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OPTICAL EDGE MODES IN PHOTONIC LIQUID CRYSTALSV. A. Belyakov a*, S. V. Semenov baLandau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es142432, Chernogolovka, Mos
ow Region, RussiabRussian Resear
h Center �Kur
hatov Institute�123182, Mos
ow, RussiaRe
eived Mar
h 30, 2009An analyti
 theory of lo
alized edge modes in 
hiral liquid 
rystals (CLCs) is developed. Equations determiningthe edge-mode frequen
ies are found and analyti
ally solved in the 
ase of low de
aying modes and are solvednumeri
ally for the problem parameter values typi
al for the experiment. The dis
rete edge-mode frequen
iesspe
i�ed by the integer numbers n are lo
ated 
lose to the stop-band edge frequen
ies outside the band. Theexpressions for the spatial distribution of the n's mode �eld in a CLC layer and for its temporal de
ay arepresented. The possibilities of a redu
tion of the lasing threshold due to the anomalously strong absorptione�e
t are theoreti
ally investigated for a distributed feedba
k lasing in CLCs. It is shown that a minimum ofthe threshold pumping wave intensity may be rea
hed, generally, for the pumping wave propagating at an angleto the heli
al axis. However, for lu
ky values of the related parameters, it may be rea
hed for the pumpingwave propagating along the heli
al axis. The lowest threshold pumping wave intensity o

urs for the lasingat the �rst low-frequen
y band-edge lasing mode and the pumping wave propagating at an angle to the spiralaxis 
orresponding to the �rst angular absorption maximum of the anomalously strong absorption e�e
t at thehigh-frequen
y edge of the stop band. The study is performed in the 
ase of the average diele
tri
 
onstantof the liquid 
rystal 
oin
iding with the diele
tri
 
onstant of the ambient material. Numeri
al 
al
ulations ofthe distributed feedba
k lasing threshold at the edge-mode frequen
ies are performed for typi
al values of therelevant parameters.PACS: 42.70.Qs, 42.70.Df1. INTRODUCTIONRe
ently, there was an explosion of interest in themirrorless distributed feedba
k (DFB) lasing in 
hiralliquid 
rystals (CLCs) [1℄. The reason for this interestis related to the observed low-threshold lasing [2; 3℄, un-usual polarization properties of lasing, and frequen
ytunability of the lasing by means of applying an ex-ternal �eld [4; 5℄, temperature pit
h variations [6; 7℄, orme
hani
al stress [8℄, et
.The DFB low-threshold lasing in CLCs o

urs atfrequen
ies 
lose to the frequen
ies of the stop-bandedges [2�8℄. The 
orresponding frequen
ies were as-so
iated with so-
alled edge lasing modes [1℄. It alsohappens that at the same edge lasing mode frequen-
ies, an anomalously strong absorption of the pumpingwave o

