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A self-consistent field of a charged micron-size particle placed in a rarefied ionized gas is created by both free
ions moving along infinite trajectories and trapped ions moving in closed orbits. The character of screening of
the particle field is analyzed under dynamic conditions in a nonequilibrium plasma where the temperature (or
the mean energy) of electrons greatly exceeds the ion temperature. Under these conditions, trapped ions are
generated in a restricted region of the particle field where the transitions between closed ion orbits resulting
from resonant charge exchange dominate. This leads to a higher number density of trapped ions compared to
that of free ions. The parameters of the self-consistent field of the particle and ions are found when free or
trapped ions determine the screening of the particle field, and a similarity law is established for a simultaneous
variation of the number density of plasma particles and the particle size. In dusty plasmas of the Solar System,
which result from the interaction of the solar wind with dust, formation of trapped ions increases the plasma

number density compared to that in the solar wind.

1. INTRODUCTION

If a micron-size particle is placed in an ionized gas,
electrons and ions attach to it, and the particle ac-
quires a negative charge because of a higher mobility
of electrons in comparison with ions. Charged particles
located in a weakly ionized plasma are the basis of a
dusty plasma [1-7]. In turn, a charged particle influ-
ences the distribution of electrons and ions near it, and
this leads to the screening of the particle Coulomb field
at a distance from the particle. The character of this
screening depends on the ratio between the mean free
path A of electrons and ions in a gas and the particle
radius ro (for simplicity, we assume the particle to be
spherical). If the mean free path of electrons and ions
is small compared to the particle size (A < rg), then
the Debye screening of the particle field [8, 9] occurs
that is determined by statistics in the distribution of
electrons and ions in the particle field. Of course, it is
important for this distribution that electrons and ions
are absorbed by the particle [10, 11]. In the other limit
case

)\ >>1“[), (11)
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the screening is determined by the dynamics of ion
motion in the particle vicinity. Because electrons
penetrate weakly in the region of the particle field,
this screening follows from general laws of mechan-
ics [12, 13] for motion of ions in the field of a particle.

In considering the limit case of a rarefied gas in
Eq. (1.1), we concentrate on the effect of ion capture
in the particle field as a result of the charge exchange
process according to the scheme

At 4+ A5 A4 AT, (1.2)
where A denotes one of the colliding particles. Being
guided by this process, we deal with an atomic buffer
gas (for example, argon, which is often used as buffer
gas). Next, criterion (1.1) has the form

NaaresTO < 17 (13)

where N, is the number density of gas atoms and ¢
is the resonant charge exchange cross section. The cri-
terion means that the probability for a free ion that
moved in the particle field to take part in process (1.2)
is small. But although the probability for a free ion
to be captured in a closed orbit of the particle field is
small, the lifetime of a trapped ion in a closed orbit is
large, and this makes the contribution of captured ions
to the particle screening important.
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Thus, as a result of capture of free ions in closed
trajectories, an “ion coat” is formed in the vicinity of
a charged particle [14], and the field of this particle is
screened by both free and trapped ions. The problem
is complex because free and trapped ions influence the
screening of the particle field, which in turn determines
the ion behavior in the particle vicinity. A self-consis-
tent field that is established in the particle vicinity due
to the action of the particle and the ions determines
the particle charge via the equality of the electron and
ion currents to the particle surface. The role of trapped
ions in screening the particle field is demonstrated in
numerical calculations under certain conditions [15-17],
where a self-consistent character of the particle field is
taken into account, and some models [18-20] are used
for the description of the behavior of trapped ions near
a charged particle in a gas. These models are sim-
plified if we take into account that the cross section
of resonant charge exchange process (1.2) is indepen-
dent of the collision velocity [21-23]. This simplifies
the complex problem of the behavior of trapped ions in
a self-consistent field of a charged particle and allows
considering this problem from the standpoint of general
laws of collisions of classical particles [12, 13].

2. DISTRIBUTION OF FREE IONS IN AN
IONIZED GAS

The problem of a field of a charged particle placed
in an ionized gaz is a self-consistent problem, and hence
the particle charge Z and the particle field in the vici-
nity of a charged particle are self-consistent quantities.
To separate these problems, we introduce the potential
U(R) of the self-consistent field at a distance R from
the particle, and find the ion distribution in this field.

We first consider the distribution of free ions in this
field. Let dP; be the probability for an ion to be lo-
cated at a distance in the range from R to R + dR.
This probability is proportional to the time dt of ion
location in this region, dP; « dt, and to the number
density of ions, dP; o< N;(R). From the ion equation of
the motion [12], we have

dR dR
dt:v_: > U(R)7
R P
1— 2 —
v R2 €

where vg(R) is the normal component of the ion ve-
locity in the particle field at the distance R from the
particle center, v is the ion velocity far from the parti-
cle, e = Mv?/2 is the ion energy far from the particle
(M is the ion mass), and p is the impact parameter for

ion motion relative to the particle. From this, we have
the number density of ions

/ﬂdﬂdpi
Nyocl—
X 4rR’dR

Normalizing this expression in the case where the in-
teraction is absent, we obtain

p(R)

(P — pdp
N;(R) = Ny O/ — el (2.1)
R? €

We use only one half of the trajectory when an ion
recedes from the particle. For the free ion motion
U(R) = 0 and p(R) = R, this formula gives

N; = No.

