ИНДУЦИРОВАННЫЙ ЗАМАГНИЧЕННОЙ ПЛАЗМОЙ МАГНИТНЫЙ МОМЕНТ НЕЙТРИНО

Р. А. Аникин, Н. В. Михеев^{*}, Е. Н. Нарынская

Ярославский государственный университет им. П. Г. Демидова 150000, Ярославль, Россия

Поступила в редакцию 17 ноября 2009 г.

Исследовано влияние замагниченной плазмы на дисперсионные свойства нейтрино. Вычислен вклад в магнитный момент нейтрино, обусловленный присутствием замагниченной плазмы. Показано, что в отличие от ранее представленных в литературе результатов плазменный вклад в магнитный момент нейтрино, так же как и в вакууме, подавлен его массой.

1. ВВЕДЕНИЕ

Разрешение загадки солнечных нейтрино в эксперименте на тяжеловодном детекторе нейтринной обсерватории в Садбери [1], а также эксперименты с атмосферными [2] и реакторными [3] нейтрино доказывают наличие массы покоя нейтрино и смешивания в лептонном секторе. В связи с этим становится актуальным вопрос о возможном влиянии на дисперсионные свойства нейтрино внешней активной среды, которая может быть представлена как плотной горячей плазмой, так и магнитным полем.

Исследование влияния активной среды на дисперсию нейтрино основано на вычислении собственно-энергетического оператора нейтрино $\Sigma(p)$, вычисление которого проводилось ранее в целом ряде работ. В частности, вклад внешнего магнитного поля в собственно-энергетический оператор нейтрино был исследован в работах [4–9].

Поскольку в реальных астрофизических условиях наряду с сильным магнитным полем также существует и плотная горячая плазма, представляет интерес исследование дисперсионных свойств нейтрино во внешней активной среде, в качестве которой выступают одновременно и плазма, и поле.

Собственно-энергетический оператор нейтрино в замагниченной плазме также активно исследовался ранее, см., например, [10–14].

Следует отметить, что ценность вычисления собственно-энергетического оператора состоит еще в том, что из него можно извлечь также аномальный магнитный момент нейтрино. Однако имеющиеся в настоящее время результаты для магнитного момента нейтрино в замагниченной плазме вызывают сомнение, поскольку в них магнитный момент нейтрино либо имеет гигантское усиление фактором $1/m_{\nu}$, либо совсем не зависит от массы нейтрино [15]. Такие результаты, как справедливо было отмечено в работе [13], скорее запутывают ситуацию с магнитным моментом нейтрино, чем проясняют ее.

В общем случае собственно-энергетический оператор нейтрино в замагниченной плазме может быть представлен в виде

$$\Sigma(p) = [A_L(p\gamma) + B_L(u\gamma) + C_L(pF\gamma)]\gamma_L + + [A_R(p\gamma) + B_R(u\gamma) + C_R(p\tilde{F}\gamma)]\gamma_R + + m_{\nu}[K_1 + iK_2(\gamma F\gamma)], \quad (1)$$

где $u^{\mu} - 4$ -вектор скорости среды, $p^{\mu} - 4$ -импульс нейтрино, $\gamma_L = (1 + \gamma_5)/2$ и $\gamma_R = (1 - \gamma_5)/2$ проекционные операторы, A_R , B_R , C_R , A_L , B_L , C_L , K_1 , K_2 — численные коэффициенты, $F^{\mu\nu}$ и $\tilde{F}^{\mu\nu}$ тензор и дуальный тензор электромагнитного поля. Здесь и далее у 4-векторов и тензоров, стоящих внутри круглых скобок, тензорные индексы полагаются свернутыми последовательно, например: $(p\tilde{F}\gamma) = (p_{\mu}\tilde{F}^{\mu\nu}\gamma_{\nu}).$

Изменение энергии нейтрино, обусловленное его рассеянием вперед в среде, может быть выражено через собственно-энергетический оператор нейтрино

$$\Delta E = \frac{1}{4E} \operatorname{Sp} \{ ((p\gamma) + m_{\nu}) (1 + (s\gamma) \gamma_5) \Sigma(p) \}, \quad (2)$$

откуда с учетом выражения (1) имеем

^{*}E-mail: mikheev@uniyar.ac.ru

Здесь m_{ν} — масса нейтрино, E — энергия нейтрино в вакууме, $\boldsymbol{\xi}$ — удвоенный вектор среднего спина нейтрино, \mathbf{B}_l и \mathbf{B}_t — соответственно продольный и поперечный относительно направления движения нейтрино векторы напряженности магнитного поля, \mathbf{v} — вектор скорости нейтрино.

