МАГНИТОСОПРОТИВЛЕНИЕ И МАГНИТНОЕ УПОРЯДОЧЕНИЕ В ГЕКСАБОРИДАХ ПРАЗЕОДИМА И НЕОДИМА

М. А. Анисимов^{а,b}, А. В. Богач^b, В. В. Глушков^{а,b}, С. В. Демишев^b, Н. А. Самарин^b,

В. Б. Филипов^с, Н. Ю. Шицевалова^с, А. В. Кузнецов^{b,d}, Н. Е. Случанко^{b*}

^а Московский физико-технический институт 141700, Долгопрудный, Московская обл., Россия

^b Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

^с Институт проблем материаловедения Национальной академии наук Украины 03680, Киев, Украина

> ^d Московский инженерно-физический институт 115409, Москва, Россия

> > Поступила в редакцию 22 мая 2009 г.

Измерено магнитосопротивление $\Delta
ho/
ho$ монокристаллических образцов гексаборидов празеодима $({
m PrB}_6)$ и неодима (MdB_6) в диапазоне температур 2-20 K и в магнитных полях до 80 кЭ. Полученные данные позволяют обнаружить смену режимов с переходом от малого отрицательного магнитосопротивления (ОМС) в парамагнитном состоянии к большому положительному магниторезистивному эффекту в магнитоупорядоченных фазах PrB_6 и NdB_6 . Анализ зависимостей $\Delta
ho(H)/
ho$ позволяет выделить три вклада в магнитосопротивление для исследуемых соединений. Наряду с основным отрицательным квадратичным по магнитному полю вкладом ($-\Delta
ho/
ho\propto H^2$) в парамагнитной фазе также обнаружены линейный положительный ($\Delta
ho /
ho \propto H$) и нелинейный ферромагнитный вклады. С переходом в магнитоупорядоченное состояние линейная положительная компонента в магнитосопротивлении соединений ${
m PrB_6}$ и ${
m NdB_6}$ становится доминирующей, тогда как квадратичный ОМС-вклад полностью подавляется в соразмерной магнитной фазе исследуемых соединений. Наличие нескольких компонент в магнитосопротивлении находит объяснение в предположении о формировании в антиферромагнитных фазах ${
m PrB}_6$ и ${
m NdB}_6$ ферромагнитных нанообластей (ферронов) в 5d-полосе в окрестности редкоземельных ионов. Происхождение квадратичного ОМС-вклада интерпретируется в рамках модели Иосиды, учитывающей рассеяние электронов проводимости на локализованных магнитных моментах РЗ-ионов. В рамках используемого подхода выполнена оценка локальной магнитной восприимчивости χ_{loc} . Показано, что в диапазоне температур $T_N < T < 20$ К поведение χ_{loc} для исследуемых соединений с хорошей точностью может быть описано кюри-вейссовской зависимостью $\chi_{loc} \propto (T - \Theta_p)^{-1}$.

PACS: 72.15.Gd, 72.15.Qm

1. ВВЕДЕНИЕ

Среди перспективных модельных объектов в физике систем с сильными электронными корреляциями (strongly correlated electron systems) выделяются гексабориды RB₆ на основе редкоземельных (P3) элементов. Интерес к этим соединениям связан главным образом с возникновением целого ряда аномалий физических характеристик и многообразием видов основного состояния в ряду RB_6 . Так, из гексаборидов первой половины P3-ряда диамагнитный LaB₆ испытывает переход в сверхпроводящее состояние при $T_C \approx 0.45$ K [1], а соединение с тяжелыми фермионами CeB₆ считается классическим примером концентрированной кондо-системы,

^{*}E-mail: nes@lt.gpi.ru

Рис. 1. Магнитные фазовые H-T-диаграммы для PrB_6 [17] (*a*) и NdB_6 [19, 59] (*b*) при **H** $\parallel \langle 001 \rangle$ (\circ), $\langle 110 \rangle$ (\Box), $\langle 111 \rangle$ (\blacktriangle). На вставках показаны схемы расщепления состояний ${}^{3}H_4$ (Pr^{3+}) и ${}^{4}I_{9/2}$ (Nd^{3+}) кристаллическим полем. С (C_H) — соразмерная, HC1 (HC2) — несоразмерная, ПМ — парамагнитная, АФМ (АФМ2) — антиферромагнитная фазы, H_c — поле перехода в ПМ-фазу

в которой с понижением температуры происходит переход в фазу с так называемым антиферроквадрупольным (АФК) упорядочением ($T_Q \approx 3.3$ K) и далее, ниже температуры Нееля $T_N \approx 2.3$ K, достигается сложное антиферромагнитное модулированное (АФМ) основное состояние [2–5]. Гексабориды празеодима PrB₆ и неодима NdB₆ также являются антиферромагнитными металлами, в которых магнитные свойства считаются обусловленными локализованными магнитными моментами РЗ-ионов, взаимодействующими между собой через электроны проводимости (РККИ-механизм) [6]. Соединение с переменной валентностью SmB_6 представляет собой узкозонный полупроводник с энергетической щелью $E_{q} \approx 19 \text{ мэВ}$ в спектре электронных состояний [7,8], а соединение с колоссальным магнитосопротивлением, гексаборид европия (EuB₆), принято считать полуметаллом, в котором при низких температурах наблюдаются переходы полуметалл-металл и парамагнетик-ферромагнетик [9,10].

Исследуемые в работе гексабориды празеодима и неодима располагаются в первой половине ряда RB₆, имеют кристаллическую ОЦК-структуру типа CsCl с атомами редкоземельного элемента в вершинах куба и октаэдром из атомов бора (B₆) в его центре. Кристаллическое электрическое поле (КЭП) кубической симметрии снимает вырождение состояния ³ H_4 иона \Pr^{3+} (см. схему расщепления на рис. 1*a*, триплет Γ_5 – основное состояние, полное расщепление 464 К [11]) и состояния ⁴ $I_{9/2}$ иона Nd³⁺ (см. схему расщепления на рис. 1*б*, квартет $\Gamma_8^{(2)}$ — основное состояние, полное расщепление 278 К [11,12]). При этом, например, для NdB₆ по результатам расчетов [13] магнитная анизотропия, обусловленная КЭП-эффектами, должна приводить к возникновению выделенного направления (111) и ориентации магнитных моментов ионов \mathbb{R}^{3+} в магнитоупорядоченном состоянии вдоль «легкой» оси в отличие от реально наблюдаемого в эксперименте расположения **m** || (001) [14].

Магнитные фазовые H-T-диаграммы соединений PrB_6 и NdB_6 существенно различаются (рис. 1), причем для PrB_6 , как и в случае CeB_6 , в отсутствие внешнего магнитного поля регистрируются два магнитных перехода. В то же время, в отличие от CeB_6 , с ростом температуры в PrB_6 при $T_M \approx 4.2$ К [15,16] происходит переход из антиферромагнитной соразмерной (С) в несоразмерную (HC1) фазу (рис. 1*a*). При этом для направления **H** || $\langle 111 \rangle$ в PrB_6 , так же как и в CeB_6 , наблюдается положительный наклон границы $T_M(H)$ фазовой диаграммы [17]. Кроме того, близкими по магнитной структуре оказываются соразмерные фазы в CeB₆ (неколлинеарная $2\mathbf{k} - \mathbf{k}'$ -фаза A Φ M, $\mathbf{k}_{1,2} = (1/4; \pm 1/4; 1/2)$ и $\mathbf{k}'_{1,2} = (1/4; \pm \overline{1}/4; 1/2)$ [2–5]) и PrB_6 (неколлинеарная 2k-фаза C на рис. 1a, $\mathbf{k}_{1,2} = (1/4; \pm 1/4; 1/2)$ [15, 16]). При изменении заполнения внутренней 4f-оболочки от PrB₆ $(4f^{2}(\Pr^{3+}))$ к NdB₆ $(4f^{3}(Nd^{3+}))$ происходит подавление промежуточной магнитной фазы (см. рис. 16). В результате для NdB_6 при H < 150 кЭ наблюдается один магнитный переход при $T_N \approx 8 \,\mathrm{K}$ в АФМ-фазу с соразмерной коллинеарной магнитной структурой [14], которая может быть получена из неколлинеарной 2k-структуры С-фазы PrB₆ изменением на $\pi/2$ фазового сдвига между двумя фурье-компонентами [15, 16]. Дополнительно следует отметить сходство между магнитными структурами $\Pr B_6$ и $m NdB_6$ для направления внешнего магнитного поля Н || (110) [14–19]: при H > 20 кЭ для PrB_6 также наблюдается простая $(single-\mathbf{k})$ коллинеарная магнитная структура (см. рис. 1*a*, фаза C_H).

