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We theoretically examine the electric field enhancement in the narrow gap between two parallel cylinders due
to the plasmonic resonance. The resonance condition and the field enhancement factor are found explicitly. It
is shown that the resonance occurs at the frequencies lower than the plasma frequency. This effect results from
the special geometry: the gap width between parallel cylinders is much smaller than their radii. It is also shown
that the enhancement coefficient is much larger than the one for a single cylinder and is determined together

with the resonance frequency by the system geometry.

1. INTRODUCTION

Electrodynamic properties of materials consisting
of metal granules immersed into a dielectric medium
attract great experimental interest. There are nume-
rous experiments where electromagnetic waves propa-
gate through such systems (we refer to monograph [1]
for an introduction to the subject). In the case where
the geometry of metal grains is such that there are nar-
row gaps between separate grains, the field enhance-
ment effect is observed, which is as follows. The field
value in the narrow gaps is much larger than the in-
cident wave field and exhibits peak values at particu-
lar frequencies of the incident wave. In a disordered
metal—dielectric composite, a number of sharp peaks
are observed in the spatial distribution of the electric
field when the system is exposed to an external electro-
magnetic wave [2-4].

There is an extensive literature on the problem of
two metallic or dielectric spheres in an electric field.
The problem of two metallic spheres in a dielectric
medium was considered in Ref. [5]. The same prob-
lem for two dielectric spheres was studied in [6]. The
problem of two cylinders in homogeneous field can be
found in [7]. All those works, however, do not consider
the effect of plasmonic resonance. It was considered for
two remote metallic spheres in [8] using the perturba-
tion theory, which is not appropriate for close spheres
or cylinders. The problem of two close metallic spheres
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exposed to an electromagnetic wave was investigated
in [9-11], where a system of recurrent relations was
solved numerically.

In this paper, we theoretically examine the effect of
plasmonic resonance for the field between two parallel
cylinders. We find explicit expressions for the field, the
resonance conditions, and the field enhancement coef-
ficients. We also propose the general method of inves-
tigating such effects in more complicated 2D-geometry
systems: cylinders of arbitrary cross sections. We sup-
ply our analytic solution with general physical conside-
rations providing a qualitative explanation of the prob-
lem.

2. PROBLEM FORMULATION AND GENERAL
CONSIDERATIONS

We consider the system of two parallel infinitely
long metallic cylinders in a dielectric medium. We
investigate the electric field distribution between and
around these cylinders when a linearly polarized wave
is incident on the system, with its electric field vector
directed perpendicular to the cylinder axes and parallel
to the line connecting the centers of their cross sections
(Fig. 1). In this case, the problem is effectively two-di-
mensional: the field is the same in any plane perpen-
dicular to the cylinders. We use the Cartesian coordi-
nates with the z axis directed along the cylinders axes,
the y axis directed along the line connecting the cylin-
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Fig. 1. Narrow gap between metallic cylinders

der cross-section centers, and the x line passes between
the cylinders perpendicular to their axes (Fig. 1).

We assume the wavelength A in the dielectric
medium to be larger than the cylinder radius a, A > a.
We first consider the cylinders of the same radius, and
let & be the gap width. The wave field can be writ-
ten as Re(Ege “!). Due to the smallness of the cylin-
der radii compared to the wavelength, the electric field
can be described in the quasistatic approximation; we
therefore consider the problem of metallic cylinders in
a homogeneous electric field. The electric field can be
considered to be potential and can be described, disre-
garding the magnetic field, in terms of a scalar poten-
tial: E = —V¢. Then the equation for the potential is
VZp=0.

To formulate the boundary conditions, let 4 be the
permittivity of the dielectric medium, assumed to be
of the order of unity, and &, be the permittivity of the
metal. We assume that the imaginary part of ¢4 can
be neglected and that the imaginary part of &,, is small
compared to its real part. The permittivities of both
metal and dielectric are functions of frequency. We
let € = &), /eq be the permittivity contrast. Then the
boundary conditions are as follows: the potential must
be continuous on the metal surface, which is equivalent
to the condition that the tangential electric field be
continuous and the normal derivatives of the potential
differ by the factor e:

(bout = (bina (1)
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where ¢, and ¢;, are the respective potentials in the
metal and the dielectric. Both conditions are to be im-
posed on the surface of cylinders. We therefore have the
problem of finding the harmonic potential that satisfies
conditions (1) and (2) on the cylinder surfaces.

