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We evaluate the total cross section for the single K-shell ionization of atoms and ions by the impact of rela-
tivistic electrons. The study is performed to leading orders of the QED perturbation theory with respect to
the parameters aZ and 1/Z. The results obtained are in good agreement with experimental data for different
atomic targets. In the case of moderate values of the nuclear charge Z, the total cross section is described by
a simple analytic formula. The K-shell ionization by relativistic heavy particles is also considered.
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1. INTRODUCTION

The single ionization of inner-shell electrons by the
impact of relativistic particles is one of the fundamental
processes that is being persistently investigated during
last decades (see, e.g., papers [1-10] and the references
there). Sophisticated numerical approaches or empi-
rical and semiempirical formulas are typically used to
predict the ionization cross sections. In Refs. [4-8],
simple formulas for the ionization cross sections have
been found. However, a consistent theoretical treat-
ment of the problem, which would allow describing the
inner-shell ionization for different atomic targets and
projectiles at arbitrary collision energy, appears to be
still absent in the literature.

In our recent works [11, 12], we have deduced the
universal scaling behavior for cross sections of the sin-
gle K-shell ionization by an electron or positron impact
in the entire nonrelativistic energy domain. The results
obtained are applicable to a wide family of atomic tar-
gets with moderate values of nuclear charge numbers Z.
In this paper, we extend the previous formulas to the

*E-mail: nefiodov@ptprs1.phy.tu-dresden.de, anef@thd.pnpi.
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case of relativistic projectiles. The study is performed
to leading orders of the QED perturbation theory with
respect to the small parameters 1/Z and aZ, where «
is the fine-structure constant. Accordingly, we assume
that aZ < 1, but Z > 1. Relativistic units are used
throughout the paper (h=1, ¢c=1).

2. THEORY

We first consider the inelastic electron scattering on
a hydrogen-like ion, which results in the ionization of
a IK-shell bound electron. The nucleus of the ion can
be treated as an external source of the Coulomb field.
Accordingly, the problem is reduced to the electron—
electron scattering in the external nuclear field (Furry
picture). The multicharged ion in the ground state
is characterized by the Coulomb ionization potential
I = n?/2m, where n = maZ is the average momentum
of the bound electron and m is the electron mass. An
incident electron can be characterized by the energy E
and the asymptotic momentum p, which are related
via B? = p?> +m?2. We focus on the relativistic domain
pZm.

To the leading order of the perturbation theory with
respect to the interelectron interaction, the amplitude

885



A. |. Mikhailov, A. V. Nefiodov, G. Plunien

MIT®, Tom 136, Bomn. 5 (11), 2009

()

wP2 d)ls

Fig.1.

Vo

wm wls

Feynman diagrams for ionization of a K-shell electron by an electron impact. Solid lines denote electrons in the

Coulomb field of the nucleus, and wavy line denotes the electron—electron interaction

of an ionization process is described by the Feynman di-
agrams depicted in Fig. 1. In the final continuum state,
the electron wave functions are denoted as tp, and
p,. We label the fast (scattered) and slow (ejected)
electrons by the respective indices “1” and “2”. The
asymptotic momenta of the outgoing electrons are esti-
mated as p1 ~ p > p2 ~ 1. The energy of the scattered
electron is given by

E} = p} +m”.
The energy conservation law implies
E+ Eys = Ei + By,

where
Els ~m—1T

and
Ey =~ m + p3/2m.

The leading contribution to the total cross section
arises from the domain of small momentum transfer
k < n, where k = p — p;. In this case, the wave func-
tions of the initial and final states overlap most con-
siderably. Accordingly, only the Feynman diagram in
Fig. 1a must be taken into account. The contribution
of the exchange diagram turns out to be suppressed by
a factor of about (n/p)? and can therefore be neglected.

The amplitude of the K-shell electron ionization is
given by [13]

A= 47ra/dr1Ep1 (r1)yuthp(r1) X

iwR

pr (r)7”¢1s (I‘) )

x/dre

1
4R (1)
where R = |ry —r|, ¢ = 79, v* = (70,7) denotes the
Dirac matrices, and w = E — Ej is the energy acquired
by the atomic electron.
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Since p ~ p1 > n, the wave functions of both in-
cident and scattered high-energy electrons can be ap-
proximated by plane waves (the first Born approxima-
tion), which are given by

m

RN

Pp(r) =upexp(ip -r), Upup =

m
B

/wpl (I‘) = ﬂm eXp(_ipl . I‘) ) ﬂm Up, = (3)
The bispinors u, and u,, are normalized to one parti-
cle per unit volume. Substitution of Eqs. (2) and (3)
in Eq. (1) allows integrating over the variable r; and

yields

/ dI‘l

where k = p — p; is the momentum transfer. Then
amplitude (1) can be rewritten as

esz

4R

. exp(ik - r
exp(i(p —p1) -11) = ﬁ )