Учитывая орбитальное вырождение основного 4*f*-состояния гексаборидов CeB_6 (Γ_8 -квартет [2–5]), PrB_6 (Γ_5 -триплет [11], вставка на рис. 1*a*) и NdB₆ $(\Gamma_8$ -квартет [11, 12], вставка на рис. 16), принято считать, что мультипольные взаимодействия играют заметную роль в формировании сложной структуры магнитоупорядоченных фаз в этих соединениях [2-5, 13-23]. В то же время результаты исследований магнитной дифракции в GdB₆ [24, 25], позволили установить аналогичную отмеченной выше неколлинеарную магнитную структуру с вектором $\mathbf{k} = (1/4; 1/4; 1/2)$ и в этом соединении, для которого 4f-орбитальное вырождение отсутствует (⁸S_{7/2}-состояние РЗ-иона). В такой ситуации возникновение общего для антиферромагнетиков RB₆ «мотива» в магнитной структуре, по мнению авторов работ [26, 27], следует связать с особенностями строения поверхности Ферми, которая достаточно слабо меняется в ряду трехвалентных РЗ-гексаборидов. В частности, для GdB₆ в приближении сильной связи было показано [27], что электрон-электронное взаимодействие приводит к возникновению максимума динамической восприимчивости $\chi(q)$ в окрестности q = (1/4; 1/4; 1/2) в зоне Бриллюэна, который отвечает поляризации 2*p*- и 5*d*-состояний зоны проводимости. Обусловленное максимумом зависимости $\chi(q)$ взаимодействие благоприятствует магнитному упорядочению вблизи q = (1/4; 1/4; 1/2), причем вследствие асимметричного характера особенности $\chi(q)$, по мнению авторов работы [27], объяснение получает также несоразмерный тип магнитной структуры PrB₆.

8 ЖЭТФ, вып.5(11)

945

Как видно из приведенного выше краткого анализа состояния исследований редкоземельных гексаборидов, вплоть до настоящего времени вопрос о механизмах, ответственных за формирование сложного антиферромагнитного основного состояния в соединениях RB₆, остается открытым. При этом, наряду с обсуждавшимися выше квадрупольным и анизотропным РККИ-взаимодействиями, авторы работ [16,23] подчеркивают важную роль эффектов гибридизации между 4f-состояниями и зонными состояниями в возникновении значительной анизотропии обменных взаимодействий и стабилизации сложных неколлинеарных магнитных структур в гексаборидах CeB₆ и PrB₆. Кроме того, для соединения СеВ₆, очевидно, одним из доминирующих факторов являются корреляционные эффекты, приводящие к быстрым локальным спиновым 4f-5d-флуктуациям, возникновению магнитной поляризации (спин-поляронные состояния) в 5*d*-полосе зоны проводимости и их участию в формировании сложной магнитной структуры в гексабориде церия [28, 29]. По-видимому, влияние корреляционных эффектов следует принимать во внимание и для гексаборидов PrB_6 и NdB_6 , располагающихся в ряду RB_6 между соединениями CeB_6 с быстрыми спиновыми флуктуациями и SmB₆ с быстрыми зарядовыми флуктуациями. При этом одним из наиболее эффективных экспериментальных методов исследования характера магнитных взаимодействий и особенностей фазовых диаграмм в гексаборидах PrB₆ и NdB_6 с металлической проводимостью представляются измерения гальваномагнитных характеристик в широком диапазоне магнитных полей и при низких температурах, отвечающих парамагнитной и магнитоупорядоченным фазам указанных магнети-KOB.

В связи с этим представляет интерес изучить роль обменных взаимодействий различной природы, а также влияние корреляционных эффектов на транспортные свойства соединений PrB₆ и NdB₆ и сопоставить полученные данные с известными результатами измерений зарядового транспорта и магнитных свойств гексаборида церия [28, 29]. С этой целью в работе выполнено детальное исследование магнитосопротивления $\Delta \rho(H)/\rho$ в диапазоне температур 2–20 К и в сильных магнитных полях до 80 кЭ на монокристаллических образцах PrB₆ и NdB₆ высокого качества. Для облегчения анализа результатов в настоящей работе мы ограничились измерениями поперечного магниторезистивного эффекта в случае Н || (001), отвечающем наиболее простому виду фазовых Н-Т-диаграмм исследуемых гексаборидов (см. рис. 1). Для сопоставления в рамках модели Иосиды полученных в работе результатов для локальной и объемной восприимчивостей нами выполнены также измерения намагниченности PrB_6 и NdB_6 в слабых магнитных полях $\mathbf{H} \parallel \langle 001 \rangle$ в области линейности зависимости M(H) в интервале температур 4.2–300 К.

Ниже изложение оригинальных результатов организовано следующим образом. В разд. 2 описываются методика синтеза образцов и особенности измерений магнитосопротивления и намагниченности. Экспериментальные результаты исследований удельного сопротивления и магнитосопротивления в парамагнитной и магнитоупорядоченных фазах соединений PrB₆ и NdB₆ представлены в разд. 3. В разд. 4 приводится анализ результатов с разделением вкладов в магнитосопротивление, и в Заключении представлены основные выводы.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Для гальваномагнитных измерений использовались монокристаллические образцы высокого качества, выращенные методом вертикального бестигельного индукционного зонного плавления с однократным (NdB₆) и двукратным (PrB₆) переплавом в атмосфере аргона на установке, подробно описанной в работе [30]. Контроль качества образцов осуществлялся при помощи рентгеноструктурного и оптического спектрального анализа.

Измерения поперечного магнитосопротивления в температурном интервале 2-20 К и в магнитных полях до 80 кЭ проводились на установке для гальваномагнитных измерений, аналогичной использовавшейся ранее [31], при направлении измерительного тока І || (110). Намагниченность в слабых полях измерялась СКВИД-магнитометром оригинальной конструкции (см., например, работу [28]). Высокая точность стабилизации температуры измерительной ячейки с образцом ($\Delta T \approx 0.01$ -0.02 K), необходимая для выполнения численного дифференцирования экспериментальных кривых $\Delta \rho(H, T_0) / \rho$, достигалась применением температурного контроллера оригинальной конструкции на цифровых сигнальных процессорах (модель CRYOTEL 1,5/300) в схеме с эталонным термометром сопротивления модели CERNOX 1050 компании LakeShore Cryotronics.

Рис.2. Температурные зависимости удельного сопротивления гексаборидов LaB_6 , PrB_6 и NdB_6 в отсутствие внешнего магнитного поля. На вставке в увеличенном масштабе показан участок температурной зависимости удельного сопротивления PrB_6 в окрестности низкотемпературного максимума

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

3.1. Удельное сопротивление RB_6 (R = La, Pr, Nd)

Температурные зависимости удельного сопротивления ρ образцов магнитных гексаборидов PrB_6 и NdB_6 и диамагнитного реперного соединения LaB₆ представлены на рис. 2. Кривые $\rho(T)$ в интервале 10–300 К демонстрируют схожее поведение, типичное для систем с металлической проводимостью. С уменьшением температуры ниже 30 К для соединений RB_6 (R = La, Pr, Nd) наблюдается переход к режиму примесного рассеяния (рис. 2), причем значения остаточного сопротивления $\rho_0(LaB_6) \approx 0.01$ мкОм · см, $\rho_0(PrB_6) \approx 3.5$ мкОм · см и $\rho_0(NdB_6) \approx 3.9$ мкОм · см хорошо согласуются с результатами работ [6, 32, 33]. Следует отметить также возникновение на кривой

Рис. 3. Температурные зависимости удельного сопротивления гексаборидов CeB_6 (*a*), PrB_6 (*b*) и NdB_6 (*b*) в области температур 2–20 К при H = 0 и в сильном магнитном поле. Данные для CeB_6 взяты из работы [28]. Штрихпунктирными линиями отмечены температуры магнитных переходов $T_N(PrB_6) \approx 6.7$ К, $T_M(PrB_6) \approx 4.6$ К и $T_N(NdB_6) \approx 7.7$ К

ho(T) для $\Pr B_6$ низкотемпературного максимума малой амплитуды вблизи $T_{max} \approx 13$ К (см. вставку к рис. 2) в интервале температур, отвечающем парамагнитному состоянию гексаборида празеодима. Переход в антиферромагнитное состояние в магнитных гексаборидах при температурах Нееля $T_N({\rm PrB}_6) \approx 6.7$ К и $T_N({\rm NdB}_6) \approx 7.7$ К сопровождается резким уменьшением удельного сопротивления (рис. 2). Для гексаборида празеодима вблизи температуры перехода в соразмерную АФМ-фазу при $T_M(\Pr B_6) \approx 4.6$ К на зависимости $\rho(T)$ регистрируется дополнительная особенность (на рис. 2 отмечена стрелкой при T_M). Отметим, что найденные нами значения температур магнитного упорядочения согласуются с результатами исследований удельного сопротивления, коэффициента теплопроводности и низкотемпературной теплоемкости [6, 18, 20, 29, 33, 34].