Следует отметить, что в выражении (3), вообще говоря, все коэффициенты A_R , B_R , C_R , A_L , B_L , C_L , K_1 , K_2 зависят от магнитного поля, но только последнее слагаемое, содержащее коэффициенты C_R , C_L , K_2 , определяет магнитный момент нейтрино.

Действительно, найдем изменение энергии нейтрино из-за наличия у него магнитного момента μ_{ν} . Эта поправка к энергии может быть найдена из лагранжиана

$$\Delta L_{int}^{(\mu)} = \frac{i\mu_{\nu}}{2} (\bar{\Psi}\sigma_{\mu\nu}\Psi)F^{\mu\nu}, \qquad (4)$$

где Ψ — поле фермиона, $\sigma_{\mu\nu} = (\gamma_{\mu} \gamma_{\nu} - \gamma_{\nu} \gamma_{\mu})/2.$

Подставляя этот лагранжиан в определение дополнительной энергии

$$\Delta E^{(\mu)} = -\int dV \langle \Delta L_{int}^{(\mu)} \rangle, \qquad (5)$$

получаем

$$\Delta E^{(\mu)} = -\mu_{\nu} [\boldsymbol{\xi} \cdot \mathbf{B}_t + \frac{m_{\nu}}{E} \boldsymbol{\xi} \cdot \mathbf{B}_l].$$
(6)

Таким образом, в выражении для дополнительной энергии нейтрино в замагниченной плазме (3) магнитному моменту соответствует только одно слагаемое, пропорциональное сумме

$$\boldsymbol{\xi} \cdot \mathbf{B}_t + \frac{m_\nu}{E} \boldsymbol{\xi} \cdot \mathbf{B}_l$$

Некорректность определения магнитного момента нейтрино в работе [15] по нашему мнению состояла в том, что авторы предполагали, что вся дополнительная энергия нейтрино в замагниченной плазме, связанная с зависимостью от спина и магнитного поля, определяет магнитный момент нейтрино. Однако реально, как мы видим, только одна структура в выражении для дополнительной энергии нейтрино соответствует магнитному моменту.

Сравнение выражения для дополнительной энергии (3) с формулой (6) показывает, что для определения магнитного момента нейтрино в замагниченной плазме достаточно найти коэффициенты C_L, C_R и K_2 , через которые магнитный момент выражается следующим образом:

$$\mu_{\nu} = \frac{m_{\nu}}{2} (C_L - C_R + 4K_2). \tag{7}$$

2. МАГНИТНЫЙ МОМЕНТ НЕЙТРИНО В ЗАМАГНИЧЕННОЙ ПЛАЗМЕ

В этом разделе мы вычисляем интересующие нас слагаемые собственно-энергетического оператора нейтрино $\Sigma(p)$, которые дают вклад в магнитный момент нейтрино. В замагниченной плазме магнитный момент нейтрино содержит два вклада: чисто полевой вклад и вклад плазмы.

Полевой вклад в магнитный момент нейтрино вычислялся ранее во многих работах, см., например, [5, 8, 9]. Выражение для магнитного момента нейтрино в широком диапазоне энергий нейтрино и напряженности магнитного поля¹⁾,

$$m_l^2/m_W^2 \ll (eB)^2 p_\perp^2/m_W^6 \ll 1,$$

может быть извлечено из работы [8]:

$$\mu_{\nu_{l}} \approx \mu_{\nu_{l}}^{0} \left\{ 1 + \frac{4\chi^{2}}{3} \left(\ln \frac{1}{\chi} - \frac{17}{3} + \ln 3 + 2\gamma_{E} + i\pi \right) \right\}.$$
(8)

Здесь $\mu_{\nu_l}^0$ — магнитный момент нейтрино в вакууме [16, 17],

$$\mu_{\nu_l}^0 = \frac{3eG_F m_{\nu_l}}{8\sqrt{2}\pi^2},\tag{9}$$

 m_{ν_l} — масса нейтрино, p_{\perp} — поперечный по отношению к магнитному полю импульс нейтрино, $\chi^2 = = (eB)^2 p_{\perp}^2 / m_W^6, \ \lambda = m_l^2 / m_W^2, \ \gamma_E = 0.577 \dots$ — постоянная Эйлера.

