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An analytic theory of localized edge modes in chiral liquid crystals (CLCs) is developed. Equations determining
the edge-mode frequencies are found and analytically solved in the case of low decaying modes and are solved
numerically for the problem parameter values typical for the experiment. The discrete edge-mode frequencies
specified by the integer numbers n are located close to the stop-band edge frequencies outside the band. The
expressions for the spatial distribution of the n's mode field in a CLC layer and for its temporal decay are
presented. The possibilities of a reduction of the lasing threshold due to the anomalously strong absorption
effect are theoretically investigated for a distributed feedback lasing in CLCs. It is shown that a minimum of
the threshold pumping wave intensity may be reached, generally, for the pumping wave propagating at an angle
to the helical axis. However, for lucky values of the related parameters, it may be reached for the pumping
wave propagating along the helical axis. The lowest threshold pumping wave intensity occurs for the lasing
at the first low-frequency band-edge lasing mode and the pumping wave propagating at an angle to the spiral
axis corresponding to the first angular absorption maximum of the anomalously strong absorption effect at the
high-frequency edge of the stop band. The study is performed in the case of the average dielectric constant
of the liquid crystal coinciding with the dielectric constant of the ambient material. Numerical calculations of
the distributed feedback lasing threshold at the edge-mode frequencies are performed for typical values of the

relevant parameters.

PACS: 42.70.Qs, 42.70.Df

1. INTRODUCTION

Recently, there was an explosion of interest in the
mirrorless distributed feedback (DFB) lasing in chiral
liquid crystals (CLCs) [1]. The reason for this interest
is related to the observed low-threshold lasing [2, 3], un-
usual polarization properties of lasing, and frequency
tunability of the lasing by means of applying an ex-
ternal field [4, 5], temperature pitch variations [6, 7], or
mechanical stress [8], etc.

The DFB low-threshold lasing in CLCs occurs at
frequencies close to the frequencies of the stop-band
edges [2-8]. The corresponding frequencies were as-
sociated with so-called edge lasing modes [1]. It also
happens that at the same edge lasing mode frequen-
cies, an anomalously strong absorption of the pumping
wave occurs [9-13].
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In general, the theory of edge lasing modes in CLCs
(and the more general DFB lasing in spiral media) is
very similar to the corresponding theory for conven-
tional periodic solid media that was initially developed
by Kogelnik and Shank [14] in the coupled-wave ap-
proximation and was later treated similarly in many
papers (see [15] and the references therein). But the
theory of edge lasing modes in CLCs deserves a sep-
arate study because of unusual optical properties of
CLCs and because, in contrast to all other periodic
media, an exact analytic solution of the Maxwell equa-
tions is known for CLCs (and more generally, for spiral
media). Many related results, usually obtained in a
numerical approach, may therefore be obtained analyt-
ically for CLCs. For example, the anomalously strong
absorption effect existing in CLCs [9,10] for the light
frequency close to the stop band may be treated an-
alytically. (The anomalously strong absorption effect
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for conventional periodic media was also studied in
Ref. [16].)

General analytic expressions for the solution of the
boundary problem for the nonabsorbing, absorbing,
and amplifying CLC layers, i.e., for the edge modes
(EMs), are presented below for the light propagation
direction coinciding with the spiral axis. We find the
dispersion equation for EMs determining their frequen-
cies; the lasing threshold gain is found and an expres-
sion for the threshold in a specific limit case is also pre-
sented together with numerical solutions of the disper-
sion equation for typical values of the CLC parameters.
The EM properties (coordinate intensity distribution,
frequency width of the EM, etc.) are analyzed. It is
also discussed how the revealed properties of EMs al-
low decreasing the DFB lasing threshold ensured by a
low gain for the lasing and a strong absorption for the
pumping wave.

2. EIGENWAVES IN CLC

To solve the boundary value problem related to
EMs, we need to know eigenwaves in a CLC. As is
known [10,17-19], the eigenwaves corresponding to
propagation of light in a CLC along a spiral axis z,
i.e., the solutions of the Maxwell equation
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are given by a superposition of two plane waves of the
form

E(z,t) = e ™t x
x [ETngexp(iKtz) + ETn_exp(iK~2)]. (2)

Here, w is the light frequency, ¢ is the speed of light,
ny = (e, +e,)/V/2 are circular polarization vectors
with e, and e, being the unit vectors along the z and
y axes, and

e(2)

eo [L4+0 cos(T2)] £epdsin(rz) 0
= | +egdsin(rz2) go[1=dcos(tz)] O (3)
0 0 €L

is the dielectric tensor of the CLC [10, 17-19] (two signs
in the expression for £(z) correspond to the right and
left chirality of the CLC), where eq (g +1)/2,
§ = (g —e1)/(g| +e1) is the dielectric anisotropy, and
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Fig.1. Schematic of the boundary value problem for

edge modes

g| and e are the local principal values of the CLC di-
electric tensor [9,16, 17]. The wave vectors K+ satisfy
the condition

Kt—-K =1,

(4)

where 7 is the reciprocal lattice vector of the LC spiral
(t = 47 /p, where p is the cholesteric pitch).
The wave vectors K* in four eigensolutions of
Eq. (1) are determined by Eq. (3) and the formulas
KJT" —_ Tk

2 RS (CRTINE

where j labels the eigensolutions with the ratio of the
amplitudes E~/E™ given by

( )j =5 [(KF

where £ = w,/Zo/c. We do not specify the kind
of the CLC under investigation here (chiral smec-
tic or cholesteric) because the optics of light propa-
gating along the spiral axis is identical for both LC
types [10,17—-20]. For definiteness, we give the expres-
sions for cholesterics below. The corresponding expres-
sions for chiral smectics can be obtained by a simple
redefinition of the relevant parameters (see Ref. [10,
Ch. 2]).