На рис. 36 и 3e для соединений PrB_6 и NdB_6 окрестность магнитных фазовых переходов на кривых $\rho(T)$ показана в увеличенном масштабе в отсутствие внешнего поля и в сильном магнитном поле H = 80 кЭ. Для удобства сопоставления результатов на рис. 3a по данным работы [28] представлены также зависимости $\rho(T, H_0)$ для соединения CeB_6 с

сильными электронными корреляциями. Как следует из рис. 3, для CeB₆ на зависимости $\rho(T)$ наблюдается максимум значительной амплитуды, который подавляется внешним магнитным полем, причем эффект ОМС в поле 70 кЭ при гелиевых температурах превышает 90%. Для PrB_6 амплитуда аналогичного максимума (см. вставку на рис. 2) оказывается менее 1%, а эффект ОМС в парамагнитном состоянии не превышает 5 % в поле 80 кЭ. Для соединения NdB₆ максимум сопротивления не наблюдается, одновременно регистрируется дальнейшее уменьшение величины эффекта ОМС при $T > T_N$. Кроме того, заполнение 4*f*-орбиталей в ряду CeB₆-PrB₆-NdB₆ приводит к появлению вместо ОМС положительного вклада в магнитосопротивление в магнитоупорядоченных фазах $PrB_6 (\Delta \rho / \rho |_{80 \ \kappa \Im} \approx 85 \%, T = 2 \ K)$ и NdB₆ $(\Delta \rho / \rho |_{80 \text{ кЭ}} \approx 142 \%, T = 2 \text{ K}),$ рис. 36, e.Для выяснения причин столь значительных изменений магнитосопротивления в ряду CeB₆-PrB₆-NdB₆ в парамагнитной и магнитоупорядоченных фазах нами было выполнено детальное исследование полевых зависимостей магнитосопротивления для PrB₆ и NdB₆ с последующим анализом отрицательного и положительного вкладов в магниторезистивный эффект.

Рис. 4. Полевые зависимости магнитосопротивления PrB_6 в соразмерной АФМ-фазе (*a*), несоразмерной АФМ-фазе (*b*) и ПМ-фазах (*b*) при различных температурах (D_0 — величина насыщения магнитного вклада, см. текст)

3.2. Магнитосопротивление PrB₆

На рис. 4 представлены полевые зависимости магнитосопротивления гексаборида празеодима. Для удобства показаны данные только для одной фазы: АФМ соразмерной (С, рис. 4а; по данным работ [14-18] в направлении Н || (001) фаза С_Н не наблюдается), АФМ несоразмерной (НС, рис. 46) и парамагнитной (ПМ, рис. 4в). Как следует из данных рис. 4а, полевые зависимости $\Delta \rho / \rho = f(H, T_0)$ соединения PrB₆ характеризуют эффект положительного магнитосопротивления (ПМС) с амплитудой до $\Delta \rho / \rho |_{80 \text{ к}\Im} (\text{PrB}_6) \approx 85 \%$ при T = 2 К, причем при H > 30 кЭ доминирующим оказывается линейный вклад вида $\Delta \rho / \rho \approx AH$. С увеличением температуры до $T_M \approx 4.6$ К наблюдается плавное уменьшение амплитуды эффекта ПМС. Вслед за переходом в несоразмерную фазу зависимость $\Delta \rho / \rho = f(H, T_0)$ при $T > T_M \approx 4.6~{
m K}$ становится нелинейной с насыщением в сильных магнитных полях $H \ge 70$ кЭ (рис. 46). Отметим также, что в этой области температур наряду с ПМС на кривых $\Delta \rho(H)/\rho$ в малых магнитных полях регистрируется отрицательный минимум малой амплитуды $-\Delta \rho / \rho_{min} \leq 4$ %. В парамагнитной фазе $\Pr B_6$ в используемом диапазоне полей до 80 кЭ наблюдается эффект ОМС сравнительно небольшой (менее 5%) амплитуды (рис. 4в). Представленные на рис. 4*в* данные ОМС в координатах $\Delta \rho / \rho = f(H^2, T_0)$ указывают на преобладание в магнитосопротивлении квадратичной асимптотики вида $\Delta \rho / \rho \approx BH^2$.

3.3. Магнитосопротивление NdB₆

Полевые зависимости магнитосопротивления гексаборида неодима представлены на рис. 5, причем наряду с семейством кривых ПМС (АФМ-фаза, рис. 5a) и ОМС (ПМ-фаза, рис. 5e) на рис. 5б показана также область смены режима магниторезистивного эффекта (интервал от T_N до 9 К в парамагнитной фазе). Как видно из данных рис. 5*a*, в поведении магнитосопротивления в АФМ-фазе доминирующим является линейный вклад в $\Delta \rho(H)/\rho$ положительного знака. Вблизи T_N происходит смена режимов, которая характеризуется, в частности, появлением максимума на кривых $\Delta \rho(H)/\rho$ в интервале 7.8-8.2 К в сильных магнитных полях (рис. 56). При T > 9 К во всем диапазоне изменения магнитного поля H < 80 кЭ регистрируется эффект ОМС, причем в интервале 30-80 кЭ преобладающей является отрицательная квадратичная составляющая магнитосопротивления вида $\Delta \rho / \rho \approx B H^2$ (рис. 5в).

Рис.5. Полевые зависимости магнитосопротивления NdB₆ в соразмерной АФМ-фазе (*a*) и ПМ-фазах (*б*,*b*) при различных температурах

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Ранее магнитосопротивление гексаборидов PrB₆ и NdB₆ исследовалось авторами работ [6, 18, 21, 33, 35]. Были выполнены [6] измерения угловых зависимостей магнитосопротивления в АФМ-фазе при фиксированной температуре $T_0 = 1.4 \text{ K}$ в магнитном поле до 150 кЭ, и в результате было подтверждено существование открытых орбит и установлена многосвязность поверхностей Ферми этих соединений. Авторами работ [18,35] проводились измерения продольного магниторезистивного эффекта в PrB_6 и NdB_6 . При этом для NdB₆ был выполнен [35] анализ применимости закона Видемана-Франца в магнитном поле, а для PrB₆ был установлен [18] характер изменения магнитной фазовой *H*-*T*-диаграммы под давлением. Наиболее подробно магнитосопротивление PrB₆ и NdB₆ исследовалось соответственно в работах [21] и [33], однако и в этом случае авторы ограничились обсуждением лишь знака $\Delta \rho / \rho$, особенностей его поведения вблизи фазовых переходов в магнитном поле и оценкой подвижности носителей, а не характера зависимостей $\Delta \rho / \rho = f(H)$. Как отмечалось выше, целью настоящей работы явился анализ вкладов в поперечный магниторезистивный эффект, а также выяснение механизмов рассеяния носителей заряда в парамагнитной и магнитоупорядоченной

фазах ${
m RB}_6~({
m R}={
m Pr},~{
m Nd})$ и их связи с магнитной структурой.

4.1. Разделение вкладов в магнитосопротивление RB₆ (R = Pr, Nd)

Высокая точность экспериментальных данных, полученных при измерениях магнитосопротивления магнетиков RB_6 (R = Pr, Nd), позволила нам выполнить численное дифференцирование кривых $\Delta \rho(H)/\rho$, измеренных при фиксированных значениях температуры Т₀. На рис. 6 для примера приведены полевые зависимости производной $d(\Delta \rho(H, T_0)/\rho)/dH$ для NdB₆ в ПМ-фазе. Как видно из рис. 6, поведение производных магнитосопротивления в полях H > 30 кЭ с хорошей точностью описывается линейной асимптотикой вида $d(\Delta \rho(H)/\rho)/dH \propto A + BH$. Заметим, что выбор интервала линейной аппроксимации кривых $d(\Delta\rho(H,T_0)/\rho)/dH$ определялся нами с учетом минимизации ошибок, возникающих вследствие малого значения регистрируемого сигнала при численном дифференцировании экспериментальной кривой магнитосопротивления в области низких полей.

Анализ полевых зависимостей производных магнитосопротивления позволил выделить три вклада в магнитосопротивление как в парамагнитной, так

Рис. 6. Полевая зависимость производной магнитосопротивления в парамагнитной фазе NdB_6 при различных температурах. Линиями показан результат аппроксимации производных линейной зависимостью (см. текст)

и в магнитоупорядоченных фазах PrB₆ (рис. 7) и NdB₆ (рис. 8): 1) отрицательный квадратичный $(B(T)H^2, B(T) < 0); 2)$ положительный линейный (A(T)H); 3) знакопеременный нелинейный магнитный (D(T, H)). Последний получен вычитанием из экспериментальной кривой $\Delta \rho(H, T_0) / \rho$ суммы вкладов 1 и 2 и, как видно на рис. 7, 8, зависимость $D(T_0, H)$ характеризуется насыщением в магнитных полях 30-50 кЭ. Отметим, что существование нескольких вкладов в магнитосопротивление, очевидно, указывает на сложный характер магнитного рассеяния в PrB₆ и NdB₆ со сменой режима от OMC к ПМС, возникающей при переходе из ПМ-фазы в АФМ-фазу указанных соединений. При этом из анализа вкладов следует, что в парамагнитном состоянии соединений RB₆ доминирующей оказывается отрицательная квадратичная по магнитному полю компонента магнитосопротивления (см. рис. 7в и 86), связанная с магнитным рассеянием носителей заряда с переворотом спина на локализованных магнитных моментах РЗ-ионов. Переход в антиферромагнитное состояние сопровождается значительным ростом амплитуды линейного 2 и магнитного 3 вкладов в магнитосопротивление обоих соединений, причем в АФМ-фазе соединений PrB₆ и NdB₆ доминирующей становится линейная положительная компонента магнитосопротивления.