urs [9�13℄.*E-mail: bel�landau.a
.ru

In general, the theory of edge lasing modes in CLCs(and the more general DFB lasing in spiral media) isvery similar to the 
orresponding theory for 
onven-tional periodi
 solid media that was initially developedby Kogelnik and Shank [14℄ in the 
oupled-wave ap-proximation and was later treated similarly in manypapers (see [15℄ and the referen
es therein). But thetheory of edge lasing modes in CLCs deserves a sep-arate study be
ause of unusual opti
al properties ofCLCs and be
ause, in 
ontrast to all other periodi
media, an exa
t analyti
 solution of the Maxwell equa-tions is known for CLCs (and more generally, for spiralmedia). Many related results, usually obtained in anumeri
al approa
h, may therefore be obtained analyt-i
ally for CLCs. For example, the anomalously strongabsorption e�e
t existing in CLCs [9; 10℄ for the lightfrequen
y 
lose to the stop band may be treated an-alyti
ally. (The anomalously strong absorption e�e
t797
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onventional periodi
 media was also studied inRef. [16℄.)General analyti
 expressions for the solution of theboundary problem for the nonabsorbing, absorbing,and amplifying CLC layers, i. e., for the edge modes(EMs), are presented below for the light propagationdire
tion 
oin
iding with the spiral axis. We �nd thedispersion equation for EMs determining their frequen-
ies; the lasing threshold gain is found and an expres-sion for the threshold in a spe
i�
 limit 
ase is also pre-sented together with numeri
al solutions of the disper-sion equation for typi
al values of the CLC parameters.The EM properties (
oordinate intensity distribution,frequen
y width of the EM, et
.) are analyzed. It isalso dis
ussed how the revealed properties of EMs al-low de
reasing the DFB lasing threshold ensured by alow gain for the lasing and a strong absorption for thepumping wave.2. EIGENWAVES IN CLCTo solve the boundary value problem related toEMs, we need to know eigenwaves in a CLC. As isknown [10; 17�19℄, the eigenwaves 
orresponding topropagation of light in a CLC along a spiral axis z,i. e., the solutions of the Maxwell equation�2E�z2 = "(z)
2 �2E�t2 ; (1)are given by a superposition of two plane waves of theformE(z; t) = e�i!t �� �E+n+ exp(iK+z) +E�n� exp(iK�z)� : (2)Here, ! is the light frequen
y, 
 is the speed of light,n� = (ex � ey)=p2 are 
ir
ular polarization ve
torswith ex and ey being the unit ve
tors along the x andy axes, and"(z) == 0B� "0 [1+Æ 
os(�z)℄ �"0Æ sin(�z) 0�"0Æ sin(�z) "0 [1�Æ 
os(�z)℄ 00 0 "?1CA (3)is the diele
tri
 tensor of the CLC [10; 17�19℄ (two signsin the expression for "(z) 
orrespond to the right andleft 
hirality of the CLC), where "0 = ("k + "?)=2,Æ = ("k�"?)=("k+"?) is the diele
tri
 anisotropy, and

LCLC EirEilFig. 1. S
hemati
 of the boundary value problem foredge modes"k and "? are the lo
al prin
ipal values of the CLC di-ele
tri
 tensor [9; 16; 17℄. The wave ve
tors K� satisfythe 
ondition K+ �K� = �; (4)where � is the re
ipro
al latti
e ve
tor of the LC spiral(� = 4�=p, where p is the 
holesteri
 pit
h).The wave ve
tors K� in four eigensolutions ofEq. (1) are determined by Eq. (3) and the formulasK+j = �2 � �s1 + � �2��2 �r� ���2 + Æ2 ; (5)where j labels the eigensolutions with the ratio of theamplitudes E�=E+ given by�E�E+�j = Æ �(K+j � �)2=�2 � 1��1 ; (6)where � = !p"0=
. We do not spe
ify the kindof the CLC under investigation here (
hiral sme
-ti
 or 
holesteri
) be
ause the opti
s of light propa-gating along the spiral axis is identi
al for both LCtypes [10; 17�20℄. For de�niteness, we give the expres-sions for 
holesteri
s below. The 
orresponding expres-sions for 
hiral sme
ti
s 
an be obtained by a simplerede�nition of the relevant parameters (see Ref. [10,Ch. 2℄).Two of the eigenwaves 
orresponding to the 
ir
ularpolarization with the sense of 
hirality 
oin
iding withthe one of the CLC spiral experien
e strong di�ra
-tion s
attering at the frequen
ies in the region of thestop band. The other two eigenwaves 
orrespondingto the opposite 
ir
ular polarizations are almost unaf-fe
ted the di�ra
tion s
attering even at the frequen
iesof the stop band for the former 
ir
ular polarization.Be
ause, as we see in what follows, the spe
i�
 fea-tures of EMs in the CLC are related to eigenwaves ofthe di�ra
ting polarization, we limit ourselves by 
on-sidering the propagation of light of the di�ra
ting po-larization only in the CLC.798
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al edge modes in photoni
 liquid 
rystals3. BOUNDARY VALUE PROBLEMTo investigate EMs in a CLC, we have to 
onsider aboundary value problem. We assume that the CLC isrepresented by a planar layer with the spiral axis per-pendi
ular to the layer surfa
es (Fig. 1). To justify ourintention to limit ourselves by propagation of light ofthe di�ra
ting polarization only, we also assume thatthe average CLC diele
tri
 