If we divide the ion trajectories into two groups and
account for the absence of the removed part for p < pe,
where p. is the boundary impact parameter for the ion
capture by this particle, we obtain the number density
of free ions in the particle field in the form [11]

No
2

X l\/l_@-i_\/l_;_%_

The boundary impact parameter p. is related to the
particle radius 7o as [12]

Ni(R) =

TR | (29

pi=r {1 - U(TO)] :

g

We average the ion number density over the
Maxwell velocity distribution far from the particle

2e1/2 €
= No———— —
=" N ( Ti) ’
which is normalized by the relation

/f(6)51/2d5 = No,

where T; is the ion temperature expressed in energy
units. In the space region, where |U(R)| > T; (the
potential energy U(R) is negative), we have

W,

Ni(R) = No —

. \/|U<R>|—|WU<TO>|7~3/R2 (23)

T;
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In the particle vicinity, this formula gives

Ni(R) = Ny |U(T0)| R —1r9 <1y,
(2.4)
4|U(R)
|(|R>>r0
ﬂ'Ti

In the other limit case U(R) < T;, which corresponds
to large ion distances from the particle, R — oo, we
have

N(R) = Np.

Accounting for this limit in formula (2.3) and retaining
the form of formula (2.2), we generalize formula (2.3)

to
No AU (R)|
N — 20 14 2
i(R) 5 + T +
4 _ 2 2
.\ \/1 AU =0/ |
7TT¢
In the region R > rg, this formula takes the form
4
Ni(R) = Not/1+ M (2.6)

ﬂ'Ti

Thus, in the region where the particle field is present,
ions are characterized by an increased number density
in comparison with the region where this field is ab-
sent. We note that because the number density of ions
N; in the particle field exceeds the equilibrium number
density Ny and the number density of electrons is less
than the equilibrium number density, screening of the
particle field is determined just by ions.

3. WEAK SCREENING OF THE PARTICLE
FIELD IN A RAREFIED PLASMA

We first consider the case of a rarefied plasma where
the electrons and ions do not screen the Coulomb field
of a charged particle. This limit case allows estab-
lishing certain peculiarities of the particle interaction
with the surrounding plasma. We note that the case of
a micron-size particle under consideration corresponds
to the criterion

2

e
— LT (3.1)
To

In particular, for T; = 300 K, this criterion has the
form rg > 60 nm. In the limit case of a low density of

electrons and ions of the plasma in which the particle is
located, the potential energy of the particle field U(R)
at a distance R from the particle is given by

(3.2)

where Z is the particle charge expressed in units of the
electron charge. Assuming criterion (3.1) to be valid,
we obtain that the particle charge is large, and one elec-
tron or ion attached to the particle does not change the
particle field much. This allows considering the pro-
cess of particle charging to be continuous and finding
the particle charge Z from the equality of electron and
ion currents at the particle surface, which gives (see,

e.g. [4,24])
roTs . (T.M
7| = 1
12l 2¢e2 n<Time>7

where T, is the electron temperature, and M and m,
are the ion and electron masses.

(3.3)

We now derive the criterion for the number den-
sity Ng of charged plasma particles to be low and the
screening of the particle Coulomb field to be weak. We
introduce the size Ry of the region where the particle
field acts on ions by the relation

|[U(Ry)| = T3, (3.4)
which in the case of the Coulomb field has the form
A T T.M
Ry = 21 _ Lo x X:—im<8 »
Ti 2Tz Time (35)
_ T,Ro
|Z| - 62 -
This gives
R() >1p.

In the absence of screening of the particle charge, it
follows from (2.4) and (2.6) that the number density
of free ions near the particle surface and in its field is
given by

2R0 4R0
20 NY(R) = Noy/1+ 220
ro’ (F) o\t TR

R>>7’0.

Ni(ro) = No (3.6)

Because plasma charges are separated in the region
R < Ry, this region is responsible for the particle field
screening. Then the criterion of weak particle field
screening takes the form of the condition that the total
ion charge in this region be small compared with the
particle charge, that is,

N;i(Ro)R§ ~ NoR} < 1.
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This criterion has the form

5 €2 1
NOTO? < ﬁ (37)
e

In particular, if we take argon plasma with T, = 1 eV,
T; = 400 K, and the particle size rg = 1 um, criterion
(3.7) becomes Ny < 5-10% cm™3. For these parame-
ters, we have |Z| = 5-103, X = 210, and Ry = 210 pum.
In addition, the ratio of the ion number densities near
the particle surface and far from the particle is approx-
imately 12 in this example, i.e., differs by an order
of magnitude. This example shows that both cases of
weak and strong screening are possible for micron-size
particles located in a real gas discharge plasma.

We note that the electron temperature T, used
in the above formulas corresponds to the Maxwell
energy distribution for electrons. In a gas discharge
plasma with low concentration of electrons and ions,
the Maxwell distribution over electron energies does not
hold, and it is convenient to describe the electron en-
ergy distribution by the Townsend characteristic tem-
perature [25]

_ eD,
ef — I(e )

where D, and K, are the diffusion coefficient and the
mobility of electrons located in a gas in an external
field. In this case, formula (3.3) for the particle charge
remains valid if the electron temperature T, is replaced
with the characteristic electron temperature Ty [10].
In this manner, we can describe interaction of a particle
with a surrounding ionized gas located in an external
field.

The ionized gas under consideration satisfies the
rarefaction criterion that takes the form

NaR()O'* <1

instead of criterion (1.3). Here, o* is the ion—atom
diffusion scattering cross section, which is assumed to
be independent of the collision velocity. Because this
ion scattering proceeds through the resonant charge ex-
change process, where an ion and an atom move along
straight trajectories, we have o* = 20,5 [26], and
hence criterion (1.3) takes the form

2N, Ro0res < 1. (3.8)

In this case, the electron and ion currents originate at
distances ~ A from the particle, where the interaction
of ions with the particle field is negligible. In particular,
in the above example of a particle of the radius 1 pym
in argon, the cross section of resonant charge exchange

involving an argon atom and its ion is 0.5 = 83 A2 at
the collision energy 0.01 eV [27]. Criterion (3.8) for the
argon pressure p then becomes

p < 0.1 Torr.