(4)

dra
k2 _ w2.]uJM7

A= (5)

where

(6)

Ju = Upy VpUp

JH = /drsz2 (r)y*15(r) exp(ik - r) (7)
are the incident electron and atomic current densities,
respectively. The electron—electron interaction is me-
diated by the exchange of a virtual photon, for which
k? # w?. Both 4-vectors j* = (jo,j) and J* = (Jo,J)
satisfy the current conservation law, that is, wjo =k-J
and wJy = k -J. For small transferred momenta k,
we can set p = pi in the electron current. Then with
an accuracy up to terms O(k/p), we have j* = (1,v),
where v = p/E is the velocity of the incident electron.
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In the limit £ — 0, the zeroth component of the
atomic current .Jy tends to zero due to the orthogona-
lity of the wave functions involved, while the 3-vector
J remains finite. Therefore, for small transferred mo-
menta k ~ w ~ I, all the components of J* are of
the same order of magnitude and should be taken into
account. To the leading order with respect to the pa-
rameter «Z, the component Jy can be evaluated by
using the nonrelativistic Coulomb wave functions (see,
e.g., Ref. [11]). The corresponding expression is

4n

J[) - NlSNPZE X

x [k* — (1+i&)(p2 - k)] @p, (K)wiwy,  (8)

where
2més n?
Np|P=—>—, NL=—
| p2| 1— eXp(_2ﬂ_€2) ’ 1s T ) (9)
41 ray €2
(k) == () (10)
a=(k—p2)*+17, (11)
b=k>—(p2 +in)?, (12)

and & = n/pa. The two-component spinors wg and
ws, which respectively describe the polarization states
of the bound and ejected electrons, are normalized as
wiwy = 1 and wyw, = 1.

To evaluate the vector component of the current J,
we need to use the relativistic functions, which involve
corrections of the order aZ to the nonrelativistic wave
functions. Formally, it is associated with the struc-
ture of the vector J, which contains the Dirac a-matrix
(a = 707). This matrix leads to a mutual interchange
of the large and small components of bispinors. Howe-
ver, the product of two Dirac a-matrices, which occurs
due to corrections to the nonrelativistic wave functions,
does not transpose the components of bispinor. There-
fore, the corresponding contribution to the atomic cur-
rent should be taken into account. Physically, it means
that at relativistic velocities of the projectile v ~ 1, the
account for the magnetic part of the electron—electron
interaction becomes as important as the electric one.

We evaluate the integral

J= /dr ZD;; (r)ay, (r)exp(ik - 1), (13)

neglecting terms of the order (aZ)?. The wave function
of the K-shell electron, which coincides with the exact

solution of the Dirac equation up to the first order in
the parameter aZ, is [14]

Yis(r) = (1 - # a- V) ¢15(r)uo,
)

P15(r) = Nige ™"

(14)

where

is the nonrelativistic wave function and V denotes the
gradient. Accordingly, as a wave function of the ejected
electron, we need to take the Furry—Sommerfeld-Maue
function [14]

2
x F(i&, Li(par + p2 - 1)), (15)

) i
U, () = Np, exp(—ips - r)u), <1 + eyl V) X

where £ = n/p2 and F(z,y,z) is the confluent hyper-

geometric function. The bispinor v is related to the

p2
spinor wy as

+ + +U'p2) 16
u (w27w2 m i ( )

where the components of the vector o are the Pauli
spin matrices. At asymptotically large distances, ¢;2
behaves like a plane wave plus an outgoing spherical
wave.

Substituting Eqs. (14) and (15) in Eq. (13) yields

1
J = %lesz’w; X
X [Lo(o - p2)o +ino(o - Li) +i(o - La)o]w,, (17)

here

Lo = [ drexpliq =) Fliga, Li(par+pa 1) =
0
- _8_77(I>P2 (k) ) (18)
L, = /dr exp(iq - r—nr)nF (i, 1,i(par+p2 - 1)) =

= =iV Pp, k), (19)