Two of the eigenwaves corresponding to the circular
polarization with the sense of chirality coinciding with
the one of the CLC spiral experience strong diffrac-
tion scattering at the frequencies in the region of the
stop band. The other two eigenwaves corresponding
to the opposite circular polarizations are almost unaf-
fected the diffraction scattering even at the frequencies
of the stop band for the former circular polarization.

Because, as we see in what follows, the specific fea-
tures of EMs in the CLC are related to eigenwaves of
the diffracting polarization, we limit ourselves by con-
sidering the propagation of light of the diffracting po-
larization only in the CLC.

T

\/1+(2

K

o
E+

)R- (6)
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3. BOUNDARY VALUE PROBLEM

To investigate EMs in a CLC, we have to consider a
boundary value problem. We assume that the CLC is
represented by a planar layer with the spiral axis per-
pendicular to the layer surfaces (Fig. 1). To justify our
intention to limit ourselves by propagation of light of
the diffracting polarization only, we also assume that
the average CLC dielectric constant ¢g coincides with
the dielectric constant of the ambient medium. This
assumption practically prevents conversion of one cir-
cular polarization into another at layer surfaces [10, 21|
and allows taking only two eigenwaves with diffracting
circular polarization into account.

We begin with the linear boundary value problem in
the formulation where two plane waves of the diffract-
ing polarization and of the same frequency are incident
along the spiral axis at the layer from the opposite sides
(see Fig. 1) and the dielectric tensor can have a nonzero
imaginary part of any sign (which means that the CLC
layer may be either absorbing or amplifying). The am-
plitudes Ef of the two diffracting eigenwaves excited
in the layer by the incident waves (they are denoted by
ET and ET) are determined by the equations

Ef + E* = E,
exp(iKTL)S (KT —7)%/k® 1] B +
+exp(iKTL)§ (KT —7)°/s> = 1] ' ET = By,

(7)

where E;. and Ej; are the amplitudes of the waves in-
cident at the layer from the right and from the left, L

is the layer thickness, and
2 2
_ z 2
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The amplitudes of waves exiting from the layer on
the right and the left sides, E,, and E;, are determined
by the expressions

B =6 (KT =72 /s> —1]7 Ef +
+O[(KT —7)? /s> —1] " BT,
9)

+

E. = exp [i(K+ — m)L] Ei +

+exp [i(Kt —k)L] E*.

If we assume that the amplitude of only one incident
wave is nonzero, Eqs. (9) determines the reflected and
transmitted waves (the reflection R and transmission
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T coefficients of the layer) and, in particular, their fre-
quency dependence [10,19,21]. The corresponding ex-
pressions for R and T take the form

R—
62| sin(qL)?

27

) ‘Z—Z cos(qL)+i {(;—R)Z + (%)2 —1} sin(qL)
(10)
T =
_ |exp(ikL)(g7/K*)[? -y
‘Z—Z cos(qL)+i {(;—R)Z + (%)2 —1} sin(qL)
where
e R,

If both amplitudes of the incident waves are equal to
zero, no waves emerging from the layer exist if the di-
electric tensor has a positive (or a very small negative)
imaginary part.

The solution of system (7) for the amplitudes EI
and E7 of the eigenwaves in the CLC layer is given by
the following expressions (in the case of a wave incident
only on one surface of the layer):

E} = —Ejexp(—igL)x

(1/26)*+(q/%)*~1—q7 /K"
(qL)+i [( q)2 —1} sin(qL)}

(12)

qr '
—= COS
h:2

B Y

K

ET = Ejexp(igL)x

(7/2r)*+(a/K)*—1+q7 /K ~
e [(_ 1y’ _1} sin(qL)}

N
2/<a) + (n
The values of the eigenwave amplitudes close to the
stop-band edges are strongly oscillating functions of
frequency (see Figs. 2 and 3 presenting the calcula-
tion results). At the points of maxima close to the
stop-band edges, their values are much larger than the
incident wave amplitude E;;. It turns out that the am-
plitude maxima frequencies coincide with the frequen-
cies of zero reflection following from Egs. (10) for a
nonabsorbing CLC (Figs. 2 and 3).

qTm

X
|
K
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Fig.3. Transmission coefficient T' (a) and the squared
Fig. 2. Reflection coefficient R (a) and the squared £ Ef (b) and ET (c) eigenmode amp.litudes calcu-
(b) and E* (c) eigenmode amplitudes calculated ver- lated versus frequency for a nonabsorbing CLC layer
sus frequency for a nonabsorbing CLC layer (§ = 0.05, (6 =0.05, N = 350)