If criterion (3.7) is violated and screening of the
particle field becomes important for ions, the general
strategy of determining the particle charge from the
equality of electron and ion currents holds. Instead
of (3.3), we then have the following relation from the
equality of electron and ion currents:

T. T.M
|U(ro)| = ?ln (Time) .

(3.9)

4. ION CAPTURE IN CLOSED ORBITS
AROUND PARTICLES

Along with ion trajectories that correspond to ion
capture by the particle surface and free trajectories
with ion removal, capture of ions in closed trajecto-
ries is important for screening of the particle field [14].
These trajectories are different for the Coulomb and
screened Coulomb fields [12, 13]. In the case of the
Coulomb field, an ion moves in the same elliptic or-
bit after each period, while for the screened Coulomb
field, the ion elliptic orbit rotates after each period. In
analyzing the character of ion capture in an elliptic or-
bit, determined by resonant charge exchange process
(1.2), we take into account that the resonant charge
exchange cross section o, is independent of the col-
lision velocity [21, 22]. Hence, a forming ion acquires
the velocity of the atom from which it is formed. The
role of trapped ions in the screening of the field of a
charged particle located in a dusty plasma is demon-
strated in numerical calculations under certain condi-
tions [2,15-17,28-30]. Below, we consider the charac-
ter of ion capture in closed orbits and examine pecu-
liarities of this process, guided by atomic ions traveling
in a parent atomic gas in the case where transition of
an ion in a closed orbit starts from resonant charge
exchange process (1.2). Because at thermal collision
energies the resonant charge exchange cross section ex-
ceeds the elastic ion—atom cross section by almost an
order of magnitude, we assume that the colliding ion
and the atom move along straight trajectories. We find
the conditions of ion capture in a closed orbit, assuming
the resonant charge exchange act to be at a distance R
from the particle, with an energy ¢ of the atom involved
in the resonant charge exchange process. The param-
eters of a forming closed orbit are given in Fig. 1, and
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Fig.1.
closed trajectory: rpmin and ryq. are the minimum and
maximum separations from the particle, R is the coor-
dinate of the point where the resonant charge exchange
event occurs, and 6 is the angle between the direction
of ion motion after the charge exchange and the vec-
tor R; 1 — particle, 2 — atom converted into an ion

Parameters of motion of a trapped ion in a

we assume the isotropic distribution of atoms over an-
gles 6 between the atom velocity direction and the axis
joining the particle and the atom at the point of the
resonant charge exchange. Evidently, transition into
a closed orbit requires the following condition for the
energy of the atom converted into an ion at a distance
R from the particle:

U(R) > e. (4.1)

Assuming the energy distribution function of ions to be
identical to that of atoms far from the charged particle,
we obtain that the capture of ions into a bound orbit
occurs in the region of strong ion—particle interaction

R < Ro,
where
Z 2
Ry = % (4.2)

similarly to definition (3.4). This means that formation
of trapped ions proceeds in the range of action of the
particle field, and criterion (4.1) requires that

Tmaz < RO

for the ion trajectory given in Fig. 1. Therefore, forma-
tion of a trapped ion requires that the resonant charge
exchange process and the trajectory of a forming ion
be located in the range of action of the particle field
given by formula (3.4). According to criterion (4.1), a
forming ion remains in the region of the particle field
and does not recede to infinity.

The second criterion of formation of a trapped ion
requires that the minimum separation 7,,;, of the ion
and the particle exceed the particle radius rg,

T'min 2 To-

If this criterion is violated, the forming ion is captured
by the particle. To apply this criterion, we use the ener-
gy and momentum conservation laws for ion motion in
the particle field [12]. The total energy E of a trapped
ion, if it is formed at a distance R from the particle and
has the kinetic energy e, is conserved in the course of
ion motion and has the following form when the ion is
located at a distance r from the particle:
M U%% L?

> PV e

E=U(R)+e= (4.3)
Here, M is the ion mass, vgr is the ion velocity com-
ponent in the direction of the particle, ¢ is the ki-
netic energy of the atom before the resonant charge
exchange, corresponding to the initial ion energy, and
L?/2Mr? is the ion centrifugal energy, where the ion
momentum [ with respect to the particle center is

L=Mv,R= MvRsin#, (4.4)

with v, being the tangent velocity component at the
point of charge exchange, v the initial atom velocity
direction, and # the angle between the atom velocity
and this line to the point of the charge exchange act
(see Fig. 2). We assume that the formed ion acquires
the atom velocity as a result of the resonant charge
exchange process because the colliding ion and atom
move along straight trajectories.

