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A rarefied gas flow through a finite-length channel into a vacuum is studied by the direct simulation Monte Carlo
method. The mass flow rate through the channel is calculated over the wide range of gas rarefactions. The
analysis of the flow field, both within the channel and in upstream and downstream containers, is presented.
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1. INTRODUCTION

In recent years, the direction in rarefied gas dynam-
ics related to the analysis of micro- and nanofluidic
systems is being developed [1]. In contrast to the tra-
ditional approach, where gas movement is studied on
a macroscopic size, the abovementioned direction is a
field of rarefied gas dynamics where gas movement is
studied on a micro- and nanoscale. Practical applica-
tion of the results of this research can be in the de-
velopment and creation of devices such as micro- and
nanoseparators, micropumps, microshutters, microgy-
roscopes, micro- and nanosatellites, and other micro-
and nanoelectromechanical systems (MEMS/NEMS).
The flow of gas in MEMS/NEMS, depending on the de-
vice size and gas pressure, can be viscous, transitional,
or free molecular. Incidentally, the free molecular flow
in nanodevices can be observed even at normal atmo-
spheric pressure.

In studying the internal flow of rarefied gas, special
attention is paid to the capillaries of various geometric
shapes and sizes. A rather large number of theoretical
works is dedicated to the rarefied gas flow, caused by
a small pressure difference, through straight capillaries
of infinite length [2, 3]. In this case, the gas concentra-
tion and temperature change linearly along the capil-
lary axis, and hence linearized models of the integral
differential Boltzmann equation is successfully used for
flow calculation. In particular, in one of the pioneering
works [4], the mass flow rate of gas through a straight
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infinitely long channel (capillary with a rectangular
cross section) was calculated in a wide range of gas
rarefaction. An important outcome of this study is the
discovery of the so-called Knudsen minimum (or Knud-
sen paradox) — a minimum of the flow rate through
a channel in the transitional regime. Subsequently, a
minimum of the gas flow rate through a channel was
also confirmed experimentally [5].

Rarefied gas flow through finite-length capillaries
presents a much more complex task. In the case of a
small pressure difference, the gas flow through a chan-
nel is calculated in [6] using the BGK model of the
Boltzmann equation. From this work, in particular,
it follows that the position of the Knudsen minimum
depends on the length of the channel.

In the case of a finite-length capillary and a large
pressure difference, as in the case of gas flow into a
vacuum, the problem becomes even more complex due
to essential nonequilibrium. Many empirical formulas
for calculating the flow rate in this case can be found
in open literature. Most of such formulas are derived
by combining flow rates in free molecular and hydro-
dynamic limits, first introduced by Knudsen [7]. For
example, in [8], the Knudsen method was developed
for a finite-length channel and large pressure difference.
In [9], several then-known empirical formulas were veri-
fied and limitations for their practical application were
stated. A method of calculating gas flow through cap-
illaries that in author’s view overcomes the limitations
related to the capillary cross section and length, the
value of pressure difference, and the flow regime is pro-
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posed in [10]. However, in our opinion, empirical for-
mulas for the gas flow through a finite-length channel
into a vacuum do not presently give reliable results be-
cause a formula for the gas flow rate through a channel
in the hydrodynamic limit with large pressure differ-
ence is still not obtained [11].

On the other hand, the correct approach to solving
problems of rarefied gas dynamics should be based on
the Boltzmann equation [12]. The difficulties in solv-
ing this equation numerically, caused by a large num-
ber of independent variables and a complex structure
of a nonlinear collision integral, are well known. In
our opinion, direct simulation Monte Carlo (DSMC)
method [13], which is customarily viewed as a stochas-
tic solution of the Boltzmann equation, is preferable
for use in strongly nonequilibrium tasks. The DSMC
method is an effective tool in solving problems of rar-
efied gas dynamics from the free molecular to viscous
regimes. An approach based on the DSMC method al-
lows taking several factors into account, such as strong
nonequilibrium and complex geometric configuration of
the model system, as well as using various models of the
gas—surface scattering, gas molecule—molecule interac-
tions, and surface structure. Therefore, it is appropri-
ate to use the DSMC method to study the rarefied gas
flow through a finite-length channel into a vacuum.

