eld.The �eld on the x axis is E(x). The �eld inside thegap, i. e., at x � paÆ, is approximately 
onstant,equal to E
. In the region a � x � paÆ, the dis-tan
e between the 
ylinders is of the order of x2=a,and hen
e the potential di�eren
e between the 
ylin-ders at these distan
es is (��)out � E(x)x2=a. On theother hand, the potential 
hange inside the metal 
anbe estimated as (��)in � E(x)x=". It follows that(��)in=(��)out � paÆ=x � 1. We 
on
lude thatthe potential di�eren
e between the 
ylinders is 
on-stant in the region x � paÆ, i. e., (��)out = 
onst.We then expli
itly write the �eld dependen
e on x,E(x) � (��)outa=x2. This potential di�eren
e bet-ween the 
ylinders gives rise to a dipole moment (perunit length) of the system, whi
h 
an be estimated asd � aZpaÆ dxE(x)x2a � (��)outa: (7)The �eld far from the 
ylinders, x � a, is determinedby this dipole and is E(x) � (��)outa=x2, whi
h is thesame as the �eld in the region a � x � paÆ. Thus,there are only two asymptoti
 regions, x � paÆ andx� paÆ, with the �eld values given byE � E
; x� paÆ; (8)E � (��)outa=x2; x� paÆ: (9)Relating these asymptoti
 formulas, we 
an estimate(��)out � E
Æ.In order to estimate the relation between E
 andE0, we have to 
al
ulate the energy dissipation in thesystem. Most dissipation o

urs in the metal near thegap, where �eld penetrates the metal at a depth of theorder of paÆ. We write the dissipation rate per unitlength a

ording to the standard formula [16℄Q � !"00E2
 (1="0)2aÆ: (10)At the resonan
e permittivity "0 �pa=Æ, we �ndQ � !"00E2
 Æ2: (11)

This dissipation should be balan
ed by the work pro-du
ed by the external �eld E0 on the system. Thepower of this work is P � ! dE0. Comparing this withthe dissipation rate, we �ndE
E0 � 1"00 aÆ : (12)Formulas (6) and (12) are the results of our estima-tions. They show that the resonan
e in our systemo

urs at larger negative values of permittivity, i. e., atlower frequen
ies than in the system of one 
ylinder.The enhan
ement 
oe�
ient is larger than in the 
aseof a single 
ylinder and depends on the geometry of thesystem (
ylinder radii and the gap width). It 
an beshown that in the 
ase of two 
lose 
ylinders of greatlydi�erent radii, the e�e
t of the resonan
e is determinedby the smallest radius (whi
h determines the geometryof the gap).We thus estimated the resonan
e 
onditions and theenhan
ement 
oe�
ient from the general physi
al rea-soning. We emphasize that the resonan
e permittivityvalue is mostly determined by the narrow gap geomet-ry (its width and length), while the enhan
ement 
o-e�
ient is determined by the geometry of the wholesystem.It is worth estimating the losses due to radiation.The radiation intensity per unit length 
an be writtenas [17℄ I � !3
2 d2 � !3
2 E2
 Æ2a2; (13)where d is the dipole moment (per unit length). In ourestimation of the �eld enhan
ement, we assumed theseradiation losses to be small 
ompared to Ohmi
 ones,given by formula (11). This leads to the 
ondition"00 � (a=�)2 : (14)3. ANALYTIC SOLUTIONWe now turn to a rigorous solution of the problemof two 
ylinders in an external ele
tri
 �eld. We let �0denote the potential of the external ele
tri
 �eld of thestrength E0. Let �in be the potential inside the 
ylin-ders and �outind the indu
ed potential due to the presen
eof the 
ylinders. The full potential outside the 
ylindersis �0 +�outind.Be
ause we 
onsider the external wave polarized inthe xy plane (see Fig. 1) perpendi
ular to the 
ylindersaxis, the problem is essentially two-dimensional. To222
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ξ = ξ0

x

ξ = −ξ0Fig. 2. Lines � = 
onst in bipolar 
oordinatessolve the Lapla
e equation, we use the so-
alled bipo-lar 
oordinate system in the xy plane [7℄. We de�nedimensionless bipolar 
oordinates � and � asx = C sin �
h � � 
os � ; y = C sh �
h � � 
os � ; (15)�1 < � <1; 0 < � < 2�; (16)where C is the transformation 
onstant. Coordinatelines � = 
onst are 
ir
les (Fig. 2):x2 + (y � C 
th �)2 = (C= sh �)2: (17)Let �0 and ��0 
orrespond to the lines of 
ross se
tionsof the metalli
 