Для того чтобы вычислить плазменный вклад в собственно-энергетический оператор $\Sigma(p)$, достаточно найти амплитуду процесса рассеяния нейтрино вперед в замагниченной плазме:

$$M_{(\nu \to \nu)} = -\bar{U}(p)\Sigma(p) U(p).$$
⁽¹⁰⁾

В реальных астрофизических условиях основной вклад в ту часть амплитуды, которая обусловливает магнитный момент нейтрино, дает рассеяние нейтрино на плазменных электронах и позитронах. Амплитуда процесса рассеяния $\nu \rightarrow \nu$ в замагниченной

¹⁾ Используется естественная система единиц, в которой $c = \hbar = 1, e > 0$ — элементарный заряд.

Диаграммы Фейнмана, обусловливающие вклад замагниченной плазмы в амплитуду процесса рассеяния нейтрино вперед. Двойные линии соответствуют заряженным частицам

плазме, а значит и собственно-энергетический оператор нейтрино, может быть представлена в виде суммы трех слагаемых, соответствующих трем диаграммам на рисунке:

$$\Sigma(p) = \Sigma^{W}(p) + \Sigma^{\Phi}(p) + \Sigma^{Z}(p).$$
(11)

Опуская детали несложных, хотя и несколько громоздких вычислений, для вклада в $\Sigma(p)$, обусловленного процессом обмена *W*-бозоном, получаем

$$\Sigma^{W}(p) = \frac{i g^{2}}{2} \sum_{n=0}^{\infty} (-1)^{n} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{e^{-z}}{\omega_{n}} \times \left(f(\omega_{n}) G^{W}_{\beta\alpha}(p-k) - \tilde{f}(\omega_{n}) G^{W}_{\beta\alpha}(p+k) \right) \times \\ \times \gamma_{\alpha} [\hat{k}_{\parallel}(L_{n}(2z)\Pi_{-} - L_{n-1}(2z)\Pi_{+}) + \\ + 2\hat{k}_{\perp} L^{1}_{n-1}(2z)] \gamma_{\beta} \gamma_{L}.$$
(12)

Здесь g — константа электрослабого взаимодействия в стандартной модели, $z = k_{\perp}^2/\beta$, $\beta = eB$, $\hat{k}_{\parallel} = (k\tilde{\varphi}\tilde{\varphi}\gamma) = \omega_n\gamma_0 - k_3\gamma_3$, $\hat{k}_{\perp} = (k\varphi\varphi\gamma) = k_1\gamma_1 + k_2\gamma_2$, $\varphi_{\alpha\beta} = F_{\alpha\beta}/B$ и $\tilde{\varphi}_{\alpha\beta} = \varepsilon_{\alpha\beta\rho\sigma}\varphi^{\rho\sigma}/2$ — приведенные к безразмерному виду тензор и дуальный тензор внешнего магнитного поля соответственно²⁾, $\Pi_{\pm} = (1 \pm i\gamma_1\gamma_2)/2$ — проекционные операторы, $G^W_{\beta\alpha}(q) - \phi$ урье-образ трансляционно инвариантной части пропагатора W-бозона, $f(\omega_n)$ и $\tilde{f}(\omega_n) - \phi$ ункции распределения электронов и позитронов. В системе покоя плазмы они имеют вид

$$\underbrace{f(\omega_n) = [e^{(\omega_n - \mu)/T} + 1]^{-1}}_{=}, \quad \tilde{f}(\omega_n) = [e^{(\omega_n + \mu)/T} + 1]^{-1},$$

где μ и T — соответственно химический потенциал и температура плазмы, ω_n — энергия электрона (позитрона) на *n*-м уровне Ландау.

Присоединенные полиномы Лагерра в выражении (12) определены следующим образом:

$$L_{k}^{l}(x) = \frac{e^{x}x^{-l}}{k!} \frac{d^{k}}{dx^{k}} (e^{-x}x^{k+l})$$

Аналогично для вклада, обусловленного процессом рассеяния нейтрино с обменом заряженным скалярным Ф-бозоном, находим, что

$$\Sigma^{\Phi}(p) = -\frac{i g^2}{2} \sum_{n=0}^{\infty} (-1)^n \int \frac{d^3k}{(2\pi)^3} \frac{e^{-z}}{\omega_n} \times \\ \times \left(f(\omega_n) G^{\Phi}(p-k) - \tilde{f}(\omega_n) G^{\Phi}(p+k) \right) \times \\ \times \left\{ \frac{m_e^2 m_\nu}{m_W^2} (L_n(2z) \Pi_- - L_{n-1}(2z) \Pi_+) - \\ - \left[\hat{k}_{\parallel} (L_n(2z) \Pi_- - L_{n-1}(2z) \Pi_+) + \right] \\ + 2 \hat{k}_{\perp} L_{n-1}^1(2z) \left\{ \frac{m_e^2}{m_W^2} \gamma_L - \frac{m_\nu^2}{m_W^2} \gamma_R \right\} \right\}.$$
(13)