From formulas (4.3) and (4.4), we find the rela-
tion between the minimum separation distance 7,,;,, at
which the normal velocity component is zero, vg = 0,
and the angle # between the atom velocity direction
and the line joining the atom and the particle centers
at the point R of the resonant charge exchange event,

sinf =

Tmin \/6 + U(R) — U("“min)
R € ’

From this, we find the angle 6y at which the minimum
separation distance is 7;,i;, = ro and the ion capture
occurs:

sinfy = ro e UR) = U(ro)‘
R €

(4.5)

If the right-hand side of this relation exceeds unity, all
the trajectories of forming ions terminate on the par-
ticle surface, i.e., the forming ion is captured by the
particle and its transition to a closed orbit is impos-
sible. Correspondingly, the ion capture into a closed
orbit is possible under the condition

R’ U(R) —U(ro)

<1+

2 - (4.6)
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Fig.2. The part of the screening charge owing to trapped ions (a) and the reduced size I /ro of the range of the self-consistent

field of a particle and ions () as a function of the reduced number density of the surrounding rarefied ionized gas with the

parameters T, = 1 eV and T; = 400 K. Filled symbols correspond to the case where trapped ions dominate in the particle
field shielding, open symbols relate to the opposite case

We consider the range of distances for the resonant
charge exchange event such that

[U(ro)| > [U(R)| > . (4.7)

Under this criterion, the forming ion cannot escape to

the infinity and the ion capture in a closed orbit is pos-

sible. If we assume a range [ of the particle field [ > ro,

we obtain that the potential on the particle surface is
equal to that in the absence of screening,

|Z]e?

U(To) = — o

With criterion (4.7), formula (4.5) then gives

VroRo
R

sin 00 = (48)
with Rg defined in accordance with (4.2). It follows
that the ion transition to a closed orbit is possible if
the resonant charge exchange occurs at large distances
R from the particle, that is,

R Z \/ToRo.

We introduce the respective probabilities Py.(R,¢)
and p,. (R, €) for a free and bound ion to occupy a closed
orbit after the resonant charge exchange act under con-
ditions (4.7). For # < 6y, where 6y is given by (4.8), the
ion is captured on the particle surface, and for 6 > 6,
the ion is captured in a closed orbit. Hence, the proba-

bility for an ion to be captured in a closed orbit is given
by

cos By
Py (R,e) = pir(R,€) =

0

roR
=\/1- " B2k (49)

In the above analysis, we ignore the possibility that
the ion recedes to infinity after the resonant charge ex-
change event because of criterion (4.7).

We also consider the possibility for a bound ion to
become free as a result of the resonant charge exchange
at a point R that allows the ion to go to infinity. We
use formula (4.5), which is valid for both the minimum
Tmin and the maximum r,,,, distance from the particle
if the ion moves in a closed orbit. If we ignore screening
of the particle field, i.e., take the Coulomb field

dcosf = cosfy =

2
Ulr) = _@’

r

then we have a relation between the angle 6 given in
Fig. 1 and the maximum ion distance 7,4, from the

particle,
. Tmaz R[) Ro
0 =——4/1—— .
Sin R R + —

Because the radicand in this expression is positive, we
have
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RoR
Ry — R’

R < rmar <

This implies that the ion can leave an elliptic orbit if
the resonant charge exchange event occurs at a point
R such that

Ry
R>—.
- 2

We note that averaging over the ion kinetic energies
at the point R gives a wider range of ion distances from
the particle, R ~ Ry, and hence the resonant charge ex-
change at these points may lead to an ion release. We
thus obtain that an ion is captured at a point R in an
elliptic orbit with

\/ToRo < R < Ry

and the number density of trapped ions has a maximum
in the range
R0/2 < R < Ry

where the ion can leave the closed orbit as a result
of resonant charge exchange. In generalizing this re-
sult to the case where the particle field acts within a
range r < [, we account for the probability that the
ion recedes to infinity by the factor (1 — R/l), and for-
mula (4.9) for the probability of the ion capture in a
closed orbit becomes

Py (R,e) = pir(R,€) =

=4/1— TORIEO <1 - Jl—%> , [ >R>+\/roRy. (4.10)

We note that the assumption on the separation of
the processes of ion capture and ion recession to infin-
ity as a result of the resonant charge holds if Ry > rg.
We used this criterion in the foregoing.

5. TRAPPED IONS IN A PARTICLE FIELD
FOR LOW-DENSITY PLASMA

The number density of trapped ions Ny, follows
from the balance equation
NoOresNi Ppvy = NaaresNtrUtr(l - ptr)7 (51)
where N; is the number density of free ions, v; is the
relative velocity for a free ion and an atom involved in
the resonant charge exchange, vy, is the relative veloc-
ity of a trapped ion and the atom, P;, is the probability
to form a trapped ion as a result of resonant charge ex-
change involving a free ion, and py,. is the probability

11 ZKSBT®, Brim. 6

for a trapped ion to remain in a closed trajectory after
the resonant charge exchange. If we assume that
Vi ~ U, P~ 1 pe <1,

then Eq. (5.1) implies at least the same order of magni-
tude for the number density of trapped ions compared
with the number density of free ions in the range of the
particle field. Moreover, if p;, is close to unity, then the
number density of trapped ions Ny, exceeds that of free
ions N;. Therefore, although the resonant charge ex-
change probability is small for a free ion moving along
an open trajectory, the lifetime of trapped ions is large
compared with the flight time of free ions in the range
of action of the particle field. Hence, the number den-
sity of trapped ions may be comparable to or exceed
the number density of free ions. Therefore, trapped
ions are important in screening the particle field.

We now determine the number density of trapped
ions on the basis of balance equation (5.1) under condi-
tions (4.7). Inside the region |U(R)| > ¢, the velocity
of a free ion is

N E ]
M
If the particle field is nearly Coulomb in this region,
then according to the virial theorem [31], the average
kinetic energy is |[U(R)|/2 and the velocity is

U(R)|
M )

Vtr =

which gives

Yi _ V2

Utr ’
and balance equation (5.1) yields the number density
of trapped ions

PirV2
N (R) = Ni(R)ltr—~
— Dtr
Using formula (4.9) for the probability for an ion to
leave an infinite or closed orbit as a result of resonant
charge exchange, we reduce this relation to the form

R2 \/5 7’0R0
1- X

Ntr(R) = Nz(R)

’I‘()R() R2
roR
X (1 +4/1 - °R2° > , Ro>R>+\/Roro. (5.2)

If we use formula (3.6) for the number density of free
ions and generalize this formula to the entire range of
the particle field R < similarly to (4.10), then
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U(R) R*V2 TR
7TTZ' ’I‘()Ro R2

ToRo R
l Z R Z \ Ro’f‘o.