ylinders. We then �nd C = a sh(�0=2).It 
an be veri�ed that the 
ondition a� Æ 
orrespondsto �0 � 1, �0 �pÆ=a.The Lapla
e operator in this 
oordinate system isgiven by r2 � 1h2(�; �) � �2��2 + �2��2� ; (18)where h = C=(
h � � 
os �) is the s
aling fun
tion.We now 
an separate the variables in the Lapla
eequation. The eigenfun
tions of operator (18) areexp(�n�) 
osn� or exp(�n�) sinn�. Using the sym-metry of the external potential (symmetri
 with respe
tto the y axis and antisymmetri
 with respe
t to the xaxis), we �nd the following expressions for potentials:�in = E0aXAne�n� 
osn�; � > 0; (19)

�outind = E0aXBn shn� 
osn�; (20)where the unknown 
oe�
ients An and Bn are to befound from the boundary 
onditions.We need to expand the external �eld potential �0 �� �E0y into a series of Lapla
e eigenfun
tions. Simpleintegration yields�0 = �sign � E0a�� sh �0 1X1 2e�nj�j 
osn� + 1! : (21)The boundary 
onditions are�in(�0) = �0(�0) + �outind(�0); (22)"��in�� �����0 = ��0�� �����0 + ��outind�� �����0 : (23)We 
an now �nd the 
oe�
ients An and Bn:Bn = �2(1� ") exp(�n�0) sh �0("+ 
thn�0) shn�0 ; (24)An = � 2 exp(n�0) sh �0("+ 
thn�0) shn�0 : (25)Hen
e, the resonan
e 
onditions are" = � 
thn�0: (26)This expression is formally exa
t be
ause we did notuse the smallness of the gap between the 
ylinders. Forsmall gaps �0 � 1, we �nd" � �1=n�0 (27)for not very large n. Be
ause �0 �pÆ=a, we 
an write"res � � 1nraÆ ; (28)whi
h is 
onsistent with formula (6) found from generalphysi
al 
onsiderations.We next investigate the stru
ture of the ele
tri
 �eldwith the potential given by formulas (20) and (24). Weassume that we are 
lose to the resonan
e with n = 1,i. e., "0 � �pa=Æ. Then we 
an disregard all the termsin sum (20) ex
ept the �rst one. We also 
onsider onlythe indu
ed �eld. A

ording to (20) and (24), the po-tential 
an be written as�outind = �2E0a(1� ") exp(��0)"+ 
th �0 sh � 
os �: (29)223
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ount that �0 � 1 and j"0j �pa=Æ � 1,we 
an rewrite this expression as�outind = �2E0a3=2i"00Æ1=2 sh � 
os �: (30)To �nd the �eld, we now need to di�erentiate this po-tential with respe
t to the 
oordinates. We are mostlyinterested with the �eld on the line perpendi
ular tothe 
ylinders axes and passing between them (the xaxis in Cartesian 
oordinates, see Fig. 1). It is 
learfrom the symmetry 
onsiderations (and also apparentfrom 
al
ulations) that there is only the y 
omponentof the �eld on this line. Therefore, we obtainEy = ���outind�� ���y � ��outind�� ���y : (31)Cal
ulating the derivatives, we �ndEy = 2E0i"00 aÆ 
os �(1� 
os �): (32)At the origin of Cartesian 
oordinates, i. e., in the 
en-ter of the gap, �� = �. Hen
e,E
 = �4E0i"00 aÆ ; (33)whi
h agrees with estimate (12). If follows from (15)that � � 1 
orresponds to x� paÆ, and we 
an there-fore write the �eld in this region asE(x) = 4E0a2i"00 1x2 ; (34)whi
h 
orresponds to the �eld 4E0a2=i"00 of the two-di-mensional dipole and is also 
onsistent with the quali-tative estimaties.Thus, the expli
it analyti
 solution 
on�rmed ourqualitative estimaties based on the general physi
alprin
iples. Here, we have investigated the �eld betweenand around the 
ylinders of the same radii with a nar-row gap between them. However, using the above-dis-
ussed bipolar 
oordinate system also allows solving theproblem with two 
ylinders of arbitrary radii and gapbetween them. These solutions are more 
umbersomethan the ones for 
ylinders of the same radii, and wedo not present them here.Finally, we remark on the purely stati
 problem oftwo metalli
 