N = L/p = 250). Here and in all figures below (ex-

cept Fig. 11), d(v — 1) is plotted at the frequency . . _ . .
axis, i.e., the frequency deviation from the stop-band dielectric constant e = eo(1+47). (We note that in real

edge is plotted (normalized by the Bragg frequency, see situations, |y| < 1.) The calculations of the reflection

Eq. (23)) R and transmission T' coefficients as functions of the

frequency in accordance with Eqgs. (10) (Figs. 2a and

3a) give the well-known results [17-21]: a strong reflec-

4. EDGE MODES (NONABSORBING CLC) tion inside the stop band, frequency oscillations of T

and R outside the stop-band edges with 0 < R < 1,

We examine the formulas of the preceding section and the preservation of the relation 774+ R = 1 for all

for a nonabsorbing CLC in more detail. In a nonab- frequencies. This means that 7' =1 at the frequencies
sorbing CLC, v = 0 in the general expression for the corresponding to R = 0 (see Fig. 3).

800
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The corresponding calculations of the amplitudes
EI and ET of the eigenwaves excited in the layer
(Figs. 2b,c and 3b,c) reveal a nontrivial frequency de-
pendence of Ej_ and ET. Namely, close to the stop-
band edges (outside the stop-band edges), frequency
oscillations of the amplitudes are accompanied by an
essential enhancement of their magnitude relative to
the incident wave amplitude (in the calculations, the
incident wave amplitude is assumed to be equal to 1).
The thicker the layer, the higher is the enhancement (cf.
Figs. 2 and 3). As Figs. 2 and 3 show, the positions
of the amplitude oscillation maxima just coincide with
(or are very close to, for an absorbing or amplifying
CLC) the positions of the reflection coefficient minima
corresponding to R = 0 for a nonabsorbing CLC.

The above relation between the amplitudes of eigen-
waves and incident waves at the specific frequencies
shows that for these frequencies, the energy of radi-
ation in the CLC at a given layer thickness is much
higher than the corresponding energy of the incident
wave at the same thickness. Hence, in complete ac-
cordance with Ref. [1], we conclude that at the cor-
responding frequencies, the incident wave excites some
localized mode in the CLC. To find this localized mode,
we have to solve homogeneous system (7), i.e., Egs. (7)
with zero values of E;,. and E;;. The solvability condi-
tion for the obtained homogeneous system determines
the discrete frequencies of these localized modes:

i(qr/K)
(T/26)%2 4+ (q/K)> =1

In the general case, solutions of Eq. (13) for the EM
frequencies can be found only numerically. The EM fre-
quencies wgys turn out to be complex quantities, which
can be represented as wpy = W%, (14 iA), where A
is a small parameter in real situations. Therefore, the
localized modes weakly decay in time, i.e., are qua-
sistationary modes. Fortunately, an analytic solution
can be found in a certain limit case, namely, for a suf-
ficiently small A ensuring the condition LIm¢ < 1. In
this case, the w%,, values coincide with the frequen-
cies of zero values of the reflection coefficient R for a
nonabsorbing CLC, determined by the conditions

B B §(nm)?
gL =nm, A= 2(Lor/4)3

tg(qL) = (13)

(14)

where n is the EM number, which increases as the fre-
quency departs from the stop-band edge (n = 1 corre-
sponds to the frequency closest to the stop-band edge).

In the found solution of homogeneous system
(7), the ratio of the eigensolution amplitudes is
Ef/Ej_' = —1 and the field distribution inside the

12 ZK3T®, Bom. 4 (10)
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Fig.4. The calculated EM energy distributions inside

the CLC layer versus coordinate (in the dimensionless

units z7) for the first three EMs (§ = 0.05, N = 16.5,
n=1,213)

CLC layer is a superposition of two eigenwaves given
by Eq. (2) with this amplitude ratio. The explicit ex-
pression for the EM field distribution inside the CLC
layer following from Eq. (2) is

E(wpwm, z,t) = iexp(—iwpmt) X

Tz . n_ iTZ
X {n+ exp <7> sin(gz) + 5 exp (—7> X

<ANE) + (2) ] sintaa)- T costan .
(15)

where ¢ is determined by Eq. (11). For the analytic
solution mentioned above, Eq. (15) for the EM field
distribution inside the CLC layer becomes

E(wp, 2,t) = i exp(—iwpt) X

X {n+ exp <%> sin (%) + r%exp (—%) X
(G Gy =] (%) -
_ Z;:;r cos (%)}} (16)

where w,, corresponds to a zero value of R (i.e., wy
is determined by ¢L = nm). The eigensolution of the
boundary value problem given by Eqs. (15) and (16) is
a standing wave localized at the layer thickness L with
the amplitude modulated along z axis. The number of
modulation periods at the layer thickness L coincides
with the EM number n.