Far from the threshold of creation of trapped ions, this

formula gives
2
1+4U(R) 2R?\/2 <1_§>7
7TT¢ ’I‘()Ro l (54)

lZRZ \/Ro’f‘o.

In particular, in the case of weak screening of the par-
ticle field, when this is the Coulomb field and [ = Ry,
formula (5.4) gives

4V2 NoR3/? (1 5)
V7 r0vRo Ry)’
RO Z R> vV R()To.

From (5.5), the maximum number density of trapped
ions that corresponds to the distance R,,q. = 0.6Ry
from the particle is

4
N (R) = Noy [ 1+

(5.3)

N¢-(R) = Ny

Ntr(R) - (55)

R
N (R) = 0. 59N0—0
o

(5.6)

In particular, using this formula in the above exam-
ple of an argon dusty plasma with the number den-
sity No = 1-10' ecm™3 far from the particle, we
find the maximum number density of trapped ions
Npaz ~ 10'2 em™3 if we ignore the particle field scree-
ning.

We now evaluate the ion charge located in the range
of action of the particle field in the limit of low number
density of ions and find the criterion for a weak scree-
ning of the particle field when it has the Coulomb form.
From (5.5), we find the ion charge ¢ in the sphere of a
radius Ry as

64v/271 eNo R}

5.7
99 To ( )

q(Ro) = e/Ntr(r) Arrdr =

To

From this, we obtain the criterion ¢ < |Z]e of the weak-
ness of the particle charge screening

06|Z|’I‘0

N
0 K Rﬁ

(5.8)

In particular, in the above example of an argon plasma
with T, = 1 eV, T; = 400 K, and the particle size

ro = 1 pum, we have Ry ~ 210 nm, and criterion (5.8)
gives Ng < 3-10° ecm ™3, which means the importance
of screening of the particle field by a laboratory sur-
rounding plasma for micron-size particles.

Guided by the case of a particle in a gas discharge
plasma, we find an increased number density of ions
in the range of the particle field in comparison with
the number density of electrons and ions far from the
particle. On contrary, the number density of electrons
in this region is lower than that far from the particle.
Therefore, screening of the particle field is determined
by plasma ions, and their redistribution in the particle
field creates a self-consistent field. At moderate num-
ber densities of ions, this field and the screening are
mostly determined by trapped ions, but as the num-
ber density of plasma ions increases, the contribution
of trapped ions to the screening of the particle field de-
creases. In what follows, we consider the character of
this screening when it is significant.

6. SELF-CONSISTENT FIELD OF A PARTICLE
AND FREE IONS

We now consider the self-consistent problem for a
plasma in the vicinity of a charged particle. Then
screening of the charged particle is determined by the
number density of ions N;(R) near the particle; the
number density of ions in the range of the particle field
in turn depends on the screened field potential. From
the Gauss theorem [32, 33], the electric field strength
E(R) is given by

E(R) =

[IZI— (R)], =z(R) =

R
/ Ni(r Amrr?d

where z(R) is the current charge inside the sphere of a
radius R, ¢(R) is the part of this charge that is the ion
charge in this sphere, and N;(R) is the total number
density of free and trapped ions. According to defi-
nition (6.1) of the current charge z(R), we have the
equation

1Z| = q(R),

(6.1)

dz(R)

= —47R>N;(R).
IR 7mR°N;(R)

(6.2)

From (6.1), the particle field potential is given by

l
_ / UL (6.3)
2 r
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where [ is a distance measuring the range of the particle
field, defined as

z(l) = 0. (6.4)

We consider the case where the particle field screen-
ing is mostly determined by free ions; this is the case of
a high number density of the surrounding plasma when
trapped ions do not take part in screening the particle
field. According to formula (3.6), relation (6.1) for z(R)
then becomes

R
z(R) =|Z| —NO/,/1+£(T) 4mr?dr,  (6.5)
ﬂ'Ti
To

where Ny is the ion number density far from the par-
ticle and T} is the ion temperature in the surrounding
plasma. We thus obtain two equations (6.3) and (6.5)
that relate the potential U(R) of a self-consistent field
of the particle and the ions to the effective charge z(R)
of the particle and the ions.

Below, we give an approximate solution of the set of
equations (6.3) and (6.5). Taking the integral for U(R)
by parts, we represent the potential of the particle field
in the form

U(R) = Z(lf) YN
l , (6.6)
[2(R) — 2(r)]e
AU = [ B2 g
R/ r

In the first approximation, we ignore the second term
in this expression for the particle potential. We thus
decouple Egs. (6.3) and (6.5), whence

dz 4ze2
—= — —47R?N, .
dR ™R No \ 7T

Solving this equation with the initial condition z(r¢) =
= |Z|, we obtain

2

&/ e2
o= (Vizl- Y wry [ 2] =
(3

R 5/272
1 <)
)

The size [ of the particle field range follows from
Eq. (6.3) and is given by

4 (6.7)

(6.8)

066 (|Z|T,»)1/5 _0.66|2]2/
(&

N§/5 2 - Ng/sRé/s :

In particular, for the number density of electrons and
ions Ny = 10'° cm™3 of an argon plasma with the
above parameters (T, = 1 eV, T; = 400 K, and the
particle radius ro = 1 um), it follows that [ = 43 pum;
for Ng = 10? cm ™2, we obtain [ = 108 ym assuming
that free ions determine the screening of the particle
Coulomb field.