ylinders (i. e., with " ! 1) in an ex-ternal �eld. In this 
ase, there is no �eld inside the
ylinders, and their potentials are 
onstant. It followsthat the potential di�eren
e between the 
ylinders is�� = 2E0a sh �0. Be
ause the gap width is Æ, the or-der of magnitude of the �eld inside the gap isE
 � E0pa=Æ: (35)

This in
rease in the �eld strength is due to a geometri-
al fa
tor only and is not related to the plasmoni
 re-sonan
e. If the 
ylinder permittivity has a �nite value,then this geometri
 e�e
t is still present (although isweaker); it vanishes at " = 1. Thus, we 
on
ludethat the enhan
ement due to plasmoni
 resonan
e (ex-pression (33)) is larger than any possible geometri
 en-han
ement.4. CONFORMAL TRANSFORMATIONSThe bipolar 
oordinates (�; �) 
an be obtained fromthe Cartesian 
oordinates (x; y) by the 
onformal trans-formation � + i� = ln x+ iy � iCx+ iy + iC : (36)This is why the s
aling fun
tions of bipolar 
oordinatesare equal and hen
e the Lapla
e operator has the simpleform given by (18). The Lapla
e operator eigenfun
-tions 
ontain 
os � or sin � be
ause the 
oordinate � hasthe period 2� due to the logarithm in (36). This sim-ple form of the Lapla
e equation and 
onsequently thesimple eigenfun
tions remain the same for any 
oordi-nates obtained from the Cartesian system by means ofa 
onformal map if the � 
oordinate has the period 2�.This implies that the formal resonan
e 
ondition (26)remains the same, although the 
onstant �0 is relatedto the 
hara
teristi
s of the systems di�erently. One
an think of a transformation that produ
es 
ylindersof non
ir
ular 
ross se
tion (for example, of a prolateform) or a 
hain of 
ylinders.5. CONCLUSIONSWe have investigated the plasmoni
 resonan
e in anarrow gap between two metalli
 
ylinders embeddedinto a diele
tri
 medium. We have estimated the resultsusing the general physi
al reasoning, thus revealing thenature of the e�e
ts leading to �eld enhan
ement insu
h systems. We then solved the problem rigorouslyby using the so-
alled bipolar 
oordinates. The ana-lyti
 solution yielded the resonan
e permittivity givenby (28) and the �eld enhan
ement ratio given by (33),whi
h 
on�rmed our qualitative estimates based ongeneral prin
iples (formulas (6) and (12)). The mainresult of the study is that 
ontrarily to the 
ase ofone 
ylinder, where the resonan
e position and theenhan
ement ratio are determined solely by the per-mittivity value and not by the 
ylinder radius, in the224
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ase of two 
ylinders, these 
hara
teristi
s of the reso-nan
e are dependent on the system geometry, i. e., the
ylinder radii and the gap between the 
ylinders. Wehave shown that in the 
ase of a narrow gap (with thegap width mu
h smaller than the 
ylinders radius), itis possible to obtain the resonan
e at the large nega-tive values of the permittivities (in 
ontrast to " = �1for a single 
ylinder), whi
h 
orresponds a

ording toDrude representation (5) to frequen
ies smaller thanthe plasma one, mostly in the opti
al region. We alsodemonstrated that signi�
ant �eld enhan
ement 
an beobtained by adjusting the system geometry, i. e., bynarrowing the gap between the 
ylinders.Finally, we have proposed that our method 
an po-tentially be used to investigate more 
omplex systems,i. e., 
ylinders of a non
ir
ular 
ross se
tion or a 
hainof 
ylinders. The 
hains of metal nanostru
tures havere
ently attra
ted 
onsiderable interest parti
ularly be-
ause of their plasmoni
 modes [18℄.The author thanks V. V. Lebedev and I. R. Gabitovfor the fruitful dis
ussions and S. S. Vergeles for 
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