To rigorously demonstrate the physical effect of the
resonance, we first consider the field in the system
with only one cylinder. The potential is then given
by well-known formulas [12]

c—1 ,Eo-p

ou =—-Eq- — 2—, 3

¢ t 0 p+€+1a p2 ( )
2

¢in = 1+6E0'p, (4)

where p is the two-dimensional radius vector. It follows
from these formulas that the resonance value is ¢ = —1.

In the optical spectral region, the permittivity of a
good metal can be approximated by the Drude—Lorentz
formula

(5)

where w,, is the plasma frequency and 7 is the elect-
ron relaxation time (we assume that wr > 1). There-
fore, the resonance occurs at a frequency close to the
plasma one [13, 14]. We also note that as can be seen
from (3), the field is localized inside the cylinder and
around it, gradually decaying with the distance. The
enhancement coefficient is of the order of 1/¢" and is
independent of the cylinder radius.

We now investigate the field in the system with two
cylinders separated by a narrow gap, seeking resonan-
ces that occur at large negative values of the permitti-
vity. We expect the enhanced field to be confined in the
gap, which can be accounted for as follows. In seeking
the resonance due to the gap, we have to find the stand-
ing waves that can exist in this gap. The gap appro-
ximately retains the constant width § at the distances
of the order of Vad from its center. Hence, we are to
find the standing waves in the flat gap of the width §
and length v/ad between two metals. It is known that
the propagation constant 3 of an electromagnetic wave
along a narrow gap is related to the metal permittivity
as ¢ = —cth(36/2) [15]. The standing wave condition
(taking into account that |¢| > 1) can be written as
BvVasd ~ mn, where n is an integer. We thus arrive at
the following estimate of the resonance permittivity:
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which is large due to the condition a > §. We note
that the resonance permittivity is determined by the
gap geometry.

We now estimate the order of magnitude of the field
enhancement coefficient. We assume that we are close
to the resonance corresponding to n = 1 in (6), i.e.,
€~ —\/CW. We let E. denote the field strength
in the center of the gap and FEy the external field.
The field on the x axis is E(x). The field inside the
gap, i.e, at » < \/E, is approximately constant,
equal to F.. In the region a > z > Vad, the dis-
tance between the cylinders is of the order of 2/a,
and hence the potential difference between the cylin-
ders at these distances is (A¢)out ~ E(x)z?/a. On the
other hand, the potential change inside the metal can
be estimated as (A¢)in, ~ E(x)x/e. It follows that
(A@)in/(AP)our ~ Vad/xr < 1. We conclude that
the potential difference between the cylinders is con-
stant in the region = > Vad, i.e., (Ad)our = const.
We then explicitly write the field dependence on z,
E(x) ~ (A@)outa/x®. This potential difference bet-
ween the cylinders gives rise to a dipole moment (per
unit length) of the system, which can be estimated as

a

d~ / dx E(z)
Vaé

2

— ~ (Ad)oua ™)

The field far from the cylinders, x > a, is determined
by this dipole and is E(x) ~ (A¢)oura/x?, which is the
same as the field in the region ¢ > z > Vad. Thus,
there are only two asymptotic regions, z < Vad and
x> Vad, with the field values given by

E~E., x<Vad,

(8)

E ~ (Ad)oura/a®, ©>Vad, (9)

Relating these asymptotic formulas, we can estimate
(Aé)out ~ Ec6

In order to estimate the relation between E. and
Ey, we have to calculate the energy dissipation in the
system. Most dissipation occurs in the metal near the
gap, where field penetrates the metal at a depth of the
order of Vad. We write the dissipation rate per unit
length according to the standard formula [16]

Q ~ we"E2(1/£")%aé. (10)
At the resonance permittivity &' ~ y/a/d, we find
Q ~ we"E25%. (11)
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This dissipation should be balanced by the work pro-
duced by the external field Ey on the system. The
power of this work is P ~ w dEy. Comparing this with
the dissipation rate, we find

E 1a (12)
E() el )

Formulas (6) and (12) are the results of our estima-
tions. They show that the resonance in our system
occurs at larger negative values of permittivity, i.e., at
lower frequencies than in the system of one cylinder.
The enhancement coefficient is larger than in the case
of a single cylinder and depends on the geometry of the
system (cylinder radii and the gap width). It can be
shown that in the case of two close cylinders of greatly
different radii, the effect of the resonance is determined
by the smallest radius (which determines the geometry
of the gap).