It is more correct to define the size [ of the particle
field range by analogy with formula (3.4), which now
has the form

eU(l) =T; (6.9)
instead of Eq. (6.3). With the above parameters, this
formula gives [ = 40 pm for the number density of
electrons and ions Ny = 10'° ¢cm ™3 and [ = 99 um for
No = 10° ecm™3. We see that as regards the screening
of the particle field by free ions, the definitions given
by formulas z(I) = 0 and (6.7) are practically identical.

We can estimate the accuracy of ignoring the sec-
ond term in formula (6.6). Evidently, this is accurate
near the particle, where the screening is weak. But
the second term in (6.6) may decrease the particle po-
tential U(R) by a factor of 2 if R ~ [. However, this
approximation is transparent and allows us to analyze
the peculiarities of the self-consistent particle field, and
we keep it.

We use formula (3.9) for determining the particle
charge under the condition [ > r¢. Taking

I
Ulrg) = / E(R)dR

and using formula (6.1) for the electric field strength of
the self-consistent field, we again obtain formula (3.3)
for the particle charge Z. The reason for the coin-
cidence of the particle charges with and without the
screening of the particle field is that fluxes of electrons
and ions are created far from the particle surface, where
the surrounding plasma is quasineutral, and the par-
ticle charge follows from the equality of the electron
and ion fluxes. Therefore, the particle charge is inde-
pendent of the particle field screening if the particle is
located in a rarefied plasma.

We also note that the gas rarefaction condition
changes in the case of a particle field screening because
the range of the particle field then decreases. Speci-
cally, the criterion of gas rarefaction in this case has
the form

2N, 0,05l < 1
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instead of rough criteria (1.3) and (3.8). It changes the
condition of plasma rarefaction in the above example
and leads to p < 1 Torr.

7. SELF-CONSISTENT FIELD OF A PARTICLE
AND TRAPPED IONS

In analyzing the screening of the field of a charged
particle by the surrounding plasma, we find that it is
determined by plasma ions. Indeed, even at distances
R from the particle where U(R) ~ T., we obtain that
the electron number density NV, is of the order of that
far from the particle (N, ~ Np). But at distances such
that U(R) > T;, the number density of ions N; signifi-
cantly exceeds the equilibrium value (N; > Np). Next,
dividing ions into free and trapped ones, we can eva-
luate the number density of free ions and the particle
field screening by free ions more or less accurately, but
these parameters are mere estimates for trapped ions.
Assuming that free or trapped ions separately deter-
mine the particle field screening, we separately find the
size of the self-consistent field range when this field re-
sults from the particle-ion interaction.

Assuming that trapped ions determine the parti-
cle field screening, we now repeat the analysis in the
previous section with the number density of free ions
replaced with that of trapped ions. Solving the equa-
tion for the charge z inside a sphere with radius R, we
obtain (instead of formula (6.7) for the screening by
free ions)

| = 16y/m NoRY/? [e2
7 | | 9 7’0R0 Ti x
2 9/272
(1= F)ow] <imi- (F)7] e
1
®(R) = 5 1_’“°R}§° <1+ 1-”}5”),
(7.2)

105 (JZrovo )
A\ Nod(o/11))

We assume a weak dependence ®(R) and evaluate
this function at the distance where the integrand has
a maximum. Accounting for a difference ®(R) from
unity gives a small correction to the result. Using for-
mula (7.2) in the above example of an argon dusty
plasma (T, = 1 eV, T; = 400 K, and 70 = 1 pm),
we obtain [ = 36 pum for the number density of elec-
trons and ions Ny = 10° em ™3, and I = 59 um for

No = 10° em 3. Comparing these values with those
for screening by free ions in the previous section, we
conclude that trapped ions dominate in the screening
of the particle field if the number density of plasma
electrons and ions is below Ny = 10'° cm 3.

In considering the case where trapped ions domina-
te in screening the particle field and the self-consistent
field of the charged particles and ions is given by for-
mula (7.2), we also give the expressions for the number
density of free and trapped ions in the particle field ac-
cording to formulas (2.6) and (5.4). For the potential of
the self-consistent field, we use simplified formula (6.3)
in the form

and take the current charge z(R) of a sphere of radius
R to be given by formula (7.1). In this case, the num-
ber densities of free N;(R) and trapped Ng,(R) ions at
a distance R from the particle are

R 9/272
1 <)
)

No(B) = Ni(R) 22 4Ry (1 - ?) |

4Ry
N; = Nox |1+ —
(R) 0 + TR

)

(7.3)

roRo

We also give the expressions for the number density
of free and trapped ions in the particle field in the op-
posite case where (2.6) and (5.4) describe the number
densities of free and trapped ions and simplified for-
mula (6.3) holds for the self-consistent field potential
energy

but the current charge z(R) of a sphere of radius R is
given by (6.7). Instead of (7.3), we then obtain
TR

(1)
)Qi;fQ(R) (1 — ?) .