To our knowledge, a comprehensive theoretical re-
search into the process of gas flow through a finite-
length channel at large pressure difference is not avail-
able in open literature. In particular, there is no data
on gas flow through a finite-length channel into a vac-
uum in a wide range of rarefaction. For the pressure dif-
ference that is not large, analytic and numerical stud-
ies of gas flow through a channel can be found, e.g.,
in [14-20].

Experimental studies of this process touch upon
only the cases of a finite ratio of pressures at the ends
of the channel. For example, experimental data on the
gas outflow through a short channel in the transitional
regime with the maximum pressure ratio 15 are given
in [21]. In [22], the distribution of macroscopic parame-
ters in a long channel with the maximum pressure ratio
20 is studied experimentally. There are many works de-
voted to experimental study of the gas flow caused by
a small pressure difference, through very long channels
(see, e.g., [23-27]).

Recently, with the use of the DSMC method, we
studied a rarefied gas flow through a short tube (cap-
illary with a round cross section) into a vacuum in de-
tail [28]. Rectangular geometry of the capillary is also
important from the practical standpoint [29]. The aim
of the present work is to compute the gas flow through
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a capillary with a rectangular cross section (or channel)
into a vacuum using the DSMC method. We calculate
the mass flow rate and the flow field as functions of the
gas rarefaction for various channel lengths.

2. STATEMENT OF THE PROBLEM AND THE
METHOD OF SOLUTION

We consider a stationary flow of a monatomic gas in
the system of two infinitely large containers connected
with a channel of length [. In the upstream container,
far from the channel, the gas is in equilibrium at a
pressure P; and temperature 77. In the downstream
container, the pressure P, is so small compared with
P, that it is possible to suppose that P, = 0. The sur-
face temperature in the entire simulated system is 77.
We suppose that the channel width w is significantly
larger than its height h; this allows us to work with a
two-dimensional geometry problem.

Figure 1 presents the geometry of the problem and
the system of coordinates. As follows from the figure,
only half of the problem geometry is studied, because
a symmetry in the flow field with respect to the central
channel line is assumed. For this, the channel cen-
tral line, which coincides with the y axis, is fitted with
a specular reflector. To simulate the gas molecule—
molecule interaction, the model of hard spheres is used;
the model of complete diffuse scattering is used to sim-
ulate gas—surface scattering.

The gas mass flow rate ) is the main calculated
value during the simulation of gas flow in the studied
system. The results are presented in terms of the di-
mensionless flow rate defined as

Q* = Q/QOv (1)

where Qg is the value of the mass flow rate through
a two-dimensional slit (I 0) in the free molecular
limit. Gas rarefaction is characterized by the param-
eter 0 = hP;/uvy, where P, u, and v, are the gas
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Fig. 1. Simulation geometry and coordinates
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Fig.2. The dimensionless mass flow rate Q* (a) and the relative dimensionless mass flow rate Q*/Q*(6 = 0) (b) as
functions of the gas rarefaction parameter ¢ for various reduced channel lengths I/h

Qlin/Q* (5 =0) pressure, the viscosity, and the most probable molec-
0.90 _‘ ' ] ular velocity in the upstream container far from the
channel. The rarefaction parameter is inversely pro-
portional to the Knudsen number Kn = /7 /2§, which
is defined for the channel as Kn = \/h, where A is the
mean free path of gas molecules. In the free molecular
0-80 | * 1 limit, when 6 = 0, the mass flow rate through a two-di-
mensional slit can be calculated as Qo = hPy/v/7v1.
From the physical standpoint, ) and Qo correspond to
2 the values of the mass flow rate through a channel and
0.70 - 1 a slit with w > h per unit width.

i 'S | Very recently, we used the DSMC method based on
¢ the majorant frequency technique [30] to compute the