L, = /dr exp(iq - r—nr)VFE (i, 1,i(par+p2 1)) =
= —iqLo +nLy, (20)

where g = k—p», n = r/r, and Vj is the gradient with
respect to the variable k. In Eq. (20), the integration is
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performed by parts. The integrals in Eqs. (18) and (19)  where
are evaluated explicitly in textbook [13]. Using these s e s
results, Eq. (17) can be rewritten as 6 = arg(b) = arg(k” +n° — p; — i2np2), (27)
2 .
J = NigNp —(1 = i) X =P = (8 +0” = p3)” + 4755, (28)
x {bpa-+k [p3(1+i&) = (P2 - k)] } p, (K)w] wy+ b
i2 . _ 2mw (1 —vHw
+ N1sNp, mnb [k — (1+Zfz)(132'k)] X u=3+ 52 _ 2 [1_ 22— | (29)
+
x Pp, (KJwy [ x kJwy . (21) We note that the distribution over the ejection angles
Tn Eq. (21), the spin part of the current given by of fast electrons is reduced to the dependence on the

the second term is of the order of k.Jy/2m and it can
therefore be neglected for k < 1. Accordingly, the spin
functions are suppressed in what follows. From the
current and energy conservation laws, it follows that

k-

vV =uw,
while
p3+ 7’

w=E 2m

_Els:

Then the product of the currents in Eq. (5) is given by

judb = Jo—v-J = Ni,N,, j’;x
X I = + (1 +i&) [w(p2 - v) k)]} x

(k),

where we omit small terms of the order of k/m with
respect to the leading one.

X q>132 (22)

The differential cross section for ionization of a
K-shell electron is related to the amplitude A as

dp>

(2m)?

Equation (23) defines the distributions over energy and
ejection angles of the fast and slow electrons. The ele-
ments of phase space volumes for the electrons scat-
tered and ejected into the respective solid angles d)y
and d)y can be written as

dp1
(2m)?

27r| |2

dojt = ——=0(E1+E,—E—FEi,). (23)

dp1 = p1 By dEy dQy ~ %dEldkz, (24)

dps = % dp2 dQs . (25)

Integrating Eq. (23) over the energy E; and the an-

gles of ejection of slow electrons yields

2% ma®n®uexp(2620) dk>dp3
3 [1—exp(—27&)] v2x3

doj; = (26)

888

square of the transferred momentum, &2.

To obtain the energy distribution of the ejected
electrons, expression (26) should be integrated over k>
within the range from

2
kmln

(w/v)

= (p—p1)2 ~

to
k2

mazx (p+p1)2 ~ 4p2~
In what follows, it is convenient to use dimensionless

quantities such as

v =(k/n)? e=(p/n)?
= (p2/n)? A= (w/n)?
Then we obtain
doft 2820y o
des 37202 sh(més)
7 P (1—-12)A
x/{3+x_A{1— T ]}f(ac)dx, (30)
where
exp(2&; arctg @) P
= A=—(aZ 1
fla) = CEEEECL A= T2, @)
v=1-gy, x=14e¢y, (32)
T 4+v 1
= s = Y 33
¢ NG & NG (33)
kr2mn A k?naa:
T = o o 2= po =4e. (34)

In Eq. (30), 09 = ma = 87.974 Mb, where ag = 1/ma
is the Bohr radius. For completeness, we also note that
v =p/E and E? = p> +m?. The range of the principal
value of arctg ¢ lies between —m /2 and /2. To obtain
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the K-shell ionization cross section aﬁ, the energy dis-
tribution (30) should be integrated over the variable e,
from 0 to eamaz = (Frin/I —1)/2, where Ej;yy, = E—m
is the kinetic energy of the incident electron. As can
be seen, in the relativistic case, the dependence of the
cross section on the nuclear charge Z differs from that
in the nonrelativistic limit. But in the energy range
I € Eiin < m, Eq. (30) is consistent with the nonre-
lativistic formula obtained in Ref. [11].

In Eq. (30), the integral over z is saturated near the
lower bound z;. For convenience of numerical integra-
tion, one can integrate by parts. This yields

[ f()da
z—A

~ —f(x1)In(zy — A) —

1

—/f'(ac)ln(x—A)dac, (35)

T2

/éqfi”

1

f(x1)

L fen(ey - A) -

- / F(2)In(z — A)dz,  (36)

where the prime denotes the derivative with respect to
2. The first terms in approximations (35) and (36) are
dominant. In Eq. (30), the contribution of integral (36)
is suppressed by a small factor. Therefore, in calcula-
tions of the ionization cross sections, this integral can
be approximated by the leading term only.

If the nuclear charge number Z is not too large, for-
mula (30) can be simplified further. Taking two terms
of the Taylor expansion for the exponential function
and setting the integration limits as x; = 0, 22 = o0,
and €9mqe = 00 allow evaluating both integrals over z
and e, analytically. In integrals (35) and (36), we keep
the dominant contributions only. Then the total cross
section is given by

27a%0g 13 .