onstant "0 
oin
ides withthe diele
tri
 
onstant of the ambient medium. Thisassumption pra
ti
ally prevents 
onversion of one 
ir-
ular polarization into another at layer surfa
es [10; 21℄and allows taking only two eigenwaves with di�ra
ting
ir
ular polarization into a

ount.We begin with the linear boundary value problem inthe formulation where two plane waves of the di�ra
t-ing polarization and of the same frequen
y are in
identalong the spiral axis at the layer from the opposite sides(see Fig. 1) and the diele
tri
 tensor 
an have a nonzeroimaginary part of any sign (whi
h means that the CLClayer may be either absorbing or amplifying). The am-plitudes E+j of the two di�ra
ting eigenwaves ex
itedin the layer by the in
ident waves (they are denoted byE++ and E+�) are determined by the equationsE++ +E+� = Eir ;exp(iK++L)Æ �(K++ � �)2=�2 � 1��1E++ ++exp(iK+�L)Æ �(K+� � �)2=�2 � 1��1E+� = Eil; (7)where Eir and Eil are the amplitudes of the waves in-
ident at the layer from the right and from the left, Lis the layer thi
kness, andK+� = �2 � �s1 + � �2��2 �r� ���2 + Æ2 : (8)The amplitudes of waves exiting from the layer onthe right and the left sides, Eer and Eel, are determinedby the expressionsEer = Æ �(K++ � �)2=�2 � 1��1E++ ++ Æ �(K+� � �)2=�2 � 1��1E+� ;Eel = exp �i(K++ � �)L�E++ ++exp �i(K+� � �)L�E+� : (9)
If we assume that the amplitude of only one in
identwave is nonzero, Eqs. (9) determines the re�e
ted andtransmitted waves (the re�e
tion R and transmission

T 
oe�
ients of the layer) and, in parti
ular, their fre-quen
y dependen
e [10; 19; 21℄. The 
orresponding ex-pressions for R and T take the formR == Æ2j sin(qL)j2����q��2 
os(qL)+i �� �2��2+� q��2�1� sin(qL)����2 ;(10)T == j exp(i�L)(q�=�2)j2����q��2 
os(qL)+i �� �2��2+� q��2�1� sin(qL)����2 ;where q = �s1 + � �2��2 �r� ���2 + Æ2 : (11)If both amplitudes of the in
ident waves are equal tozero, no waves emerging from the layer exist if the di-ele
tri
 tensor has a positive (or a very small negative)imaginary part.The solution of system (7) for the amplitudes E++and E+� of the eigenwaves in the CLC layer is given bythe following expressions (in the 
ase of a wave in
identonly on one surfa
e of the layer):E++ = �Eil exp(�iqL)�� (�=2�)2+(q=�)2�1�q�=�22�q��2 
os(qL)+i �� �2��2+� q��2�1� sin(qL)� ;(12)E+� = Eil exp(iqL)�� (�=2�)2+(q=�)2�1+q�=�22�q��2 
os(qL)+i �� �2��2+� q��2�1� sin(qL)� :The values of the eigenwave amplitudes 
lose to thestop-band edges are strongly os
illating fun
tions offrequen
y (see Figs. 2 and 3 presenting the 
al
ula-tion results). At the points of maxima 
lose to thestop-band edges, their values are mu
h larger than thein
ident wave amplitude Eil. It turns out that the am-plitude maxima frequen
ies 
oin
ide with the frequen-
ies of zero re�e
tion following from Eqs. (10) for anonabsorbing CLC (Figs. 2 and 3).799
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Fig. 2. Re�e
tion 
oe�
ient R (a) and the squared E++(b) and E+� (
) eigenmode amplitudes 
al
ulated ver-sus frequen
y for a nonabsorbing CLC layer (Æ = 0:05,N = L=p = 250). Here and in all �gures below (ex-
ept Fig. 11), Æ(� � 1) is plotted at the frequen
yaxis, i. e., the frequen
y deviation from the stop-bandedge is plotted (normalized by the Bragg frequen
y, seeEq. (23))4. EDGE MODES (NONABSORBING CLC)We examine the formulas of the pre
eding se
tionfor a nonabsorbing CLC in more detail. In a nonab-sorbing CLC, 
 = 0 in the general expression for the
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Fig. 3. Transmission 
oe�
ient T (a) and the squaredE++ (b) and E+� (
) eigenmode amplitudes 
al
u-lated versus frequen
y for a nonabsorbing CLC layer(Æ = 0:05, N = 350)diele
tri
 