We now formulate a general algorithm for deter-
mining the parameters of a self-consistent field with
the screening by both free and trapped ions taken into
account. We define the screening charges by free @;
and trapped Q. ions as

2
4Ry

Ni(R) = Noy |1+ —2

b

(7.4)
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1
Qi = / 47 N;(R)R*dR,

ro
l

Qtr = / 47 N;(R)R*dR.
vV roRo
Evidently, according to the definition of the size [ of
the particle field range, we have

Q=0Qi+Quw=1Z| (7.6)

This is the equation for the size of the particle field
range. Simultaneously, we determine the part of the
screening charge

_ Qtr
6 - Qz + Qtr

that is created by trapped ions. In evaluating these
parameters of the particle field screening, we use for-
mulas (7.3) or (7.4) for the number densities of free and
trapped ions. We note that in the range of competition
of these screening channels, the difference of the results
for these versions is not significant. In particular, in
above example of a dusty argon plasma (T, = 1 €V,
T; = 400 K, and 79 = 1 um) at Ny = 10'° cm~3, the
contribution of trapped ions to the particle screening is
& =0.50 or & = 0.53 if we respectively use formula (7.3)
or (7.4), and the respective size [ of the particle field
range is 28 pum or 29 pm.

We now analyze the dependence of the effects un-
der consideration on the particle radius rqo. If we let
[¢ree denote the size of the range of the self-consistent
field where the particle field is screened by free ions and
ltrap denote the size of the particle field screened with
trapped ions, then it follows from (6.8) and (7.2) that

(7.7)

lfree A ltrap B
= = 7.8
ro (Norg)®/®" ro  (Norg)*/*” i
where
2/5
A= 0.66M,
(Bo/ro)'/ 79)
B 1.05(12)/70)/° (Ro /10)"/°
= P .

It can be seen that the parameters A and B are in-
dependent of 7. As a result, we obtain a similarity
law according to which the size parameters of the self-
consistent field vary proportionally to the particle ra-
dius if the product Norg is kept constant. In particular,
it follows that for the above Ar plasma parameters at
the particle radius ro = 10 um, the contribution of free

and trapped atoms is identical at Ng ~ 1-10% em™3,
and trapped ions disappear at Ny ~ 10° cm ™3,

In Fig. 2a, we give the dependence of the part of the
screening charge ¢ created by trapped ions on the re-
duced number density Nor of the surrounding plasma.
The dependence of the reduced size of the particle field
on this parameter is shown in Fig. 2b. Figure 3 con-
tains the reduced number densities of free N;rj and
trapped N;.r2 ions as functions of the reduced dis-
tance R/ro from the particle. These number densi-
ties correspond to the reduced number density of the
surrounding plasma Nor2 = 100 cm ™!, at which the
contribution of trapped ions to the particle screening is
approximately 40 %.

Comparing the results of two versions allows esti-
mating the accuracy of our analysis as ~ 10 % for the
number density of trapped ions. In particular, accor-
ding to the first version (formulas (7.3)), the contribu-
tion of free and trapped ions to the particle screening
is identical at the reduced number density of plasma
ions Nor3 = 63 cm !, whereas the second version (for-
mulas (7.4)) gives NorZ = 69 cm~!. The size of the
particle field range is [/ro = 30 and 31 according to
these versions. The difference between the number den-
sities of ions (free and trapped) in the basic region of
screening of the particle field according to these ver-
sions is approximately 10 %, as follows from the data
in Fig. 3 at the reduced number density of the sur-
rounding plasma N7 = 100 em™', at which the first
version is more preferable.

We note one more aspect of this phenomenon. We
consider the case Ry > rg, which allows us to divide the
ion trajectories into those from which an ion attaches
to the particle or goes into the surrounding plasma.
Next, the nearest elliptic ion orbit is located far from
the particle. All this according to formula (3.5) is pos-
sible only for a nonequilibrium plasma where T, > Tj,
as it is realized in a gas discharge plasma containing
dust particles. In an equilibrium plasma (T, = T;),
we have Ry/ro = X ~ 5-6, and the above effects are
mixed.

As follows from the above analysis, trapped ions
are important in a rarefied plasma. It is typical for an
astrophysical plasma that fluxes may contain dust par-
ticles along with plasma [34]. Below, we consider two
examples of an astrophysical plasma with dust parti-
cles. The first example relates to Saturn rings. In
particular, the E-ring and F-rings of Saturn contain
ice particles of a size ranging from 0.5 pm to 10 pm
[35, 36] and a typical number density of ice particles
is 30 cm™3 [36]. The sources of ice particles are the
neighboring satellites: Enceladus [37] for E-ring, and

1205



B. M. Smirnov

MITP, Tom 137, BHmm. 6, 2010

N;/No, Nir/No

5_\\-\. 1

10 15 20 25 30
R/T‘o

Fig.3. The number densities of free (squares) and

trapped (circles) ions in a self-consistent field of the

particle at the reduced number density of a surround-

ing ionized gas Norg = 100 um ™" with the parameters

T. = 1 eV and T; = 400 K. Closed symbols corre-

spond to formula (7.3) and open symbols relate to for-
mula (7.4)

Prometheus and Pandora for the F-ring [38]. The num-
ber density of the plasma that results from the interac-
tion of the Saturn magnetic field and solar wind [39] is
Np = 30-100 cm 3 [40] and the electron temperature
is 10-100 eV [40], and the magnetic field has a signif-
icant effect on the properties of this plasma. Ions of
various types exist in a ring plasma, and basic sorts
of ions are OHT and H,O%1 with temperatures of the
order of 10° K. Taking ro = 1 um, Ny = 10%> cm™3,
T, = 30 eV, and T; = 10°> K, we obtain the parti-
cle charge |Z| = 2 - 10° according to formula (3.3);
from (3.5), Ro ~ 0.3 cm, which is comparable to the
distance between nearest, particles because their num-
ber density is N, ~ 30 cm~® [36]. This value is also
comparable to the size of the particle field range [ ~ Ry,
which is evidence of a partial screening of the particle
field by plasma ions.