4.2. Амплитуды вкладов в магнитосопротивление ${ m RB}_6~({ m R}={ m Pr},~{ m Nd})$

Характер изменения с температурой вкладов 1-3 для гексаборидов празеодима и неодима наиболее наглядно представлен на рис. 9, где показаны температурные зависимости параметров D₀, B, A $(D_0(T))$ — значение насыщения магнитной составляющей D(H,T)), характеризующих амплитуды вкладов в магнитосопротивление. Как видно из рис. 9, найденные вклады в магниторезистивный эффект $\Delta \rho / \rho$ имеют особенности вблизи фазовых переходов при T_N и T_M. В частности, для гексаборида празеодима амплитуда магнитного вклада $D_0(T)$ меняет знак в окрестности T_M , и в результате знаки компоненты D(H,T) в соразмерных фазах PrB_6 и NdB_6 оказываются различными (рис. 9а). Кроме того, как для PrB₆, так и в NdB₆ в антиферромагнитной соразмерной фазе методика разделения вкладов с использованием численного дифференцирования приводит к выводу об отсутствии отрицательного квадратичного по магнитному полю вклада в $\Delta \rho / \rho$, обусловленного рассеянием с переворотом спина носителей заряда на локализованных магнитных моментах (ЛММ) РЗ-ионов. На наш взгляд, обращение в нуль квадратичной ОМС-компоненты $\Delta \rho / \rho \propto B(T) H^2$ при $T = T_M = 4.6$ К в PrB_6 и $T = T_N = 7.7$ К в NdB₆ (рис. 9 δ) свидетельствует об установлении когерентного состояния ЛММ и зонных электронов в соразмерной фазе этих соединений. При этом возникновение магнитной составляющей в $\Delta \rho / \rho$, насыщающейся в магнитном поле 30–50 кЭ (см. рис. 7, 8), по-видимому, следует отнести к эффектам, связанным с намагничиванием 5*d*-компоненты магнитной структуры в соразмерной фазе RB₆. Переход в антиферромагнитную несоразмерную фазу PrB₆ при T > T_M приводит к перестройке магнитной структуры [14–16], сопровождающейся изменением характера рассеяния носителей и обусловливающей как появление отрицательной квадратичной компоненты, так и смену знака магнитного вклада $D(H, T_0)$ в магнитосопротивление гексаборида празеодима (см. рис. 76, 9). Как отмечалось выше, с переходом в парамагнитное состояние доминирующей становится отрицательная квадратичная компонента при сохранении малой линейной ПМС-составляющей магнитосопротивления, в то время как магнитный вклад в $\Delta \rho(H) / \rho$ в этой фазе оказывается пренебрежимо ма-

Рис.7. Разделение вкладов в магнитосопротивление для PrB_6 в фазах С (*a*), HC (*б*) и ПМ (*b*): • — эксперимент; \triangle — линейный; \Box — квадратичный; \circ — магнитный с насыщением (см. текст)

Рис.8. Разделение вкладов в магнитосопротивление для NdB₆ в фазах AФM (*a*) и ПМ (*b*,*b*); обозначения такие же, как на рис. 7

лым (см. рис. 7*6*, 9). Отметим также, что в случае гексаборида неодима в АФМ-фазе для магнитного $D_0(T)$ и линейного A(T)H вкладов в магнитосопротивление наблюдается дополнительная особенность

при температуре вблизи $T^* \approx 4$ К (см. рис. 9a и 9a), которая коррелирует также с аномалиями на кривой теплопроводности [32] и зависимости упругого модуля $C_{44}(T)$ [36].

Рис. 9. Температурные зависимости коэффициентов D_0 магнитной составляющей (*a*), *B* квадратичной компоненты (б) и *A* линейного вклада в магнитосопротивление (см. текст) для PrB_6 и NdB_6 . Стрелками у кривых показаны температуры переходов T_M , T_N и $T^* \approx 4$ K (см. текст)

4.3. Магнитосопротивление в парамагнитной фазе RB₆

Для описания отрицательной квадратичной компоненты $\Delta \rho(H)/\rho$ в парамагнитном состоянии соединений PrB_6 и NdB_6 нами использовалась модель Иосиды [37], учитывающая вклад от рассеяния электронов проводимости на ЛММ (*s*-*d*-обмен). При этом отрицательное магнитосопротивление оказывается пропорциональным квадрату локальной намагниченности \mathbf{M}_{loc} [37]:

$$-\Delta\rho/\rho \approx 0.61 \langle M \rangle^2 / S^2 \propto \mathbf{M}_{loc}^2, \tag{1}$$

причем в области малых магнитных полей соотношение (1) упрощается:

$$-\Delta\rho/\rho \propto \chi^2_{loc} H^2, \tag{2}$$

где χ_{loc} — локальная магнитная восприимчивость, определяемая через производную магнитосопротивления по полю:

$$\chi_{loc}(H, T_0) = \sqrt{-\frac{1}{H} \frac{d(\Delta \rho(H, T_0)/\rho)}{dH}}.$$
 (3)

Поскольку модель Иосиды описывает только отрицательный квадратичный вклад и не объясняет появления двух других (2, 3) магниторезистивных составляющих, наблюдающихся в парамагнитной фазе соединений с сильными электронными корреляциями, для интерпретации дополнительных вкладов 2 и 3 в $\Delta \rho(H)/\rho$ авторами работы [38] было предложено объяснение в рамках феноменологической концепции спиновых поляронов. Согласно [38], спин-поляронные состояния формируются в окрестности РЗ-иона вследствие быстрых локальных спиновых 4f—5d-флуктуаций в металлической матрице соединений РЗ-элементов и представляют собой области магнитной поляризации электронов проводимости. В результате в выражении (1) к намагниченности локализованных магнитных моментов 4f-состояний, \mathbf{M}_{loc} , необходимо добавить вклад областей спиновой поляризации зонных носителей, \mathbf{m}_{loc} :

$$-\Delta \rho / \rho \propto (\mathbf{M}_{loc} + \mathbf{m}_{loc})^2, \qquad (4)$$

причем в области малых полей соотношение (4) преобразуется к виду

$$-\Delta\rho/\rho \propto -BT^2/2 + A(T,H)H + D(T,H), \qquad (5)$$

представляющему собой сумму трех вкладов. В выражении (5) наряду с отрицательным квадратичным вкладом в магнитосопротивление с амплитудой $-B(T, H) = \chi^2_{loc}$ присутствует также линейная компонента с коэффициентом $A(T, H) = \chi_{loc} m_{loc} \cos \alpha$ (α — угол между \mathbf{M}_{loc} и \mathbf{m}_{loc}) и нелинейная магнитная составляющая $D(T, H) \propto \mathbf{m}^2_{loc}$. Подчеркнем,

что наличие как линейного $(\Delta \rho(H)/\rho \propto AH)$, так и нелинейного магнитного $(\Delta \rho/\rho \propto m_{loc}^2)$ вкладов в парамагнитной фазе соединений RB₆ (R = Pr, Nd) связывается авторами работы [38] с формированием в полосе 5*d*-состояний зоны проводимости областей спиновой поляризации (ферронов по терминологии работ [39, 40]). При этом если нелинейный магнитный вклад с насыщением феноменологически описывает процесс намагничивания ферронов, то появление в парамагнитной фазе вблизи T_N линейной компоненты обусловлено эффектами интерференции отрицательного квадратичного вклада 2 и магнитного вклада 3.

Следует отметить, что недостаток информации о взаимном расположении векторов \mathbf{M}_{loc} и \mathbf{m}_{loc} существенно ограничивает возможности количественного анализа в рамках используемой феноменологической концепции. Тем не менее спин-поляронный подход успешно применялся ранее для описания поведения удельного сопротивления и эффекта ОМС в магнетиках с сильными электронными корреляциями CeB₆ [28] и CeAl₂ [31, 38]. При этом в АФМ-фазах CeB₆ и CeAl₂, как и в парамагнитном состоянии в этих соединениях, вследствие сильных спиновых 4f-5d-флуктуаций преобладающим в магнитосопротивлении является ОМС-вклад [28, 31, 38], однако для интерметаллида $CeAl_2$ как при $T \geq T_N$, так и при T < T_N наблюдается также заметная линейная ПМС-составляющая [38]. Поскольку, в отличие от соединений CeB₆ и CeAl₂, в магнитоупорядоченных соразмерных фазах PrB₆ и NdB₆ отрицательный квадратичный вклад отсутствует (см. рис. 7а и 8а) и доминирующим является эффект ПМС (см. рис. 3-5), указанный подход (см. соотношения (1)-(5)) может быть непосредственно применен только для объяснения поведения магнитосопротивления в PrB₆ и NdB₆ в интервалах температур соответственно $T > T_M$ и $T > T_N$, т.е. там, где регистрируется эффект ОМС. В то же время наблюдение и в АФМ-фазах магнетиков RB₆ знакопеременного магнитного вклада в $\Delta \rho / \rho$, амплитуда которого насыщается в магнитных полях 30–50 кЭ (см. рис. 7, 8), по-видимому, следует также связать с формированием областей спиновой поляризации в 5d-полосе вблизи РЗ-ионов, однако линейная в области малых полей зависимость $D(H, T_0)$ (см. рис. 7, 8), в отличие от квадратичной полевой зависимости величины \mathbf{m}_{loc} , предсказываемой соотношением (4), требует альтернативной, отличающейся от предложенной в работе [38] интерпретации этой магнитной составляющей в магниторезистивном эффекте.