onstant " = "0(1+i
). (We note that in realsituations, j
j � 1.) The 
al
ulations of the re�e
tionR and transmission T 
oe�
ients as fun
tions of thefrequen
y in a

ordan
e with Eqs. (10) (Figs. 2a and3a) give the well-known results [17�21℄: a strong re�e
-tion inside the stop band, frequen
y os
illations of Tand R outside the stop-band edges with 0 � R � 1,and the preservation of the relation T + R = 1 for allfrequen
ies. This means that T = 1 at the frequen
ies
orresponding to R = 0 (see Fig. 3).800



ÆÝÒÔ, òîì 136, âûï. 4 (10), 2009 Opti
al edge modes in photoni
 liquid 
rystalsThe 
orresponding 
al
ulations of the amplitudesE++ and E+� of the eigenwaves ex
ited in the layer(Figs. 2b,
 and 3b,
) reveal a nontrivial frequen
y de-penden
e of E++ and E+� . Namely, 
lose to the stop-band edges (outside the stop-band edges), frequen
yos
illations of the amplitudes are a

ompanied by anessential enhan
ement of their magnitude relative tothe in
ident wave amplitude (in the 
al
ulations, thein
ident wave amplitude is assumed to be equal to 1).The thi
ker the layer, the higher is the enhan
ement (
f.Figs. 2 and 3). As Figs. 2 and 3 show, the positionsof the amplitude os
illation maxima just 
oin
ide with(or are very 
lose to, for an absorbing or amplifyingCLC) the positions of the re�e
tion 
oe�
ient minima
orresponding to R = 0 for a nonabsorbing CLC.The above relation between the amplitudes of eigen-waves and in
ident waves at the spe
i�
 frequen
iesshows that for these frequen
ies, the energy of radi-ation in the CLC at a given layer thi
kness is mu
hhigher than the 
orresponding energy of the in
identwave at the same thi
kness. Hen
e, in 
omplete a
-
ordan
e with Ref. [1℄, we 
on
lude that at the 
or-responding frequen
ies, the in
ident wave ex
ites somelo
alized mode in the CLC. To �nd this lo
alized mode,we have to solve homogeneous system (7), i. e., Eqs. (7)with zero values of Eir and Eil. The solvability 
ondi-tion for the obtained homogeneous system determinesthe dis
rete frequen
ies of these lo
alized modes:tg(qL) = i(q�=�2)(�=2�)2 + (q=�)2 � 1 : (13)In the general 
ase, solutions of Eq. (13) for the EMfrequen
ies 
an be found only numeri
ally. The EM fre-quen
ies !EM turn out to be 
omplex quantities, whi
h
an be represented as !EM = !0EM (1 + i�), where �is a small parameter in real situations. Therefore, thelo
alized modes weakly de
ay in time, i. e., are qua-sistationary modes. Fortunately, an analyti
 solution
an be found in a 
ertain limit 
ase, namely, for a suf-�
iently small � ensuring the 
ondition L Im q � 1. Inthis 
ase, the !0EM values 
oin
ide with the frequen-
ies of zero values of the re�e
tion 
oe�
ient R for anonabsorbing CLC, determined by the 
onditionsqL = n�; � = � Æ(n�)22(LÆ�=4)3 ; (14)where n is the EM number, whi
h in
reases as the fre-quen
y departs from the stop-band edge (n = 1 
orre-sponds to the frequen
y 
losest to the stop-band edge).In the found solution of homogeneous system(7), the ratio of the eigensolution amplitudes isE+�=E++ = �1 and the �eld distribution inside the