We thus estimated the resonance conditions and the
enhancement coefficient from the general physical rea-
soning. We emphasize that the resonance permittivity
value is mostly determined by the narrow gap geomet-
ry (its width and length), while the enhancement co-
efficient is determined by the geometry of the whole
system.

It is worth estimating the losses due to radiation.
The radiation intensity per unit length can be written
as [17]

w3

3
w
—2d2 ~ —2E6262a2,
C C

I~ (13)
where d is the dipole moment (per unit length). In our
estimation of the field enhancement, we assumed these
radiation losses to be small compared to Ohmic ones,
given by formula (11). This leads to the condition

£ > (a/N)”. (14)

3. ANALYTIC SOLUTION

We now turn to a rigorous solution of the problem
of two cylinders in an external electric field. We let ®
denote the potential of the external electric field of the
strength Ey. Let ®™ be the potential inside the cylin-
ders and ®2“% the induced potential due to the presence
of the cylinders. The full potential outside the cylinders
is ®g + PUL.

Because we consider the external wave polarized in
the zy plane (see Fig. 1) perpendicular to the cylinders
axis, the problem is essentially two-dimensional. To
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Fig.2. Lines £ = const in bipolar coordinates

solve the Laplace equation, we use the so-called bipo-
lar coordinate system in the xy plane [7]. We define
dimensionless bipolar coordinates ¢ and 7 as

C'sin Csh¢
=T - 2R (15)
ch& —cosn ch& —cosn
—0 < <00, 0<n<2m, (16)
where C' is the transformation constant. Coordinate
lines & = const are circles (Fig. 2):
22 + (y — Ccthé)? = (C/sh§)?. (17)

Let & and —&p correspond to the lines of cross sections
of the metallic cylinders. We then find C' = ash(&/2).
It can be verified that the condition a > § corresponds

to 50 <K ]., 50 ~ \/6/(1.

The Laplace operator in this coordinate system is

given by
h?(&,m) ( ) ’

where h = C/(ch& — cosn) is the scaling function.
We now can separate the variables in the Laplace
equation. The eigenfunctions of operator (18) are
exp(£né) cosnn or exp(xnf)sinny. Using the sym-
metry of the external potential (symmetric with respect
to the y axis and antisymmetric with respect to the z
axis), we find the following expressions for potentials:

9?2 9?2
ot o

5 1

(18)

din — anz Ape ™ cosnny, £>0, (19)
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oul — Foa Z B,, shné& cosnn,
where the unknown coefficients A,, and B,, are to be
found from the boundary conditions.

We need to expand the external field potential &y =
= — FEpy into a series of Laplace eigenfunctions. Simple

integration yields

(20)

by = —signé Eypa X

x sh & (Z 2e "¢l cosnn + 1) .21
1
The boundary conditions are
B (&) = o (&) + B5ni (%), (22)
apn 0P o%out
c = —ma\ 23
¢ o 9¢ o ¢ o %)
We can now find the coefficients A4,, and B,,:
2(1 — — h
(e + cthn&y) shn&y
2 h
A, = exp(néo) sh & . (25)
(e + cthnép) shnéy
Hence, the resonance conditions are
¢ = —cthné&. (26)

This expression is formally exact because we did not
use the smallness of the gap between the cylinders. For
small gaps & < 1, we find

e~ —1/n& (27)

for not very large n. Because & ~ \/d/a, we can write

\/E
67

which is consistent with formula (6) found from general
physical considerations.

We next investigate the structure of the electric field
with the potential given by formulas (20) and (24). We
assume that we are close to the resonance with n = 1,
ie,e' ~ —\/CW. Then we can disregard all the terms
in sum (20) except the first one. We also consider only
the induced field. According to (20) and (24), the po-
tential can be written as

1

- (28)

Eres N —

_ 2Ba(1 - &) exp(—)

Pout —
ind e+ Cth 50

sh & cosn. (29)
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Taking into account that & < 1 and |¢'| = y/a/d > 1,
we can rewrite this expression as

2Ea3/?
it §L/2

Poul = — sh & cosn. (30)
To find the field, we now need to differentiate this po-
tential with respect to the coordinates. We are mostly
interested with the field on the line perpendicular to
the cylinders axes and passing between them (the x
axis in Cartesian coordinates, see Fig. 1). It is clear
from the symmetry considerations (and also apparent
from calculations) that there is only the y component

of the field on this line. Therefore, we obtain

adoul 9¢  9PoUL O
E = — ind 7S ind = 31
=T oy oy oy O
Calculating the derivatives, we find
2E0 a
V= cosn(1 — cosn). (32)