4.4. Локальная магнитная восприимчивость соединений RB₆

Как видно из соотношения (3), квадратичная отрицательная компонента в магнитосопротивлении позволяет оценить поведение локальной магнитной восприимчивости $\chi_{loc}(T)$ в соединениях $\Pr B_6$ и NdB₆. Полученная таким образом зависимость $\chi_{loc}(T)$ подчиняется закону Кюри-Вейсса $\chi_{loc}^{-1} \propto$ $\propto (T - \Theta_p)$ (рис. 10), причем найденные экстраполяцией кривых $\chi_{loc}^{-1}(T)$ в интервале 9–20 К парамагнитные температуры Кюри $\Theta_p(\Pr B_6) \approx -27$ К и $\Theta_n^{\rm I}({\rm NdB}_6) \approx -28$ K с хорошей точностью совпадают с результатами выполненных нами измерений объемной магнитной восприимчивости гексаборидов празеодима и неодима (см. кривые $\chi^{-1}(T)$ на рис. 10, а также работы [21, 41]). Анализируя поведение $\chi_{loc}(T)$, следует отметить также, что в несоразмерной и парамагнитной фазах PrB₆ (интервал 4.6-9 К на рис. 10*a*) и в парамагнитной фазе NdB₆ вблизи T_N (интервал 7.7–9 К на рис. 106) с понижением температуры наблюдается резкий рост величины χ_{loc} . Аппроксимация кривых $\chi_{loc}(T)$ в этих интервалах кюри-вейссовской зависимостью приводит к положительным значениям $\Theta_p^{\rm HC}({\rm PrB}_6) \approx 2.2~{\rm K}$ и $\Theta_p^{\rm II}({\rm NdB}_6) \approx 4.3 {\rm K}$, отвечающим ферромагнитному характеру взаимодействия непосредственно перед переходом в соразмерную фазу в этих соединениях. На наш взгляд, такое поведение локальной восприимчивости является аргументом в пользу возникновения в металлической матрице в 5*d*-полосе в окрестности РЗ-ионов ферромагнитных областей наноразмера, определяющих рост χ_{loc} вблизи T_N в NdB₆ и T_M в PrB_6 , причем с переходом в $A\Phi M$ -фазу эти области магнитной поляризации участвуют в формировании магнитной структуры (5*d*-компоненты) в гексаборидах RB₆.

В связи с этим следует отметить также результаты ЯМР-исследований, полученные в работе [42] для PrB₆ и NdB₆ в парамагнитном состоянии. В частности, в этой работе было показано, что скорость релаксации ¹¹В-ЯМР демонстрирует критическое поведение вида $1/T_1 \propto [(T - T_N)/T_N]^{-0.2}$ в интервале температур выше T_N в PrB₆ и NdB₆. Поскольку параметр $1/T_1$ связан непосредственно с динамической восприимчивостью $\chi(q, \omega_0)$ [42], резкий рост скорости релаксации ЯМР с понижением температуры в парамагнитной фазе вблизи T_N , по-видимому, может быть сопоставлен с обнаруженным нами возрастанием $\chi_{loc}(T)$ (см. рис. 10). Отметим, что найденная в работе [42] расходимость параметра $1/T_1$ вблизи T_N интерпретировалась авторами в терми-

Рис. 10. Температурные зависимости локальной и объемной магнитных восприимчивостей для $\operatorname{PrB}_6(a)$ и $\operatorname{NdB}_6(b)$ в кюри-вейссовских координатах. Показаны также результаты линейной аппроксимации зависимостью $\chi_{loc}^{-1} \propto T - \Theta_p$ (см. текст)

нах возникновения ближнего магнитного порядка при температурах, значительно превышающих температуры Нееля в этих соединениях.

4.5. Положительный линейный и магнитный вклады в магнитосопротивление RB₆

При обсуждении природы положительного магнитосопротивления, наблюдающегося в магнитоупорядоченном состоянии RB_6 (R = Pr, Nd), отметим, что возникновение эффекта ПМС заметной амплитуды было обнаружено ранее как в анизотропном ферромагнетике CeRu₂Ge₂ при $T < T_C = 7.5$ K [43], так и в антиферромагнитных металлах CeNi₄Sn и Ce_2Ni_2Sn при $T < T_N$ [44], а также в квазидвумерных сверхпроводниках с тяжелыми фермионами CeCoIn₅ [45] и Ce(Ir,Rh)In₅ [46] при $T > T_C$. Следует отметить, что эффект ПМС большой амплитуды наблюдался также в высокотемпературных сверхпроводниках в псевдощелевом состоянии при $T > T_C$ [47] и в органических проводниках с волной спиновой плотности (ВСП) [48, 49]. В то же время наиболее известной трехмерной системой с ВСП-антиферромагнитным основным состоянием является металлический хром (Cr), в котором при низких температурах в несоразмерной фазе эффект ПМС достигает 180 % в магнитном поле H = 12 кЭ [50]. Кроме того, согласно результатам исследований [51,52] амплитуда ПМС в Сг резко убывает при замещении на Fe и Co, причем в системе Cr : Fe при переходе вблизи $x \approx 1.5$ ат. % Fe в ВСП-фазу с соразмерной магнитной структурой наблюдается смена знака магнитосопротивления (эффект OMC). Аналогично случаю Cr : Fe, обнаруженное в сплавах Cr : Co резкое подавление эффекта ПМС при x < 1.5 ат. % Co, по мнению авторов работы [52], оказывается обусловленным возрастанием амплитуды спиновых флуктуаций.

В такой ситуации происхождение ПМС в магнитоупорядоченном состоянии исследуемых соединений RB_6 , на наш взгляд, следует связать с особенностями рассеяния носителей заряда на сложной магнитной структуре, сформированной из ЛММ РЗ-ионов (4*f*-компонента) и ВСП (5*d*-составляющая). При этом убывание амплитуды спиновых флуктуаций в ряду CeB_6 – PrB_6 – NdB_6 , как и в случае сплавов Cr: Fe и Cr: Co [51, 52], приводит к резкому возрастанию величины эффекта ПМС от 85 % в PrB_6 (см. рис. 4) до 142 % в NdB_6 (см. рис. 5) в магнитноупорядоченной фазе RB_6 (см. также рис. 7, 8).

Рис. 11. Температурные зависимости коэффициента *A* линейного вклада и параметра *D*₀ магнитной составляющей в магнитосопротивление в обратных логарифмических координатах для PrB_6 (*a*) и NdB_6 (*б*). Прямыми показаны результаты аппроксимации данных активационной зависимостью

В рамках используемого в работе спин-поляронного подхода к описанию зарядового транспорта магнетиков RB₆, по нашему мнению, наиболее естественным объяснением эффекта ПМС представляется механизм, связанный со стабилизацией и возрастанием амплитуды ВСП во внешнем магнитном поле [48,53]. Однако, насколько нам известно, в настоящее время отсутствует теоретическое описание зарядового транспорта в магнитном поле в зонных магнетиках с ВСП, что ограничивает возможности количественного анализа эффекта ПМС в гексаборидах PrB₆ и NdB₆.

В то же время представляет интерес установить вид аналитической зависимости коэффициента A(T) линейного вклада, а также амплитуды магнитной составляющей $D_0(T)$ в АФМ-фазах RB₆ (R = Pr, Nd). Вид зависимостей A(T) и $D_0(T)$ в обратных логарифмических координатах (рис. 11) позволяет сделать вывод об активационном характере поведения линейной и магнитной компонент в NdB₆ непосредственно вслед за переходом в соразмерную фазу в интервале температур 4–7.7 К с энергиями активации соответственно $E_a = 13.1 \pm 2.0$ К и $E_a = 14.7 \pm 0.5$ К. Отметим, что близкое значение 16 ± 1 К было получено для величины расщепления Δ квартетного $\Gamma_8^{(2)}$ -состояния в АФМ-фазе

 NdB_6 из анализа дисперсионных кривых спектров магнитных возбуждений в предположении изотропного обмена в отсутствие квадрупольных взаимодействий [54]. Для гексаборида празеодима изменение параметра A(T) (рис. 11*a*) в несоразмерной фазе в интервале 4.6-6.7 К также характеризуется активационным поведением с энергией активации $E_a^{HC} = 22.4 \pm 1.0$ К. Переход в соразмерную фазу при $T~pprox~T_M~pprox~4.6~{
m K}$ сопровождается резким уменьшением A(T) и, далее, переходом в интервале 3-4.6 К к активационной асимптотике с $E_a^C = 9.3 \pm 2.0$ К (рис. 11*a*). Отметим, что подобный анализ для магнитного вклада $D_0(T)$ в $\Pr B_6$ оказывается достаточно грубым, поскольку вблизи T_M параметр $D_0(T)$ меняет знак (см. рис. 9*a*). В то же время оценка величины E_a^C по зависимости $D_0(T)$ в интервале 3–4.6 К приводит к значению $E_a^C = 10.6 \pm 1.0$ K, которое оказывается сопоставимым с найденной в работе [55] величиной расщепления триплетного основного Γ_5 -состояния \Pr^{3+} с $\Delta = 1.0 \pm 0.1 \text{ мэB}.$