Отметим, что выписанные вклады соответствуют только электронному типу нейтрино, для других типов нейтрино ν_{μ}, ν_{τ} вклад с обменами заряженными бозонами равен нулю, $\Sigma^{W}(p) = \Sigma^{\Phi}(p) = 0.$

В фейнмановской калибровке трансляционно инвариантные части пропагаторов *W*- и Ф-бозонов в формализме собственного времени могут быть представлены в виде однократного интеграла:

$$G^{W}_{\mu\nu}(q) = -\int_{0}^{\infty} \frac{ds}{\cos(\beta s)} \times \\ \times e^{-i\Omega} (\tilde{\Lambda}_{\mu\nu} - \Lambda_{\mu\nu} \cos(2\beta s) - \varphi_{\mu\nu} \sin(2\beta s)), \quad (14)$$

$$G^{\Phi}_{\mu\nu}(q) = \int_{0}^{\infty} \frac{ds}{\cos(\beta s)} e^{-i\Omega},$$

$$\Omega = (m_{W}^{2} - q_{\parallel}^{2}) s + \frac{\operatorname{tg}(\beta s)}{\beta} q_{\perp}^{2},$$
(15)

где $\Lambda_{\mu\nu} = \varphi_{\mu\tau}\varphi_{\nu}^{\tau}, \ \tilde{\Lambda}_{\mu\nu} = \tilde{\varphi}_{\mu\tau}\tilde{\varphi}_{\nu}^{\tau}.$

Далее будем рассматривать реалистичную физическую ситуацию, когда масса *W*-бозона является самым большим параметром задачи. Это означает, что параметры, характеризующие замагниченную плазму, удовлетворяют условию

$$m_e^2, \mu^2, T^2, eB \ll m_W^2.$$
 (16)

²⁾ Мы проводим вычисления в калибровке $A^{\mu} = (0, 0, Bx, 0)$, магнитное поле направлено вдоль третьей оси $\mathbf{B} = (0, 0, B)$.

Если плазма зарядово несимметрична, то в пропагаторах W- и Φ -бозона достаточно удержать лидирующий вклад в разложении по обратным степеням m_W^2 :

$$G^W_{\beta\alpha} \approx -\frac{i g_{\beta\alpha}}{m_W^2}, \quad G^\Phi \approx \frac{i}{m_W^2}.$$

После несложных вычислений для вкладов в собственно-энергетический оператор находим:

$$\Sigma^{W}(p) \approx \sqrt{2}G_{F}\left(\dots - \frac{n_{e}^{0} - \tilde{n}_{e}^{0}}{EB}(p\tilde{F}\gamma)\right)\gamma_{L}, \quad (17)$$

$$\Sigma^{\Phi}(p) \approx \frac{G_F}{\sqrt{2}} \left\{ \dots - \frac{n_e^0 - \tilde{n}_e^0}{EB} (p\tilde{F}\gamma) \times \left(\frac{m_e^2}{m_W^2} \gamma_L + \frac{m_\nu^2}{m_W^2} \gamma_R \right) + \frac{ie}{4\pi^2} m_\nu \frac{m_e^2}{m_W^2} \int_0^\infty \frac{dk}{\omega_0} (f(\omega_0) - \tilde{f}(\omega_0)) (\gamma F\gamma) \right\}, \quad (18)$$

где многоточие соответствует слагаемым, не дающим вклада в магнитный момент нейтрино, ω_0 энергия электрона (позитрона) на основном (n = 0) уровне Ландау, n_e^0 , \tilde{n}_e^0 — соответственно плотности электронов и позитронов на основном уровне Ландау, причем их разность определяется следующим интегралом:

$$n_{e}^{0} - \tilde{n}_{e}^{0} = \frac{eB}{2\pi^{2}} \int_{0}^{\infty} dk (f(\omega_{0}) - \tilde{f}(\omega_{0})).$$
(19)