The EM total field (the sum of the fields of two
eigenmodes in Eqs. (15) and (16)) at any coordinate z
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Fig.5. The calculated EM energy distributions close to

the CLC layer surface versus coordinate (in the dimen-

sionless units z7) for a plane wave directed inside (1)

and outside (2) the layer for the first EM (4 = 0.05,
N =165, n=1)

in the layer makes a fixed angle to the local director
direction, i.e., the field in the layer rotates together
with the director as a function of z and performs the
same number of rotations as the director does at the
layer thickness. The field distributions following from
Eqs. (15) and (16) for the EM numbers n = 1,2, 3 are
presented in Fig. 4. The figure shows that the EM field
is localized inside the CLC layer and its energy den-
sity experiences oscillations inside the layer with the
number of oscillations equal to the EM number n. We
note that the figure presents the total energy distribu-
tion in the layer. However, as is clear from Egs. (2),
(15), and (16), the total field at each point of the CLC
layer is represented by two plane waves propagating in
the opposite directions, and hence the intensities of the
waves propagating in opposite directions can be calcu-
lated separately at any point in the layer. In general,
the coordinate distribution of the intensities of waves
propagating in opposite directions is similar to the dis-
tribution presented in Fig. 4. But these distributions
are of a special interest close to the layer surfaces. Fig-
ure 5 shows the intensity coordinate distributions of the
waves propagating inside and outside the layer close to
the layer surfaces. We can see that at the layer sur-
face, the intensity of the wave propagating inside the
layer is strictly zero, but the intensity of the wave prop-
agating outside the layer is nonzero (although small).
This means that the EM energy is leaking from the
layer through its surfaces. Equation (16) implies the
expression

™ np
By = — -2 1
oub =2 rs T Lo (17)
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for the leaking wave amplitude at the CLC layer sur-
face, where p is the CLC pitch. Equation (17) shows
that the EM energy leakage is inversely proportional to
the squared layer thickness L and proportional to the
squared EM number n. Hence, the most long-lived is
the first EM in a CLC layer. If Ld/p > 1, the leaking
wave amplitude E,,; is small (E,,; < 1), as Eq. (17)
shows.

For a nonabsorbing CLC layer (which is under con-
sideration in this section), the only source of decay is
the energy leakage through its surfaces; the decrease in
the EM energy in unit time is equal to the energy flow
(2¢/1/20)|Eout|)® of the leaking waves, and therefore,
using Eqs. (15)—(17), we easily obtain the EM lifetime
Tm a8

Tm =/|E(wEM7z,t)|2dz X

d -1
X {E/|E(wEM,z,t)|2dz}

I 2
Lo LVE [, 4L
16 ¢ 5\ pn
Under the condition L§/pn > 1, Eq. (18) reduces to

L ()

¢
Hence, for sufficiently thick CLC layers, as their thick-
ness L increases, the EM lifetime 7, increases as the
third power of the thickness and is inversely propor-
tional to the square of the EM number n. We note
that the same dependence of the lifetime 7,, on n and
L follows from Eq. (14):
()

5. EXCITATION OF EDGE MODES

~

(18)

Lé
pn

1
Tm & —

: (19)

_L

L_6
pn

Tm ~ 1

N — 20
ImeM ( )

c

The analysis of the localized EM (solution of the
homogeneous system following from Eqs. (7)) in the
previous sections together with the solution of inhomo-
geneous equations (7) found in the previous sections
allows discussing the ways and efficiency of the EM ex-
citation. Excitation of the EM in a nonamplifying CLC
layer requires an external wave (waves) of the frequency
coinciding with the EM frequency incident at the CLC
layer. The general solution of the boundary value prob-
lem found from system (7) in this case may be repre-
sented as a superposition of the particular solution cor-
responding to the inhomogeneous system (7) and the
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Fig.6. The calculated squared amplitude of the

EM close to the four EM frequencies (6 = 0.05,
N = 350)

solution corresponding to the homogeneous system (7),
i.e., corresponding to the EM, with the coefficient to
be determined from the boundary conditions. One can
easily construct such a repesentation of the boundary
value problem solution determined by Eqs. (12).

For this, it is sufficient to represent E in the form
Ef = EFM 4+ E? | where EFM and EY. are the re-
spective amplitudes of eigenwaves in the EM and in
the particular solution. Taking into account that the
amplitudes EFM satisfy Eqs. (7) with zero right-hand
sides, we obtain

EEM = +BF [1+ itg(qL)] (21)

for the frequencies close to wga. The EFM values cal-
culated according (21) are presented in Fig. 6. Com-
paring Fig. 6 and Figs. 2 and 3 shows that for a suf-
ficiently thick LC layer, the amplitudes Ef are a very
good approximation to EFM.

The above results relate to a stationary process of
EM excitation, i.e., to the situation of a plane wave of
a fixed amplitude incident on a CLC layer. The formu-
las obtained can be used for finding the probability of
EM excitation by a single photon. This probability is
given by

Wem =

(1—R)/|EEM(w,z,t)|2dz
= N 5y (22)
/|EEM(w,z,t)| dz+/|Ep(w,z,t)| dz

where the integration is taken over the CLC layer thick-
ness and EP(w, z,t) is a particular solution of Eq. (6).
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It turns out that if a plane wave (with unit am-
plitude) is incident on the CLC layer, the eigenmode
amplitudes in the excited EM are given by the expres-
sions for EXM above. But in this case, it is impossible
to excite the EM only. It is accompanied by the par-
ticular solution of Eq. (6) with a nonzero amplitude
determined by the relation Ef = EFM + E7. Hence,
the efficiency of the EM excitation by one plane wave
(the ratio of the squared EM amplitude to the squared
incident wave amplitude) for the specific values of the
relevant parameters may be estimated by the squared
ET value in Figs. 2b and 3b. The values of EFM close
to the EM frequencies are more accurately determined
by Eq. (21) (see also Fig. 6).