L 2 | mass flow rate and flow field through a two-dimensional

¢ L 2 'S slit into a vacuum [31,32]. In the present work, we

. . . . . further develop the code used previously for simulat-
10 30 50 70 90 ing rarefied gas flow through a two-dimensional chan-
l/h nel. As previously, we use the two-level regular grid,

weight-factor, and subcell procedures. Simulation pa-

Fig.3. Relative Knudsen minimum Q7,;,,/Q" (6 = 0) rameters used in this work — the number of samples,
as a function of the reduced channel length /A the cell size, the number of model particles in the cell,

the time step length, time to reach the stationary flow,
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813



0. Sazhin MIT®, Tom 136, Ben. 4 (10), 2009

n/ny

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

W

=)

-1 0 1 2 3 4 5 6

' BREA

—1 0 1 2 3 4 5

0.1

e L8

0.5

-0.5 -0.5

b

-1.0 =
2 ylh -1 0 1 2 3 4 5

-1.0
-1 0 1

6 y/h

Fig.4. The dimensionless macroscopic distributions of the density n/n: (top), the temperature T'/T1 (middle), and the

lateral mass velocity u,/vi (bottom) in the yz plane near and within a channel with [/h = 0.5 (left) and 5 (right), where

the rarefaction parameter is § = 10 (top of each of the 9 elements) and 10® (bottom). The shaded area is the channel
wall

and the computational domain size — all guarantee the
computation error of no more than 0.2%. The choice
of simulation parameters that ensure this computation
error in calculating the flow rate is discussed in detail
in [31].

3. MASS FLOW RATE

Figure 2a presents calculation results of the dimen-
sionless mass flow rate Q* as a function of the gas ra-
refaction parameter 0 for several values of the reduced
length channel [/h = 0, 0.5, 1, 5, and 10. The results
for i/h = 0 (slit) are taken from our previous paper [31].
In the figure, the arrows indicate the values of Q* in the

free molecular limit, resulting from using the formula
in [33] for calculating the transmission probability of
a two-dimensional channel. Indeed, in presenting the
calculated data in form (1), the value of Q* in the free
molecular limit coincides with the transmission proba-
bility of the channel. The transmission probability of
the channel can also be obtained using the test particle
Monte Carlo (TPMC) method. In [34], we have shown
excellent agreement between the TPMC results and the
formula in [33].

As is evident from Fig. 2a, in the vicinity of the free
molecular regime, the values of @* change only slightly
and differ little from the corresponding results given by
the formula in [33]. Then, as the rarefaction parame-
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Fig.5. The dimensionless macroscopic distributions of the density n/n: (top), the temperature T'/T1 (middle), and the
lateral mass velocity u,/v1 (bottom) along the central line (z = 0) of a channel with [/h = 0.5 (left) and 5 (right) for
various rarefaction parameters

ter § increases, a significant increase in Q* is observed.
This increase is determined by value of [/h. For ex-
ample, when [/h = 0.5, a significant increase in Q*, by
76 % is observed in the range of 4 from 0.2 to 200; when
I/h =5, the range is from 4 to 400 and the increase is
220 %. Finally, for larger values of §, values Q* vary lit-
tle with the increase in §, reaching their hydrodynamic
limit as § — oo.

It also follows from Fig. 2a that in the case of a
rather long channel with //h = 10 in the transitional
regime, a Knudsen minimum is clearly observed. For
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shorter channels, this minimum is either absent, as it
is for [/h = 0.5 and 1, or is expressed very weakly, as
it is for [/h = 5. For a more detailed study of the
position and depth of the Knudsen minimum, we have
completed calculations of the dimensionless mass flow
rate @™ in the transitional regime for channels with
I/h > 10.

Figure 2b shows calculation results of the dimen-
sionless mass flow rate represented as Q*/Q*(6 = 0)
in the transitional regime for channels with I/h = 10,
20, 30, and 40. As can be seen from the figure, for
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Fig.6. The streamlines near a channel with //h = 0.5 (left) and 5 (right) for § = 10 (top) and 10 (bottom)

the channel with {/h = 10, the Knudsen minimum is
observed at § = 1.5, whereas for longer channels with
[/h = 20, 30, and 40, it is seen at ¢ close to 2. The
result that the Knudsen minimum position is related
to a reduced channel length corresponds with [6]. It is
interesting to note that the Knudsen minimum for an
infinitely long channel at a small pressure difference is
observed both theoretically [4] and experimentally [5]
when the gas rarefaction § is about 1. It also follows
from Fig. 2b that the depth of the minimum depends
on the value of [/h.