Сравнивая результаты (17) и (18) с параметризацией (1), получаем искомые коэффициенты C_L, C_R и K_2 :

$$C_L^W = -\frac{eG_F}{\sqrt{2}\pi^2 E} \int_0^\infty dk (f(\omega_0) - \tilde{f}(\omega_0)), \qquad (20)$$

$$C_R^W = K_2^W = 0, (21)$$

$$C_L^{\Phi} = \frac{m_e^2}{2m_W^2} C_L^W, \quad C_R^{\Phi} = \frac{m_\nu^2}{2m_W^2} C_L^W, \quad (22)$$

$$K_{2}^{\Phi} = -\frac{eG_{F}}{4\sqrt{2}\pi^{2}} \frac{m_{e}^{2}}{m_{W}^{2}} \int_{0}^{\infty} \frac{dk}{\omega_{0}} (f(\omega_{0}) - \tilde{f}(\omega_{0})).$$
(23)

Как и следовало ожидать, вклады, обусловленные обменом заряженным скаляром, подавлены малыми факторами m_{ν}^2/m_W^2 и m_e^2/m_W^2 .

Интересующая нас часть Σ^{Z} , обусловленная вкладом от рассеяния нейтрино на заряженных фермионах плазмы с обменом Z-бозоном, легко вычисляется:

$$\Sigma_f^Z = \sqrt{2}G_F\left(\dots - \frac{T_3^f}{BE}(n_f^0 - \tilde{n}_f^0)(p\tilde{F}\gamma)\right)\gamma_L.$$
 (24)

Здесь n_f^0 , \tilde{n}_f^0 — соответственно плотности заряженных фермионов и антифермионов на основном уровне Ландау, T_3^f — третья компонента изоспина заряженного фермиона. Многоточие соответствует слагаемым, не дающим вклада в магнитный момент нейтрино. Учитывая, что наибольшая концентрация на основном уровне Ландау соответствует электронам и позитронам, из выражения (24) находим искомые коэффициенты C_L , C_R и K_2 :

$$C_L^Z = \frac{e G_F}{2\sqrt{2}\pi^2 E} \int_0^\infty dk (f(\omega_0) - \tilde{f}(\omega_0)), \qquad (25)$$

$$C_R^Z = K_2^Z = 0. (26)$$

Таким образом, магнитный момент нейтрино, индуцированный зарядово несимметричной плазмой, определяется в основном коэффициентами C_L^Z и C_L^W , к которым следует добавить чисто полевой вклад (8). Окончательно для C_L получаем

$$C_L \approx C_L^W + C_L^Z \approx$$
$$\approx \frac{3eG_F}{4\sqrt{2}\pi^2} \left(1 \mp \frac{2}{3E} \int_0^\infty dk (f(\omega_0) - \tilde{f}(\omega_0)) \right). \quad (27)$$

Верхний знак в этом выражении соответствует электронному нейтрино ν_e , нижний — мюонному и тау-нейтрино, ν_{μ}, ν_{τ} . Здесь мы отбросили вклады, пропорциональные $1/m_W^4$, $1/m_W^6$ и т. д.

Интеграл в выражении (27) легко вычисляется для ультрарелятивистской плазмы. В этом случае для магнитного момента получаем простое выражение:

$$\mu_{\nu_l} = \frac{C_L m_{\nu_l}}{2} \approx \frac{3eG_F m_{\nu_l}}{8\sqrt{2}\pi^2} \left(1 \mp \frac{2}{3}\frac{\mu}{E}\right).$$
(28)

Здесь μ — химический потенциал электронов ультрарелятивистской плазмы. Следует отметить, что в слабо замагниченной плазме он имеет вид

$$\mu \approx (3\pi^2 (n_e - \tilde{n}_e))^{1/3},$$

в то время как в сильно замагниченной плазме, когда из двух компонент активной среды доминирующей является магнитное поле и электроны плазмы оккупируют преимущественно основной уровень Ландау, химический потенциал равен

$$\mu \approx 2\pi^2 \frac{n_e - \tilde{n}_e}{eB},$$

где n_e и \tilde{n}_e — полные концентрации соответственно электронов и позитронов.

Еще одна ситуация, когда можно провести аналитические вычисления магнитного момента нейтрино — с учетом физических условий зарядово симметричной электрон-позитронной плазмы. В этом случае вклад от диаграмм с обменом Z-бозоном исчезает, следовательно нейтрино типов ν_{μ} и ν_{τ} не имеют дополнительного магнитного момента, индуцированного замагниченной плазмой.