6. ABSORBING CLC

We now examine EMs in an absorbing CLC. The
motivation for this study, in particular, is the DFB
lasing in a CLC. It must be kept in mind that under
lasing, a CLC is an essentially absorbing medium for
the pumping wave. We examine the formulas in the
previous sections in more detail with regard to their
application to the pumping wave. We assume for sim-
plicity that the absorption in the CLC is isotropic. We
define the ratio of the imaginary part of the dielectric
constant to its real part as v, i.e., ¢ = &o(1 + 7).
In actual situations, v <« 1. In Figs. 7-9, the R, T,
and 1 — R — T frequency dependences are presented
for several values of positive and negative 7 including
its values close to the threshold values for EMs (see
Eq. (25) below). Due to the assumed isotropy of the ab-
sorption, the frequency dependences of the calculated
characteristics are symmetric relative to the Bragg fre-
quency (the middle point of the stop band), and there-
fore only the frequencies above the Bragg frequency are
presented in the figures.

It is reasonable to comment here on the numeri-
cal values of the parameters used in calculations. The
dielectric anisotropy is taken as 6 = 0.05, which cor-
responds to a typical value of this parameter. The
same may be said about the layer thickness L. Because
T = 41 /p, where p is the cholesteric pitch, the number
of pitches N at the layer thickness L is equal to /4w
(I = L7) and hence the value [ = 300 accepted in calcu-
lations corresponds to N close to 30, i.e., to a number
very common for experiments. All the mentioned quan-
tities reveal frequency beats close to the frequency edge
of the selective reflection band. The positions of the
corresponding maxima and minima are determined by
the layer thickness L, by §, and are slightly dependent,

12%
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Fig.7. Calculated frequency dependences (I = LT =
= 47N = 300, § = 0.05) for absorption (a,b, and
c), reflection (d), and transmission (e) in cases of low
absorption (@ and b) and low amplification below the
threshold gain for the first lasing EM (c—¢)

on the value of 4. In an absorbing CLC, the sum of
the intensities of the reflected and transmitted beams
is less than the intensity of the incident beam, i.e.,
R+T < 1. The equality holds only for a nonabsorbing
CLC. As an example, the positions of minima of the
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reflection coefficient R beats (following from Eq. (10))
are given above in Fig. 2a for a nonabsorbing CLC, i.e.,
for v = 0, which correspond to

qL =mn, v =1+ (mn/a)?/2,
n=123,..., v=2w-wp)/wsd,
wp = cT/2\/e0, a=TLd/4.
In a typical situation, a > 1.

The edges we of the selective reflection band are
related to the Bragg frequency wp as

(23)

wpB CT

T UTED 2 /(1)

(24)

Hence, v at the edges is given by v, =
=6/2(V1+d—1)~FL

For small v and LImq <« 1, the reflection and
transmission coefficients (10) at frequencies (23) of the

reflection minima become

Ro_ (@) N
[(nm)? + a]
(nr)t
T- ,
() + ] (@)
RiT=1_ 2nm)ay

It follows from Eqs. (23) and (25) that for each n,
the maximum absorption, i. e., maximum 1—R—T, oc-
curs for (nm)? = a®y. This means that the maximum
absorption occurs for a special relation between ¢, ~,
and L and if this relation, i.e., (n7)? = a7, is fulfilled,
then R=1/4,T =1/4,and 1 — R—T = 1/2. Because
of the assumed smallness of v, this result corresponds
to a strong enhancement of the absorption for weakly
absorbing layers.

As was shown in Refs. [9,10], just at the frequency
values determined by Eq. (23), the effect of anoma-
lously strong absorption reveals itself for an absorbing
CLC (Figs. Ta,b) and the edge modes for an amplifying
CLC reveal themselves at lasing [1] (Fig. 8) (see similar
results for layered media in [14,15]). Hence, to mini-
mize the intensity of the pumping wave that ensures
lasing in a CLC, it is desirable to perform the pump-
ing in conditions of the anomalously strong absorption
effect and realization of lasing in the EM. These op-
tions were investigated in detail in Refs. [11,12] and are
briefly discussed in the following sections. In the con-
clusion of this section, the following observation should
be made (cf. Figs. 7-9): the absorption maxima in the
frequency dependences are not so sharp as the intensity
maxima for the lasing modes.



MKIT®, Tom 136, Boin. 4 (10), 2009

Optical edge modes in photonic liquid crystals

R-107*

10

8 v = —0.00565

0.03 0.04
Frequency

0.01 0.02

60

50

40 ~ = —0.0129

30

20

10

0.06
Frequency

0.02 0.04

Fig.8.