Figure 3 presents a relation between the relative
Knudsen minimum Q%,;,,/Q*(6 = 0) and the reduced
channel length [/h. As follows from Fig. 3, the longer
the channel, the deeper the minimum, leading to a cer-
tain limit at large values of [/h. Indeed, the difference
between Knudsen minima for [/h = 10 and 20 com-
prises 11.3%, and for values between [/h = 90 and
100, it is 0.5 %.

4. FLOW FIELD

Figure 4 shows the dimensionless macroscopic di-
stributions of the density n/n; (top), where ng
= P, /kT) and k is the Boltzmann constant, the tem-
perature T'/T (middle), and the lateral mass veloc-
ity u,/v1 (bottom) in the yz plane near and within a
channel with I/h = 0.5 (left) and 5 (right), where the
rarefaction parameter is § = 10 (top of each of the 9
elements in the figure) and 10® (bottom). The shaded
area in the figure represents the channel wall. As fol-
lows from the figure, macroscopic distributions depend
on the rarefaction parameter ¢ as well as on the reduced
channel length [/h. The differences in macroscopic dis-
tributions with different § and the same [/h is more
significant for a longer channel (I/h = 5) than for a
shorter one (I/h =0.5).

Figure 5 shows dimensionless macroscopic distribu-
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tions of the density n/ny, the temperature T/T}, and
the lateral mass velocity u,/v; along the central line
(z = 0) of a channel with [/h = 0.5, 5 for various rar-
efaction parameters. As expected, the qualitative be-
havior of the lateral velocity is inversely proportional
to the density and temperature. When the gas rarefac-
tion parameter ¢ is the same, the macroscopic distribu-
tions along the central line of the simulated system at
I/h=0.5 and [/h = 5 differ quantitatively. In the case
of large 0, a significant qualitative difference in distri-
butions within the channel is also observed. However,
downstream, the distributions along the central line are
practically the same in the case of large and small 4.

According to Fig. 5, the dimensionless macroscopic
distributions for § = 10? and 6 = 103 differ only little
for both I/h = 0.5 and [/h = 5. The distributions for
§ = 107! and § = 10° differ only in the downstream
container. Taking the rarefaction range of change of the
dimensionless mass flow rate Q* into account (Fig. 2a),
it is possible to state that significant changes in the di-
mensionless macroscopic distributions are observed in
the rarefaction range where the flow rate value changes
considerably.

The streamlines near a channel with //h = 0.5, 5 for
§ = 10, 10? are presented in Fig. 6. As follows from the
figure, with an increase in the rarefaction parameter ¢,
the streamline symmetry relative to the axis y = 0.5[/h
is broken.

5. CONCLUSION

The direct simulation Monte Carlo method has been
used to study the rarefied gas flow through a two-di-
mensional finite-length channel into a vacuum. The
calculation results for the dimensionless mass flow rate
for a channel of various reduced lengths are presented
in the gas rarefaction range from the free molecular



MIT®, Tom 136, Bein. 4 (10), 2009

Rarefied gas flow through a channel ...

regime to the viscous one. The range of gas rarefac-
tions where significant changes of the flow rate, as well
as the value of change in the flow rate, considerably de-
pends on the reduced channel length. The longer the
channel, the more significant changes in the flow rate
are and the specified range of gas rarefactions moves to
a more dense gas.

In the transitional regime for rather long channels,
a Knudsen minimum was discovered. The position and
the depth of the Knudsen minimum change with an in-
crease in the reduced channel length, reaching its limit
values.

An analysis of dimensionless macroscopic distribu-
tions and streamlines, both within the channel and in
the upstream and downstream containers, is presented.
Significant changes in the dimensionless macroscopic
distributions are observed when the gas rarefaction is
in the range of considerable change in the flow rate
Differences in macroscopic distributions with
dissimilar gas rarefactions and similar reduced lengths
are more significant for a longer channel than for a
shorter one.

value.
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