Более детальные измерения спектров неупругого рассеяния нейтронов в магнитоупорядоченных фазах PrB₆ были выполнены сравнительно недавно [56]. Анализ спектров магнитных возбуждений в C-, HC- и ПМ-фазах PrB₆ с учетом взаимодействий

Рис. 12. Полевые зависимости магнитного вклада $D(H, T_0)$ для $PrB_6(a)$ и $NdB_6(b)$ при различных температурах. Сплошными линиями показаны результаты аппроксимации полученных данных соотношением (6)

вплоть до четвертых ближайших соседей позволил установить, что величина Δ в соразмерной фазе оказывается равной $\Delta = 1.66 \pm 0.06$ мэВ, тогда как расщепление Г₅-триплета молекулярным полем в несоразмерной фазе составляет $\Delta_1 = 1.28 \pm 0.06$ мэВ и $\Delta_2 = 1.79 \pm 0.11$ мэВ [56]. При этом низкочастотный максимум в спектрах магнитных возбуждений для k в центре магнитной зоны Бриллюэна располагается при энергиях примерно 1 мэВ, что, по-видимому, и определяет величину энергии активации $E_a^C = 10 \pm 2$ K, найденную нами при исследованиях активационных зависимостей вкладов A(T) и $D_0(T)$ в магнитосопротивление $\Pr B_6$ в соразмерной фазе. Далее, энергии активации $E_a^{HC}=22.4\pm1.0~{\rm K}$ (рис. 11а), по-видимому, следует сопоставить величину расщепления $\Delta_2 = 1.79 \pm 0.11$ мэВ ≈ 21 К [56].

4.6. Анализ полевых зависимостей магнитного вклада в магнитосопротивление RB₆

Найденные в результате применения процедуры разделения вкладов (см. рис. 7, 8) полевые зависимости $D(H, T_0)$ магнитного вклада с насыщением для соединений RB₆ (R = Pr, Nd) анализировались нами при его аппроксимации ланжевеновской зависимостью вида

$$-\Delta\rho(H)/\rho \propto L(\alpha) \equiv \operatorname{cth} \alpha - 1/\alpha, \tag{6}$$

где $\alpha = \mu H/k_BT$ и μ — эффективный магнитный момент ферромагнитных нанокластеров. Результаты аппроксимации экспериментальных кривых $D(H, T_0)$ соотношением (6) представлены на рис. 12. Как видно из данных на рис. 12, используемый подход позволяет с достаточной точностью описать кривые $D(H, T_0)$, которые в силу специфики магнитосопротивления, по-видимому, отвечают вращению вектора намагниченности ферромагнитных нанообластей (кластеров) внешним магнитным полем. Эффективный магнитный момент указанных спин-поляризованных нанообластей в матрице RB₆ оценивался нами в рамках соотношения (6). Результаты выполненных оценок для PrB₆ и NdB₆ представлены на рис. 13. Найденные значения $\mu(T)$ в соразмерных фазах PrB_6 и NdB_6 оказываются меньше магнетона Бора *µ*_B и, по-видимому, могут быть обусловлены спиновой поляризацией 5*d*-состояний в окрестности РЗ-ионов. В несоразмерной фазе PrB₆ величина $\mu \geq 4\mu_B$ (рис. 13*a*) оказывается значительно больше как магнитного момента основного $\Gamma_5\text{-}{\rm состояния}$ иона ${\rm Pr}^{3+}~(\mu_{\Gamma_5}~\approx~2\mu_B~[21]),$ так и упорядочивающегося ЛММ Pr^{3+} ($\mu_C \approx 1.2 \mu_B$ [16]) и, на наш взгляд, свидетельствует о формирова-

Рис. 13. Температурные зависимости эффективного магнитного момента μ, оцененного из данных рис. 12 в рамках соотношения (6), для PrB₆ (*a*) и NdB₆ (*б*)

нии магнитных кластеров, предположительно димеров, включающих в себя ЛММ 4f-оболочки Pr^{3+} и спин-поляризованные области 5d-состояний. Отметим, что подобное образование магнитных кластеров перед магнитным фазовым переходом наблюдалась ранее при измерениях магнитосопротивления моносилицида железа [57].

Найденные для NdB₆ при $T \ge T_N$ значения $\mu \approx (2-2.7)\mu_B$ (рис. 13б) формально оказываются близкими к расчетным значениям магнитного момента насыщения μ_s в соразмерной фазе, составляющим $2.1\mu_B$, $2.4\mu_B$ и $2.48\mu_B$ на ион неодима соответственно для $\mathbf{H} \parallel \langle 100 \rangle$, $\mathbf{H} \parallel \langle 110 \rangle$ и **H** || (111) [19], а также к величине упорядочивающегося момента в АФМ-состоянии гексаборида неодима $-\mu_C \approx 2\mu_B$ [14]. Однако, как видно из рис. 136, эта оценка получена нами в интервале температур выше температуры упорядочения, который отвечает режиму сильных ферромагнитных корреляций и формированию ближнего порядка в парамагнитной фазе NdB₆ (см. рис. 10 и работу [42]). Таким образом, указанному значению $\mu \approx (2-2.7)\mu_B$, по-видимому, следует сопоставить образование в каждой элементарной ячейке кристаллической структуры NdB₆ связанной системы

из сонаправленных момента ЛММ Nd³⁺ и феррона в 5*d*-полосе зоны проводимости. С переходом в АФМ-состояние в такой системе, на наш взгляд, должно происходить смещение областей спиновой поляризации 5*d*-состояний, расположенных между соседними ЛММ ионов неодима, для образования простой (single-k [14]) магнитной структуры. Следует подчеркнуть, что в отличие от CeB_6 и PrB_6 , согласно оценкам [27, 58], в NdB₆ локальные максимумы с близкими значениями параметра обмена $\mathbf{J}(q)$ наблюдаются для волновых векторов $\mathbf{q} = (0, 0, 1/2)$ и $\mathbf{q} = (1/4, 1/4, 1/2)$. Кроме того, следует отметить результаты исследований спектров квантовых осцилляций [59], также свидетельствующие о возникновении в АФМ-фазе NdB₆ новой структуры поверхности Ферми, отличной от хорошо известной для других соединений RB₆ [6, 59]. При этом переход антиферромагнетик-парамагнетик в магнитном поле примерно 300 кЭ по данным работы [59] приводит к восстановлению исходной поверхности Ферми в гексабориде неодима.

4.7. Природа магнитного состояния RB₆

Как было отмечено во Введении, общепринятый подход к объяснению особенностей формирования магнитного основного состояния в гексаборидах CeB₆, PrB₆ и NdB₆ основывается на учете, наряду с обменным дипольным, также мультипольных взаимодействий ЛММ РЗ-ионов [2-5, 13-23, 27, 35, 36, 58-67]. Так, опираясь на результаты магнитного рассеяния нейтронов, данных ЯМР- и μSR -экспериментов в CeB₆, авторы работ [64, 65] пришли к заключению о необходимости учета эффектов взаимодействия в системе дипольных, квадрупольных и октупольных моментов церия при формировании магнитной структуры АФК-фазы. Данные, полученные методом нерезонансной рентгеновской дифракции в АФК-фазе СеВ₆ (интервал $T_N \approx 2.3 \ {
m K} < T < T_Q \approx 3.3 \ {
m K}$ на рис. 3), интерпретировались в работах [66, 67] в терминах возникновения сложной магнитоупорядоченной структуры квадрупольных и гексадекапольных моментов 4f-оболочки ионов церия в CeB₆. В то же время в работах [68-70] было обнаружено анизотропное распределение электронной плотности и связанное с этим возникновение дополнительной (порядка 30%) спиновой плотности, расположенной вне центров церия как в непосредственной окрестности октаэдров бора, так и внутри кластеров В₆ в матрице гексаборида церия. Авторами работ [69, 70] было установлено, что эти не связанные непосредственно с ${}^2F_{5/2}$ -состоянием ионов Ce^{3+} области магнитной поляризации наноразмера сохраняются и в парамагнитной фазе при T_Q < T < 10 K (область ПМ на рис. 3а), причем направление их поляризации меняется от антипараллельного в парамагнитной фазе CeB₆ к сонаправленному с ЛММ Се³⁺ в магнитоупорядоченном АФК-состоянии.