Для электронного нейтрино в зарядово симметричной (e^-e^+) плазме магнитный момент определяется выражением

$$\mu_{\nu_e} \approx \frac{3e \, G_F \, m_{\nu}}{8\sqrt{2} \, \pi^2} \left(1 + \frac{4\pi^2}{9} \, \frac{T^2}{m_W^2} \right). \tag{29}$$

Как можно видеть, в реальных астрофизических условиях, когда $T \ll m_W$, плазменный вклад в магнитный момент нейтрино оказывается подавленным.

3. ЗАКЛЮЧЕНИЕ

В работе исследовано влияние внешней активной среды на собственно-энергетический оператор нейтрино во внешней активной среде. В качестве активной среды рассмотрена плотная плазма и внешнее магнитное поле. Вычислен плазменный вклад в собственно-энергетический оператор нейтрино, определяющий его магнитный момент. В отличие от методик вычисления магнитного момента в плазме, представленных в литературе ранее, показано, что только часть дополнительной энергии нейтрино обусловлена наличием у него магнитного момента.

Вычисления проводились в физических условиях, когда масса W-бозона является самым большим физическим параметром задачи, $m_e^2, \mu^2, T^2, eB \ll \ll m_W^2$, что является характерным условием для астрофизической плазмы. Получено выражение для плазменного вклада в магнитный момент нейтрино, которое существенно упрощается в случае ультрарелятивистской и зарядово симметричной плазмы. Показано, что присутствие плазмы не приводит к усилению магнитного момента, как утверждалось ранее [15]. Более того, магнитный момент оказывается подавленным массой нейтрино m_{ν} , а в зарядово симметричной плазме — еще и дополнительным фактором $T/m_W^2 \ll 1$.

Исследование проведено в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг. (Госконтракт №П 2323), при частичной финансовой поддержке Совета по грантам Президента Российской Федерации для поддержки молодых российских ученых и ведущих научных школ РФ (проект № НШ-497.2008.2), Министерства образования и науки РФ по программе «Развитие научного потенциала высшей школы» (проект № 2.1.1/510) и РФФИ (грант № 07-02-00285-а).

ЛИТЕРАТУРА

- Q. R. Ahmad, R. C. Allen, T. C. Andersen et al. (SNO Collaboration), Phys. Rev. Lett. 87, 071301 (2001); 89, 011301, 011302 (2002).
- Y. Fukuda, T. Hayakawa, E. Ichihara et al. (Super-Kamiokande Collaboration), Phys. Lett. B 433, 9 (1998); 436, 33 (1998); Phys. Rev. Lett. 82, 2644 (1999).
- K. Eguchi, S. Emonoto, K. Furuno et al. (Kami-LAND Collaboration), Phys. Rev. Lett. 90, 021802 (2003).
- 4. G. McKeon, Phys. Rev. D 24, 2744 (1981).
- А. В. Борисов, В. Ч. Жуковский, А. В. Курилин, А. И. Тернов, ЯФ 41, 743 (1985).
- A. Erdas and G. Feldman, Nucl. Phys. B 343, 579 (1990).
- A. V. Kuznetsov, N. V. Mikheev, G. G. Raffelt, and L. A. Vassilevskaya, Phys. Rev. D 73, 023001 (2006).
- 8. А. В. Кузнецов, Н. В. Михеев, ЯФ **70**, 1299 (2007).
- 9. A. Erdas, arXiv:hep-ph 0908.4297v1.
- J. C. D'Olivo, J. F. Nieves, and P. B. Pal, Phys. Rev. D 40, 3679 (1989).
- V. B. Semikoz and J. W. F. Valle, Nucl. Phys. B 425, 651 (1994); 485, 545 (Erratum) (1997).
- 12. G. G. Raffelt, Phys. Rep. 198, 1 (1990).
- P. Elmfors, D. Grasso, and G. Raffelt, Nucl. Phys. B 479, 3 (1996).
- 14. E. Elizalde, E. J. Ferrer, and V. de la Incera, Phys. Rev. D 70, 043012 (2004).
- В. Ч. Жуковский, Т. Л. Шония, П. А. Аминов, ЖЭТФ 104, 3269 (1993).
- 16. B. W. Lee and R. E. Shrok, Phys. Rev. D 16, 1444 (1977).
- 17. K. Fujikawa and R. E. Shrok, Phys. Rev. Lett. 45, 963 (1980).