T-107*
4 T T T T T
c
3L
~v = —0.00565
2+ i
1+ i
e
0 0.01 0.02 0.03 0.04
Frequency
T-107*
8 T T T T T T T
6l ¢ 1
4r v = —0.0129 1
2t i
0 0.02 0.04 0.06
Frequency

Calculated frequency dependences (I = 300, § = 0.05) for coefficients of reflection (a and b) and transmission

(c and d) close to the threshold gain for the first (a and c) and the second (b and d) lasing EMs

7. AMPLIFYING CLC

We now assume that v < 0, which means that the
CLC is amplifying. If |v| is sufficiently small, the waves
emerging from the layer according to Eqs. (7)—(10) ex-
ist only in the presence of at least one external wave
incident on the layer, and their amplitudes are deter-
mined by the solution of Eqgs. (7) and (9). In this case
(see Fig. 9¢), R+ T >1or1— R —T <0, which just
corresponds to the definition of an amplifying medium.

However, if the imaginary part of the dielectric ten-
sor, i.e., v, reaches some critical negative value, the
quantity R 4+ T diverges and the amplitudes of waves
emerging from the layer are nonzero even for zero am-
plitudes of the incident waves. This happens when
the determinant of Eq. (7) vanishes. At this point,
of course, the amplitudes of emerging waves are not
determined by solution (9) of linear equations (1) (a
nonlinear problem should then be solved). But as we
saw above, the vanishing points of the determinant
of Eq. (7) determine the EMs [1,14,15] and the cor-
responding values of the gain (or the negative imag-
inary part of the dielectric tensor), i.e., the mini-
mum threshold gain at which the lasing occurs (see
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the corresponding discussion for scalar periodic media
in Refs. [14,15]).

Therefore, the equation determining the threshold
gain () at which the lasing occurs (zero value of the de-
terminant of Eq. (7) or of the denominator in Eq. (10))
turns out to coincide with Eq. (13). It must be solved
now not for the frequency but for the imaginary part
of the dielectric constant (). In the general case, this
equation has to be solved numerically. However, for a
very small negative imaginary part of the dielectric ten-
sor, the EM frequencies are pinned to the frequencies of
zeros of the reflection coefficient in its frequency beats
outside the stop-band edge for the same layer with a
zero imaginary part of the dielectric tensor [1,9,10].
This is why the threshold values of the gain for the
EMs can be represented by analytic expressions in this
limit case.

For small |y| and L|Img| <« 1, the reflection and
transmission coefficients in Eq. (10) at the frequen-
cies (23) of reflection minima are reduced again to ex-
pressions (25), although with negative ~.

Hence, R and T may be divergent, and the points
of their divergence correspond to the lasing at the EM
frequencies and determine the corresponding values of
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Fig.9. R (a), T (), and 1—R—T (c¢) calculated ver-

sus the frequency (I = 300, § = 0.05) for v = —0.009,

i.e., for the gain between the thresholds for the first
and the second lasing EMs

the threshold v, i.e., a minimum || at which the lasing
occurs for nth reflection minimum:
(nm)? §(n)?
== 3 3 (26)
a (TL6/4)
As can be seen from Eq. (26), the threshold values of
|v| are inversely proportional to the third power of the
layer thickness and the minimum value of |y| corre-
sponds to n = 1, i.e., to the edge lasing mode closest

to the selective reflection band edge (cf. analogous re-
sults for scalar layered media in [14,15]). The values
of v given by Eq. (26) is convenient to use for estimat-
ing the threshold values of v in the general case and
as a zero approximation in the numerical solution of
Eq. (13) for the threshold values. The frequency dis-
tances between the consequent EMs are equal to

2
Upil — VUp = % (g) (2n +1),
i.e., are inversely proportional to the second power of
the layer thickness (cf. the corresponding distance be-
tween the lasing frequencies in a homogeneous layer,
which is inversely proportional to the layer thickness).
It also follows from Fig. 8 that the different thresh-
old values of v correspond to the different EMs (diver-
gent R and T) in Fig. 8. This means that separate
lasing modes can be excited by changing the gain (7).
If the value of 7 is between the consecutive threshold
values of 7 for neighboring lasing modes, the lasing may
not be achieved and the layer may reveal only amplify-
ing properties (see Fig. 9). This means that changing
the pumping wave intensity allows achieving lasing at
the individual EM and that the lasing intensity is not
a monotonic function of the pumping intensity. Be-
cause the lasing frequency is determined by the EM
frequencies, there is an option for some variation of
the lasing frequency inside the width of the dye line
by changing the CLC pitch by means of temperature
variations [6,7] or by application of an external elec-
tric or magnetic field to the layer [4]. We note that
smooth variations of the external agent may result in
jump-like variations of the lasing frequency [22] related
to the jumps of the CLC pitch, which are sensitive to
the surface anchoring [23].