Для гексаборидов PrB₆ и NdB₆ одним из ключевых аргументов в пользу определяющего влияния квадрупольных эффектов в формировании соответствующих магнитных структур принято считать данные измерений теплового расширения и магнитострикции в этих магнетиках [17, 60, 61]. Однако сравнение результатов, полученных для PrB₆ и NdB₆, с данными для GdB₆ [71], как и в случае CeB₆ [28, 29], не подтверждает реализации подобного механизма возникновения магнитной анизотропии. В качестве аргумента против определяющей роли квадрупольных взаимодействий следует отметить также, что подобное наблюдаемому для NdB_6 [60] поведение магнитострикции и теплового расширения, свидетельствующее о заметной анизотропии и сильной магнитоупругой связи, было зарегистрировано авторами работы [72] для соединения CeAl₂. Действительно, в CeAl₂ с кубической структурой фазы Лавеса дублетное основное Г7-состояние исключает возможность возникновения при низких температурах магнитных квадрупольных эффектов. Вслед за авторами работы [23] подчеркнем также, что квадрупольные взаимодействия не могут быть фактором, обусловливающим реализацию фазового перехода первого рода при T_N в соединениях RB_6 , и, таким образом, для объяснения природы магнитоупорядоченного состояния в РЗ-гексаборидах, очевидно, следует искать другие причины.

Один из подходов, предложенный Касуей и Итабаши для интерпретации необычных свойств магнетиков RB₆ [71], основывается на учете динамического эффекта Яна-Теллера в сочетании с формированием при низких температурах димеров на ЛММ РЗ-ионов. Авторами работы [71] было предсказано возникновение, вследствие парных ян-теллеровских искажений, зарядового дипольного упорядочения при T_Q в CeB_6 , T_M в PrB_6 и T_N в NdB₆ (см. рис. 1–3). Однако выполненные прецизионные измерения атомных смещений для СеВ₆ при $T \leq 10 \text{ K} [73, 74]$ привели к выводу об отсутствии расщепления либо уширения брегговских пиков как в АФМ-, так и в АФК-фазах гексаборида церия. Полученные в работах [73, 74] данные подтверждают сохранение кубической кристаллической структуры СеВ₆ при отсутствии в пределах точности эксперимента ромбоэдрических и тетрагональных искажений и, таким образом, свидетельствуют против предложенной в работе [71] интерпретации.

Подход к объяснению необычной природы магнетизма в СеВ₆ сравнительно недавно был предложен авторами работы [75], где в эксперименте по рассеянию поляризованных нейтронов были получены результаты, свидетельствующие о возникновении заметной спиновой поляризации в 5*d*-полосе CeB_6 уже в парамагнитной фазе при $T \leq 7$ К. Вслед за этим выполненное комплексное исследование транспортных и магнитных свойств гексаборида церия [28, 29] позволило предложить альтернативное общепринятой интерпретации в терминах магнетизма ЛММ 4*f*-оболочки ионов Ce³⁺ объяснение, основанное на зонном характере антиферромагнитного состояния в интервале температур $T_N \approx 2.3$ К $< T < T_Q \approx 3.3$ К (АФК-фаза на рис. 3а). Авторами работ [28, 29] были сформулированы аргументы в пользу возникновения ВСП в металлической матрице CeB_6 при $T < T_Q$ с последующим переходом при понижении температуры $T < T_N$ в фазу с конкуренцией ВСП и антиферромагнитного упорядочения ЛММ ионов церия. Согласно выводам работ [28, 29], учет взаимодействия пучностей ВСП (5*d*-компоненты) с ЛММ

4f-оболочки ионов церия приводит к формированию магнитных кластеров в металлической матрице CeB₆. При обсуждении необычной магнитной структуры AΦM-фазы CeB₆ следует особо отметить результаты экспериментов по магнитной дифракции нейтронов [76, 77]. В частности, было показано [76, 77], что наряду с основными рефлексами, отвечающими элементарной ячейке магнитной структуры размерами (2a, 4a, 4a) ($a(\text{CeB}_6) \approx 4.14 \text{ Å}$) в спектрах магнитного рассеяния нейтронов появляется дополнительная интенсивность, которая, по мнению авторов работы [76], может быть связана с ферромагнитной компонентой магнитной структуры CeB₆.

Обращаясь к гексаборидам PrB₆ и NdB₆, отметим, что, поскольку АФМ-фаза CeB₆ и C-фаза PrB₆ имеют близкую магнитную структуру и подобные, близкие по размерам поверхности Ферми [6, 78, 79], представляется естественным ожидать сходного набора магнитных взаимодействий для этих соединений. При этом наряду с РККИ-взаимодействием, задающим общий «мотив» магнитной структуры RB₆ [26, 27], для CeB₆, PrB₆ и NdB₆ необходимо учитывать также взаимодействие ЛММ 4f-оболочек РЗ-ионов через локальную спиновую поляризацию 5*d*-состояний зоны проводимости, обусловленную спиновыми 4*f*-5*d*-флуктуациями в направлении соседних РЗ-центров. Именно на существование таких спиновых флуктуаций указывает присутствие квадратичной отрицательной компоненты магнитосопротивления в PrB_6 и NdB_6 (см. рис. 7-10). По-видимому, указанное взаимодействие ЛММ ионов R³⁺ через спин-поляризованные 5d-состояния определяет магнитную анизотропию системы и принимает максимальные значения в ряду RB₆ для соединения PrB₆. Действительно, именно для PrB₆ выполненные сравнительно недавно детальные исследования рентгеновского резонансного рассеяния позволили обнаружить возникновение структурных искажений при $T_M \approx 4.5$ К при переходе от несоразмерной к соразмерной магнитоупорядоченной фазе [80]. Было найдено, что указанные искажения кубической структуры в PrB₆ не превышают 0.3%, однако по данным работы [80] не представляется возможным установить тип структурных искажений вследствие малой величины эффекта. Кроме того, авторы работы [80] также подчеркивают, что используемая методика резонансной рентгеновской спектроскопии оказывается чувствительной именно к распределению спиновой плотности электронных 5d-состояний, которые поляризуются при магнитном упорядочении ЛММ 4*f*-орбиталей и модифици-

959

руют, таким образом, магнитную структуру соразмерной фазы PrB₆.

5. ЗАКЛЮЧЕНИЕ

Суммируя изложенное выше, отметим прежде всего, что полученные нами результаты исследований магнитосопротивления в парамагнитной и магнитоупорядоченных фазах PrB_6 и NdB_6 свидетельствуют об определяющей роли локальной спиновой поляризации 5*d*-состояний РЗ-ионов при формировании анизотропии магнитных взаимодействий в этих соединениях. При этом анализ магнитной компоненты $D(T_0, H)$ (рис. 13) приводит к выводу об образовании магнитных кластеров наноразмера из ЛММ ионов R³⁺ и 5*d*-ферронов как в парамагнитной фазе RB₆ вблизи T_N, так и в несоразмерной фазе $\Pr B_6$. При переходе в соразмерную фазу RB_6 (R = Pr, Nd) обращение в нуль квадратичной ОМС-компоненты (рис. 96), по-видимому, свидетельствует об установлении когерентного режима рассеяния на магнитной структуре, формирующейся с участием ВСП. Таким образом, выполненный нами анализ вкладов $D(T_0, H)$ (рис. 12, 13) и A(T) (рис. 9, 11) в магнитосопротивление позволяет сделать вывод о существенной роли локальной спиновой поляризации электронных 5*d*-состояний не только в зарядовом транспорте, но и в формировании сложной магнитной структуры в RB6. При этом следует подчеркнуть, что основные различия в магнитной структуре и свойствах магнетиков RB₆, по-видимому, определяются такими факторами, как 1) изменение параметра $\mathbf{J}(q)$ непрямого обмена (РККИ-взаимодействие) при уменьшении постоянной решетки и величины магнитного момента ЛММ РЗ-иона в ряду CeB_6 - PrB_6 - NdB_6 и 2) варьирование величины нацентрового (on-site) 4f-5d-взаимодействия, обусловленного локальными спиновыми флуктуациями и определяющегося степенью заполнения 4f-оболочки РЗ-иона.

Работа выполнена при поддержке Программы Отделения физических наук РАН «Сильнокоррелированные электроны в полупроводниках, металлах, сверхпроводниках и магнитных материалах». Авторы признательны Г. Е. Гречневу за полезные дискуссии, а также К. В. Гонькову и А. В. Духненко за помощь в подготовке и проведении экспериментов.