A subsequent analysis of the character of the par-
ticle field leads to a contradiction. Indeed, the above
formulas are based on the assumption that attachment
of ions and electrons to the particle does not change the
parameters of the surrounding plasma. If such an equi-
librium is established, each particle takes ~ |Z| ions
in its field, and because the number density of parti-
cles is N, ~ 30 em™3 [36], the mean number density
of trapped ions must be N; ~ 10% ecm ™2 under equilib-
rium of electron and ion fluxes. But this value exceeds

the observational value by several orders of magnitude.
This means that the equilibrium that we used for a lab-
oratory dusty plasma is violated for this plasma. In-
deed, the source of a plasma is the solar wind with the
number density of fast electrons and protons 0.1 cm 3.
These atomic particles decelerate in this dusty plasma
and ions. As a result, particles are charged negatively,
and ions are partially captured by these charged parti-
cles and may be transformed into other ion types. But
fluxes of electrons and protons to an individual particle
are limited, and hence the observational number den-
sity of the plasma near the particle is lower than that
in the case of a stronger plasma source. This exam-
ple shows that the property of a certain astrophysical
plasma is determined by some processes in which the
interaction of particles with plasma fluxes plays an im-
portant role.

We consider the Solar System plasma from ano-
ther standpoint. The basis of this plasma is the
solar wind—a flux of plasma emitted by the Sun
corona [41, 42]. In formation of a dusty plasma, this
plasma flux encounters dust generated by a cold con-
densed system. As a result of mixing, a dusty plasma
is formed, and the number density of charged parti-
cles in this plasma exceeds that in the solar wind by
several orders of magnitude. Above, we verified this
for the dusty plasma of Saturn rings, and the same
occurs for other types of dusty plasma realized in the
Solar System, in particular, for the comets [43, 44].
Comet tails result from the interaction of solar wind
with the dusty plasma of comets, and although the
magnetic properties are important for the properties of
this plasma [45], processes in the field of charged par-
ticles of this plasma proceed as described above. Cor-
respondingly, the long lifetime of trapped ions greatly
increases the number density of the plasma of a comet
tail. This number density is 10°~10* cm™3 [42, 46, 47]
and exceeds that in the solar wind, while the electron
temperature T, ~ 10* K [42, 47-49] corresponds to that
in the solar wind. One of the reason for an increase in
the plasma density in the dusty plasma of comet tails is
formation of trapped ions in the field of dust particles
with a relatively long lifetime.

8. CONCLUSION

If a micron-size particle is placed in a weakly ionized
plasma, electrons and ions attach to the particle sur-
face and create a negative particle charge because the
electron mobility is higher than that of ions. As a re-
sult, plasma charges are separated in the particle field,
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and the ions that penetrate in the particle field screen
it. Along with free ions, which screen the particle field
in the course of their flight in the particle field, trapped
ions, which move along closed trajectories, contribute
to the particle field screening. Trapped ions exist in
the range of action of the particle field at distances not
close to the particle. The number density of trapped
ions may significantly exceed that of free ions because
charge exchange of trapped ions with gas atoms keeps
ions in closed trajectories in some region of the particle
field. The more rarefied the surrounding plasma is, the
larger contribution to the particle screening is made by
trapped ions. For a typical dusty plasma based on a
gas discharge plasma, the contribution to the particle
screening due to free ions exceeds or is comparable to
that due to trapped ions.

In addition, the particle charge for a rarefied buffer
gas is independent of the degree of the particle field
screening because fluxes are created in regions beyond
the particle field range, and the equality of the elec-
tron and ion fluxes at the particle surface determines
its charge. This equilibrium is violated in a dusty as-
trophysical plasma because the plasma fluxes directed
to dust particles are small and attachment of electrons
and ions to dust particles affects the parameters of the
surrounding plasma. Nevertheless, interaction of this
plasma with dust particles, especially the formation of
trapped ions with a long lifetime, is important for prop-
erties of such a dusty plasma.

Comparing this approach and results with studies
of trapped ions in a self-consistent field of a particle
located in a plasma, we note a nonrealistic charac-
ter of the resonant charge process in the models in
Refs. [18-20]. We took the Sena effect into account in
this process [21-23], assuming that an ion and an atom
move along straight trajectories in the course of this
process, and hence a forming ion acquires the velocity
of the incident atom at the point where this process
occurs. This allowed us to precisely evaluate the pa-
rameters of trapped ions in the region where the po-
tential of the particle self-consistent field significantly
exceeds the atom kinetic energy and continue the re-
sults to regions where this criterion does not hold. In
particular, we thus found that the number density of
trapped ions in some region may significantly exceed
that of free ions.

Of course, computer simulation of this problem in
the molecular dynamics framework gives, in principle,
an accurate description of the behavior of trapped ions
also on the boundary of the particle field range. But
this method requires accounting for a large number
of ions involved in the creation of the self-consistent

particle field. In particular, in the conditions of the
above example, approximately ~ 5 - 103 ions take part
in the screening of the particle field, and because the
lifetime of trapped ions is large compared to the flight
time of free ions, it is necessary to include 10°~10° ions
into consideration. Although modern computers allow
solving this problem, it is still arduous enough, and
therefore a number of assumptions are used in some
numerical evaluations [15-17,28-30], which cannot be
grounded. We also note that our analytic approach al-
lows considering the problem for an arbitrary shape of
the potential of the self-consistent particle field, which
simplifies the problem. As a result, our semianalytic
method allows accurately describing the behavior of
trapped ions in the internal region of the particle field
and exhibiting the character of formation of the particle
self-consistent field in a wide range of parameters.
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