8. OPTIMIZATION OF PUMPING

The formulas in the previous sections allow optimiz-
ing the lasing threshold separately by reaching a coin-
cidence of the lasing frequency with the frequency of
the first EM and optimizing the pumping efficiency by
reaching a coincidence of the pumping frequency with
the frequency of the first maximum in the anomalously
strong absorption effect [9]. We note that the same
CLCs must simultaneously be an absorbing material at
the pumping frequency and amplifying one at the lasing
frequency. In the present section, we discuss the possi-
bilities to simultaneously reach the highest efficiency of
the pumping and the lowest value of the lasing thresh-
old gain. The requirements of the highest efficiency of
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the pumping and the lowest value of the lasing thresh-
old gain are contradictory for a collinear geometry be-
cause they assume that the lasing frequency w; and the
pumping frequency w, practically coincide with the fre-
quency edges of the selective reflection band. However,
the lasing frequency w; is less than the pumping fre-
quency wp. We note that this contradiction for the
collinear geometry may be overcame by a lucky chance
or by a very fine tuning of the lasing parameters if the
difference w, — w; is small and w,, coincides with the
high-frequency edge of the reflection band and w; co-
incides with the low-frequency edge of the reflection
band, which results in the following frequencies of the
lasing and pumping waves:

N et /2 N et /2
- 5 1 = )
P cop(1—0p) Vel +0)
(27)
wp _ cor(1+6;)
wy Eop(l — (51,) ’

where the dielectric constant ¢y and the anisotropy ¢
are marked by subscripts «p» and «[» relating to the
frequency dispersion of the dielectric properties and
meaning that the respective parameters are to be taken
at the pumping and lasing frequencies. We note that
a decrease in the lasing threshold due to the anoma-
lously strong absorption of the pumping wave in the
collinear geometry was recently observed experimen-
tally in Ref. [13].

Another possibility to reach the lowest threshold in
the collinear geometry may be realized by applying an
external electric (or magnetic) field to the LC material.
It is known [10] that in this case, due to the distortion
of the LC helix, many diffraction orders exist for light
propagating along the helix axis and the pumping and
lasing frequencies may be fitted to the frequencies of
different diffraction orders. Nevertheless, the fitting
again requires a very fine tuning of the lasing parame-
ters.

However, there is a regular way to optimize the
pumping intensity (under the assumption that the las-
ing occurs along the helical axis). There is an option to
use a noncollinear pumping without any tuning of the
lasing parameters, i.e., with the pumping wave propa-
gating at an angle to the helical axis, which allows the
pumping wave to satisfy the conditions of the anoma-
lously strong absorption effect. A rough estimate de-
rived from the fact that the lasing and pumping waves
experience Bragg scattering gives the following value
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of the angle # between the pumping wave propagation
direction and the helical axis:

0 = arccos(wy /wp). (28)

To obtain a more accurate expression for the pump-
ing wave propagation direction, one has to solve the
Maxwell equations for light propagating at an angle
to the helical axis and find the angle 6 corresponding
to the conditions of the anomalously strong absorption
effect [9,10]. Unfortunately, no exact analytic solu-
tion of the Maxwell equations is known in this case
and therefore a numerical approach has to be used.
The full power of the numerical approach manifests it-
self if the frequency dispersion of the dielectric con-
stant and of the LC dielectric anisotropy are taken
into account. However, these quantities are usually not
very well known, and hence in the experiment, even if
the calculated angle 6 is known, the actual angle of
the anomalously strong absorption effect is sought by
changing the pumping wave propagation direction due
to the mentioned uncertainties.

Under these circumstances, an approximate expres-
sion for § more accurate than (28) may be quite useful.
The corresponding expression was found [11,12] in the
framework of the dynamical theory of diffraction ap-
plied to the case of light propagating at an angle to
the helical axis [10, 21, 24]. The dielectric anisotropy ¢
plays the role of a small parameter in this theory. Be-
cause the dielectric anisotropy ¢ is quite small in many
practical cases (6 < 0.1), the accuracy of the results
found in the framework of the dynamical theory may
be sufficient to describe the experimental results.

9. CALCULATION RESULTS

To obtain the gain v that corresponds to the onset
of lasing in an CLC layer, we investigated the behav-
ior of the R (reflection) and T (transmission) coeffi-
cients. The divergence of R and T corresponds to the
lasing threshold value of 7. These divergences occur
at the vanishing point of the determinant of Eq. (7).
This condition gives a direct way to find the EM fre-
quency corresponding to the solution of Eq. (13). In
Fig. 10, the analytically found and numerically calcu-
lated threshold gains for the first three EMs are pre-
sented for several values of the parameter Ld/p. The
comparison demonstrates that the larger the parameter
L§/p is, the closer the analytically found and numeri-
cally calculated threshold gains are. For an amplifying



V. A. Belyakov, S. V. Semenov

Y
0 T T :l T l. T |:
v- 71 v Vi3 vi V4
—0.05} g | i ; ]
0.0} | | § P
' ' -: '
0151 | | ; .
—0.20F | i i L
E : I .
0 0.03 0.06 0.09 0.12
Frequency
Y
0 T T T . T T
A Jod! ; : :
| v v v
b " : :
—0.05} g g o
: : ' :
—0.10f i g g -
0151 | | ; .
0 0.05 0.10
Frequency
Y
0 .:I"Yl T é T T é T T |§
—0.0004 | ¢ | 12 ]
—0.0008 - v ]
" :
| | | s
—0.0012| ; ; ]
—0.0016} : § L
' ' ' L
0 0.003 0.006 0.009 0.012
Frequency
Fig.10. Numerical (V) and analytic (m) solutions

of EM dispersion equation (13) for the parame-
ter Lé/p = 0.9, § = 0.03 (a), Lé/p = 1.193,
d = 0.05 (b), and Lé/p = 4.5, § = 0.03 (¢); a —