ЛИТЕРАТУРА

- P. W. Walch, D. E. Ellis, and F. M. Mueler, Phys. Rev. B 15, 1859 (1977).
- N. Sato, A. Simiyama, S. Kunii et al., J. Phys. Soc. Jpn. 54, 1923 (1985).
- J. M. Effantin, J. Rossat-Mignod, P. Burlet et al., J. Magn. Magn. Mat. 47–48, 145 (1985).
- S. Horn, F. Steglich, M. Loewenhaupt et al., Z. Phys. B 42, 125 (1981).
- C. Marcenat, D. Jaccard, D. Sierro et al., J. Low Temp. Phys. 78, 261 (1990).
- Y. Onuki, A. Umezawa, W. K. Kwok et al., Phys. Rev. B 40, 11195 (1989).
- N. E. Sluchanko, V. V. Glushkov, B. P. Gorshunov et al., Phys. Rev. B 61, 9906 (2000).
- C. Cooley, M. C. Aronson, A. Lacerda et al., Phys. Rev. Lett. 52, 7322 (1995).
- S. Süllow, I. Prassad, M. C. Aroncon et al., Phys. Rev. B 57, 5860 (1998).
- A. V. Semeno, V. V. Glushkov, A. V. Bogach et al., Phys. Rev. B 79, 014423 (2009).
- 11. M. Loewenhaupt and M. Prager, Z. Phys. B 62, 195 (1986).
- G. Pofahl, E. Zirngiebl, S. Blumenroder et al., Z. Phys. B 66, 339 (1987).
- 13. G. Uimin and W. Brenig, Phys. Rev. B 61, 60 (2000).
- C. M. McCarthy and C. W. Tompson, J. Phys. Chem. Sol. 41, 1319 (1980).
- C. M. McCarthy, C. W. Tompson, R. J. Graves et al., Sol. St. Comm. 36, 861 (1980).
- 16. P. Burlet, J. M. Effantin, J. Rossat-Mignod et al., J. de Phys. Colloq. 8, 459 (1988).
- 17. M. Sera, M.-S. Kim, H. Tou and, S. Kunii, J. Phys. Soc. Jpn. 73, 3422 (2004).
- H. Iwakubo, S. Ikeda, Y. Kishino et al., Phys. Rev. B 78, 012409 (2008).
- S. Awaji, N. Kobayashi, S. Sakatsume et al., J. Phys. Soc. Jpn. 68, 2518 (1999).
- 20. J. M. Mignot, G. Andre, J. Robert et al., Phys. Rev. B 78, 01415 (2008).
- 21. S. Kobayashi, M. Sera, M. Hiroi et al., J. Phys. Soc. Jpn. 70, 1721 (2001).

- 22. O. Sakai, R. Shina, H. Shiba, and P. Thalmeier, J. Phys. Soc. Jpn. 66, 3005 (1997).
- 23. P. Morin, S. Kunii, and T. Kasuya, J. Magn. Magn. Mat. 96, 145 (1991).
- 24. M. Amara, S. E. Luca, R.-M. Galéra et al., Phys. Rev. B 72, 064447 (2005).
- 25. K. Kuwahara, R. Yamamoto, M. Kohgi et al., Physica B 359-361, 965 (2005).
- 26. Y. Kuramoto and K. Kubo, Physica B 328, 135 (2003).
- 27. Y. Kuramoto and K. Kubo, J. Phys. Soc. Jpn. 71, 2633 (2002).
- 28. Н. Е. Случанко, А. В. Богач, В. В. Глушков и др., ЖЭТФ 131, 133 (2007).
- 29. Н. Е. Случанко, А. В. Богач, В. В. Глушков и др., Письма в ЖЭТФ 88, 366 (2008).
- **30**. Н. Ю. Шицевалова, Дисс. ... канд. физ.-мат. наук, Вроцлав (2001).
- H. Е. Случанко, А. В. Богач, В. В. Глушков и др., ЖЭТФ 125, 906 (2004).
- 32. M. Sera, S. Kobayashi, M. Hiroi et al., Phys. Rev. B 54, R5207 (1996).
- 33. J. Stankiewicz, S. Nakatsuji, and Z. Fisk, Phys. Rev. B 71, 134426 (2006).
- 34. M. Reiffers, J. Sebek, E. Santava et al., J. Magn. Magn. Mat. 310, e595 (2007).
- 35. M. Sera, M. Hiroi, S. Kobayashi, and S. Kunii, J. Phys. Soc. Jpn. 67, 629 (1998).
- 36. S. Nakamura, T. Goto, S. Kunii et al., J. Phys. Soc. Jpn. 63, 623 (1994).
- **37**. K. Yosida, Phys. Rev. **107**, 396 (1957).
- 38. A. V. Bogach, G. S. Burkhanov, O. D. Chistyakov et al., Physica B 378-380, 769 (2006).
- **39**. Э. Л. Нагаев, Письма в ЖЭТФ **6**, 484 (1967).
- 40. М. Ю. Каган, К. И. Кугель, Д. И. Хомский, ЖЭТФ
 120, 470 (2001).
- 41. H. Hacker, Jr. and M. S. Lin, Sol. St. Comm. 6, 379 (1968).
- 42. S. Takagi, S. Itabashi, S. Kunii, and T. Kasuya, J. Magn. Magn. Mat. 52, 267 (1985).
- 43. M. B. Fontes, S. L. Bud'ko, M. A. Continentino, and E. M. Baggio-Saitovitch, Physica B 270, 255 (1999).

- 44. B. Chevalier, J. G. Soldevilla, J. I. Espeso et al., Physica B 259–261, 44 (1999).
- 45. N. Nakajima, K. Izawa, Y. Matsuda et al., J. Phys. Soc. Jpn. 73, 5 (2004).
- 46. N. Nakajima, H. Shishido, H. Nakai et al., Phys. Rev. B 77, 214504 (2008).
- 47. J. M. Harris, Y. F. Yan, P. Matl et al., Phys. Rev. Lett. 75, 1391 (1995).
- 48. T. Sasaki, A. Lebed', T. Fukase, and N. Toyota, Phys. Rev. B 54, 12969 (1996).
- 49. G. M. Danner, P. M. Chaikin, and S. T. Hannahs, Phys. Rev. B 53, 2727 (1996).
- 50. S. Arajs and G. R. Dunmyre, J. Appl. Phys. 36, 3555 (1965).
- 51. S. Arajs, Phys. St. Sol. 37, 329 (1970).
- 52. S. Arajs, G. R. Dunmyre, and S. J. Dechter, Phys. Rev. 154, 448 (1967).
- 53. G. Montambaux, Phys. Rev. B 38, 4788 (1988).
- 54. W. A. C. Erkelens, L. P. Regnault, J. Rossat-Mignod et al., J. de Phys. Colloq. 8, 457 (1988).
- 55. Е. В. Нефедова, Н. Н. Тиден, К. Сименсмейер и др., ЖЭТФ 132, 19 (2007).
- 56. M. D. Le, K. A. McEwen, J. G. Park et al., J. Phys.: Condens. Matter 20, 104231 (2008).
- **57**. В. В. Глушков, И. Б. Воскобойников, С. В. Демишев и др., ЖЭТФ **154**, 444 (2004).
- 58. K. Kubo and Y. Kuramoto, J. Phys.: Condens. Matter 15, S2251 (2003).
- 59. R. G. Goodrich, N. Harrison, and Z. Fisk, Phys. Rev. Lett. 97, 146404 (2006).
- 60. M. Sera, S. Itabashi, and S. Kunii, J. Phys. Soc. Jpn.
 66, 548 (1997).
- 61. M. Sera, S. Goto, T. Koshikawa et al., J. Phys. Soc. Jpn. 75, 014706 (2006).
- 62. Y. Tanaka, M. Sera, K. Katsumata et al., J. Phys. Soc. Jpn. 75, 073702 (2006).

- 63. S. Tsuji, T. Endo, M. Sera et al., J. Phys. Soc. Jpn.
 69, 1974 (2000).
- 64. R. Shiina, H. Shiba, and P. Thalmeier, J. Phys. Soc. Jpn. 66, 1741 (1997).
- 65. R. Shiina, O. Sakai, H. Shiba, and P. Thalmeier, J. Phys. Soc. Jpn. 67, 3005 (1998).
- 66. U. Staub, Y. Tanaka, K. Katsumata et al., J. Phys.: Condens. Matter 18, 11007 (2006).
- 67. Y. Tanaka, U. Staub, K. Katsumata et al., Europhys. Lett. 68, 671 (2004).
- 68. M. Saitoh, N. Okada, E. Nishibori et al., J. Phys. Soc. Jpn. 71, 2369 (2002).
- 69. A. Schenck, F. N. Gygax, and S. Kunii, Phys. Rev. Lett. 89, 037201 (2002).
- 70. A. Schenck, F. N. Gygax, G. Solt et al., Phys. Rev. Lett. 93, 257601 (2004).
- 71. T. Kasuya and S. Itabashi, J. Phys. Soc. Jpn. 66, 3864 (1997).
- 72. E. Fawcett, V. Pluzhnikov, and H. Klimker, Phys. Rev. B 43, 8531 (1991).
- 73. O. Zacharko, P. Fischer, A. Schenk et al., Phys. Rev. B 68, 214401 (2003).
- 74. H. Suzuki, Yun Xue, A. Hosomichi et al., J. Supercond. Nov. Magn. 19, 89 (2006).
- 75. V. Plakhty, L. P. Regnault, A. V. Goltsev et al., Phys. Rev. B 71, R11510 (2005).
- 76. S. Horn, F. Steglich, M. Loewenhaupt et al., Z. Phys. B 42, 125 (1981).
- 77. M. Loewenhaupt, J. M. Carpenter, and C. K. Loong, J. Magn. Magn. Mat. 52, 245 (1985).
- 78. Y. Onuki, T. Komatsubara, P. H. P. Reinders, and M. Springford, J. Phys. Soc. Jpn. 58, 3698 (1989).
- 79. Y. Onuki, Y. Kurosawa, T. Omi et al., J. Magn. Magn. Mat. 76-77, 37 (1988).
- 80. H. C. Walker, K. A. McEwen, D. F. McMorrow et al., Phys. Rev. B 79, 054402 (2009).

9 ЖЭТФ, вып. 5 (11)