+ 2

0K = agad o7 (Ine —v*+C), (37)
511 (Sle* — 3136) In2

¢ 192 624 091, (38)

where e ~ 2.718 is the Napier-Euler number.
Equations (30) and (37) describe the single ioniza-

tion of hydrogen-like ions in the ground state. However,

these formulas can be easily generalized to the case of
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Table. For various multicharged ions, the Coulomb
ionization potentials I = m(aZ)?/2, the kinetic en-
ergies Fy;, of incident electrons, and the theoreti-

cal and experimental cross sections ot

are tabulated.
For uranium ions, the measurements are performed in
Ref. [16]. The other experimental data are adopted

from Ref. [17]

I, Erin, oD
Target | keV keV

This work | Experiment

Mo*+ | 24.0 64.8 34.4 30.8£2.6

95.6 35.7 34.74+7.2
Dy%+ | 59.3 95.1 3.90 4.174+0.58
153.1 6.19 6.29 + 0.83
Au™+ | 84.9 | 153.1 2.32 2.334+0.33
Bi®?t+ | 93.7 | 191.6 2.23 2.374+0.19
Ut 115 198 1.22 1.55+0.27
U2+ 115 198 2.44 2.824+0.35

atomic targets in which the K-shell is completely oc-
cupied. First, the cross section should be multiplied
by the factor 2 taking the number of K-shell electrons
into account. Second, we need to simulate the screening
effect of the passive electrons on the active K-shell elec-
tron participating in the ionization process. This can
be achieved by replacing the true nuclear charge Z with
the effective value Zgpr, which is defined via [15]

2

where I.,, is the experimental ionization threshold.
Accordingly, the average momentum n = maZ is re-
placed with 1erp = maZess.

(aZesr)? (39)

Iezp -

3. RESULTS AND DISCUSSION

In the Table and Fig. 2, we present numerical eva-
luations of the ionization cross sections cr;{' for multi-
charged ions and neutral atoms. Although Eq. (30)
is not expected to be applicable to heavy targets, the
agreement of our predictions with the experimental
data appears to be remarkably good. This occurs due
to mutual cancelations of some contributions arising
from the relativistic and correlation terms. For ex-
ample, for neutral uranium, the measurements yield
o = 18.1£1.8 b at the incident electron kinetic energy
Eyin = 90 MeV [22, 31]. Using the experimental ioni-
zation potential I.,, = 115.6 keV [32], we obtain the
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Fig.2. K-shell ionization of neutral atoms by electron impact. Solid line, numerical calculation; dotted line, analytic ap-

proximation. Experimental data: Mg, e [18], o [19], m [20]; Si, o [19], e [21], O [22]; Ca, A [19], A [22]; Cu, m [19], O [22],

e [23], o [24], ¥ [25], V [26]; Ag, V [19], A [24], ¥ [26], e [27], o [28], A [29], O [30]; Bi, o [19], ¥ [22], e [24], V [25].

The original experimental data are given according to the last reevaluation made in Ref. [31]. In the numerical calculations,
we used the effective values Z.fs, defined via the experimental ionization potentials I.,, [32]

effective nuclear charge Z.s = 92.2 and the theoretical
cross section off = 18.3 b. We note that Z. almost
coincides with the true value of the nuclear charge Z.

The analytic approximation (37) is satisfactory for
the K-shell ionization of atomic systems with mode-

890

rate values Z < 50 (see Fig. 2). A formula similar
to Eq. (37) has also been found by Kolbenstvedt [4].
However, our numerical coefficient C' differs from that
in Ref. [4]. In the case of neutral atoms, we use another
procedure for the simulation of the screening effect of
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250 T T T T T T
225
200
175
150
125
100

Ekm =1 GeV

Ein, = 4.88 GeV

Fig.3. K-shell ionization of neutral atoms by proton

impact. The solid curves represent the results of the

numerical calculations. The experimental data: e [33];
o [34]

the outer-shell electrons, in particular, another defini-
tion of the effective value Zps.

The formulas for the differential cross section doy:
given by Eqgs. (30)—(34) can also be applied to the single
ionization of a K-shell electron by charged projectiles
with the mass M # m and the energy Ej;, 2 M.
In this case, the exchange diagram is absent. The
incident kinetic energy is given by Ey;, = E — M,
where E? = p?> + M2. In Fig. 3, we compare the
theoretical and experimental cross sections for the K-
shell ionization of neutral atoms by a proton impact at
FErin = 1 and 4.88 GeV. The numerical calculations are
performed with the use of the effective nuclear charges
Zepp. These are obtained in accordance with Eq. (39),
where the experimental ionization potentials I.,, are
adopted from Ref. [32].

Concluding, we have deduced the total cross section
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for the single K-shell ionization of atoms and ions by
the impact of relativistic projectiles. The consideration
is performed to leading orders of the QED perturbation
theory with respect to the parameters a«Z and 1/Z.
The results are consistent with the universal scaling
formulas that have been previously obtained for the
nonrelativistic energy domain. The agreement with
experimental data is found to be quite satisfactory for
a wide family of atomic targets and different incident
particles.
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