v = —0.00676, 2 = —0.01369, v3 = —0.01761, and
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v = —0.000096, 72 = —0.000352, 5 = —0.000696,

and 4 = —0.001066
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CLC, the numerical solutions for the gain values nor-
malized by ¢ (solutions of Eq. (13)) are presented in
Fig. 11 for several values of the parameter Ld/p (the
specific values of v are also presented in Fig. 11 for
d = 0.05 and 6 = 0.03). Zero values of the determi-
nant of Eq. (7) occur at discrete values of v and Rew.
Their values are found for several first EMs; calcula-
tions of R and T were also performed to control the
solution procedure using the initial value of v given by
analytic expression (26). The final values of w; and ~;
were found by a graphical solution of the problem. The
gain values normalized by 4 for the fixed value of the
parameter Ld/p, presented in Fig. 11, allow recalcula-
ting ~ for various values of ¢ and L corresponding to
the same value of Lj/p.

The w; values are very close to their values corre-
sponding to zeros of the reflection coefficient R for a
nonabsorbing CLC, determined by Eq. (14). The val-
ues of y; are close to the ones given by analytic expres-
sion (26) only for a sufficiently large parameter Ld/p.
On the whole, there is a general trend in the difference
of the analytic and numerical solutions. The values of
Rew; found numerically are smaller than the analytic
ones and the numerically found |v;| are larger than the
analytic ones (see Eq. (26)).
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10. CONCLUSION

The performed analytic and numerical theoretical
examination of the EMs in an LC allows representing
the physics of these localized modes more clearly. We
also note that the results obtained here for spiral me-
dia are relevant to any periodic media, and hence the
qualitative description of the EMs in these media is the
same as for the CLC and the analytic formula presented
above may be used as a useful guide in studying other
periodic media.

As regards the CLC, in particular, it turns out that
there are some real possibilities related to these lo-
calized modes for reaching a higher efficiency of the
DFB lasing in the CLC. Namely, possibilities of further
reduction of the lasing threshold relative to the one
already achieved were predicted [11,12] and partially
experimentally observed [13] as well as possibilities of
varying the lasing frequency in this kind of lasing. It
should be mentioned that an advantage of the CLCs
compared to solid media consists in the fact that their
parameters are easily variable. Hence, the CLC may be
considered a convenient model object for studying the
lasing in any periodic media, even in three-dimensional
periodic structures (see Ref. [25] on lasing in the LC
blue phase). Another fortunate circumstance from the
theoretical standpoint is the availability of an exact an-
alytic solution of the Maxwell equations for light propa-
gating along the helical axis. For other periodic media,
no exact analytic solution is known and the coupled
wave approximation is usually applied to the problem
[14,15].

We note that the equations in the previous sections
formally assuming a frequency-independent dielectric
susceptibility and its isotropy may be easily generalized
to the experimentally realizable case of the frequency-
dependent dielectric susceptibility and its anisotropy.
For this, the corresponding parameters in the equations
are to be considered some functions of frequency. How-
ever, the question of the explicit expressions for these
functions arises. It seems that the most pragmatic way
to determine the corresponding frequency dependences
is to obtain them from experimental measurements.

An essential point for the experimental observation
of the examined anomalously strong absorption effect
of the pumping wave is that the periodic structure be
perfect enough for observing beats of the reflection co-
efficient at the edges of the reflection band. Insufficient
perfection of the periodic structure leads to a decrease
in the anomalously strong absorption. A similar de-
crease in the anomalously strong absorption is related
to a finite frequency width of the pumping wave. The

corresponding reduction of the absorption is the result
of averaging the expressions presented above over the
frequency width of the pumping wave line [9,10]. A
similar influence of the sample perfection on the de-
crease in the threshold lasing gain also takes place. We
also note that the assumption accepted above regarding
the absence of dielectric reflection on the boundaries of
the CLC layer (the equality of the external dielectric
and average dielectric constant of the CLC) requires a
special experimental care. If this assumption is not met
in an experiment, the reflection at the boundaries con-
verts the diffracting polarization into the nondiffracting
one, which also decreases the anomalously strong ab-
sorption and changes the polarization properties of the
phenomenon.

Another accepted simplification of the problem is
related to the assumption that the absorption in the
CLC is isotropic. In some cases, this assumption may
correspond to the real situation. But in the general
case, the local absorption anisotropy in a CLC may be
noticeable. Hence, the study of the problem in the case
of anisotropic absorption is quite urgent.

And finally, as was already mentioned, because of
the insufficiently precise knowledge of the CLC param-
eters, a practical way to observe the theoretically pre-
dicted effects in the experiment is a search for the effect
by small variations of experimental parameters (propa-
gation direction, temperature, etc.) around the values
calculated according to formulas in the previous sec-
tions.

It should also be kept in mind that the EMs studied
here reveal themselves not only in lasing but also in
other optical phenomena. For example, the nonlinear
optical harmonic generation [26] and Cherenkov ra-
diation [27] in a periodic medium is enhanced at the
EM frequencies (see also Figs. 29 and 32 in [10] and
Figs. 5.10 and 6.2 in [21] related to the nonlinear op-
tical harmonic generation and Cherenkov radiation in

CLCs).
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