At the origin of Cartesian coordinates, i.e., in the cen-
ter of the gap, —ny = 7. Hence,

_4E a
ic" 4’
which agrees with estimate (12). If follows from (15)

that n < 1 corresponds to 2 > Vad, and we can there-
fore write the field in this region as

c

(33)

_ 4Fya® 1

e’
which corresponds to the field 4Ega?/ic” of the two-di-
mensional dipole and is also consistent with the quali-
tative estimaties.

Thus, the explicit analytic solution confirmed our
qualitative estimaties based on the general physical
principles. Here, we have investigated the field between
and around the cylinders of the same radii with a nar-
row gap between them. However, using the above-dis-
cussed bipolar coordinate system also allows solving the
problem with two cylinders of arbitrary radii and gap
between them. These solutions are more cumbersome
than the ones for cylinders of the same radii, and we
do not present them here.

Finally, we remark on the purely static problem of
two metallic cylinders (i.e., with ¢ — o0) in an ex-
ternal field. In this case, there is no field inside the
cylinders, and their potentials are constant. It follows
that the potential difference between the cylinders is
A® = 2Fyash &. Because the gap width is §, the or-
der of magnitude of the field inside the gap is

Ec ~ Eo\/a/(s.

E(x) (34)

2’

(35)

224

This increase in the field strength is due to a geometri-
cal factor only and is not related to the plasmonic re-
sonance. If the cylinder permittivity has a finite value,
then this geometric effect is still present (although is
weaker); it vanishes at & 1. Thus, we conclude
that the enhancement due to plasmonic resonance (ex-
pression (33)) is larger than any possible geometric en-
hancement.

4. CONFORMAL TRANSFORMATIONS

The bipolar coordinates (£,7) can be obtained from
the Cartesian coordinates (z,y) by the conformal trans-
formation

(36)

This is why the scaling functions of bipolar coordinates
are equal and hence the Laplace operator has the simple
form given by (18). The Laplace operator eigenfunc-
tions contain cosn or sinn because the coordinate 1 has
the period 27 due to the logarithm in (36). This sim-
ple form of the Laplace equation and consequently the
simple eigenfunctions remain the same for any coordi-
nates obtained from the Cartesian system by means of
a conformal map if the 1 coordinate has the period 27.
This implies that the formal resonance condition (26)
remains the same, although the constant &, is related
to the characteristics of the systems differently. One
can think of a transformation that produces cylinders
of noncircular cross section (for example, of a prolate
form) or a chain of cylinders.

5. CONCLUSIONS

We have investigated the plasmonic resonance in a
narrow gap between two metallic cylinders embedded
into a dielectric medium. We have estimated the results
using the general physical reasoning, thus revealing the
nature of the effects leading to field enhancement in
such systems. We then solved the problem rigorously
by using the so-called bipolar coordinates. The ana-
lytic solution yielded the resonance permittivity given
by (28) and the field enhancement ratio given by (33),
which confirmed our qualitative estimates based on
general principles (formulas (6) and (12)). The main
result of the study is that contrarily to the case of
one cylinder, where the resonance position and the
enhancement ratio are determined solely by the per-
mittivity value and not by the cylinder radius, in the
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case of two cylinders, these characteristics of the reso-
nance are dependent on the system geometry, i.e., the
cylinder radii and the gap between the cylinders. We
have shown that in the case of a narrow gap (with the
gap width much smaller than the cylinders radius), it
is possible to obtain the resonance at the large nega-
tive values of the permittivities (in contrast to ¢ = —1
for a single cylinder), which corresponds according to
Drude representation (5) to frequencies smaller than
the plasma one, mostly in the optical region. We also
demonstrated that significant field enhancement can be
obtained by adjusting the system geometry, i.e., by
narrowing the gap between the cylinders.

Finally, we have proposed that our method can po-
tentially be used to investigate more complex systems,
i.e., cylinders of a noncircular cross section or a chain
of cylinders. The chains of metal nanostructures have
recently attracted considerable interest particularly be-
cause of their plasmonic modes [18].

The author thanks V. V. Lebedev and I. R. Gabitov
for the fruitful discussions and S. S. Vergeles for colla-
boration.
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