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CoordinateFig. 4. The 
al
ulated EM energy distributions insidethe CLC layer versus 
oordinate (in the dimensionlessunits z� ) for the �rst three EMs (Æ = 0:05, N = 16:5,n = 1; 2; 3)CLC layer is a superposition of two eigenwaves givenby Eq. (2) with this amplitude ratio. The expli
it ex-pression for the EM �eld distribution inside the CLClayer following from Eq. (2) isE(!EM ; z; t) = i exp(�i!EM t)���n+ exp� i�z2 � sin(qz) + n�Æ exp�� i�z2 � �� ��� �2��2+� q��2�1� sin(qz)� i�q�2 
os(qz)�� ;(15)where q is determined by Eq. (11). For the analyti
solution mentioned above, Eq. (15) for the EM �elddistribution inside the CLC layer be
omesE(!n; z; t) = i exp(�i!nt)���n+ exp� i�z2 � sin�n�zL �+ n�Æ exp�� i�z2 � ����� �2��2 + �n�L��2 � 1� sin�n�zL � �� i�n�L�2 
os�n�zL ��� ; (16)where !n 
orresponds to a zero value of R (i. e., !nis determined by qL = n�). The eigensolution of theboundary value problem given by Eqs. (15) and (16) isa standing wave lo
alized at the layer thi
kness L withthe amplitude modulated along z axis. The number ofmodulation periods at the layer thi
kness L 
oin
ideswith the EM number n.The EM total �eld (the sum of the �elds of twoeigenmodes in Eqs. (15) and (16)) at any 
oordinate z12 ÆÝÒÔ, âûï. 4 (10) 801
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Fig. 5. The 
al
ulated EM energy distributions 
lose tothe CLC layer surfa
e versus 
oordinate (in the dimen-sionless units z� ) for a plane wave dire
ted inside (1 )and outside (2 ) the layer for the �rst EM (Æ = 0:05,N = 16:5, n = 1)in the layer makes a �xed angle to the lo
al dire
tordire
tion, i. e., the �eld in the layer rotates togetherwith the dire
tor as a fun
tion of z and performs thesame number of rotations as the dire
tor does at thelayer thi
kness. The �eld distributions following fromEqs. (15) and (16) for the EM numbers n = 1; 2; 3 arepresented in Fig. 4. The �gure shows that the EM �eldis lo
alized inside the CLC layer and its energy den-sity experien
es os
illations inside the layer with thenumber of os
illations equal to the EM number n. Wenote that the �gure presents the total energy distribu-tion in the layer. However, as is 
lear from Eqs. (2),(15), and (16), the total �eld at ea
h point of the CLClayer is represented by two plane waves propagating inthe opposite dire
tions, and hen
e the intensities of thewaves propagating in opposite dire
tions 
an be 
al
u-lated separately at any point in the layer. In general,the 
oordinate distribution of the intensities of wavespropagating in opposite dire
tions is similar to the dis-tribution presented in Fig. 4. But these distributionsare of a spe
ial interest 
lose to the layer surfa
es. Fig-ure 5 shows the intensity 
oordinate distributions of thewaves propagating inside and outside the layer 
lose tothe layer surfa
es. We 
an see that at the layer sur-fa
e, the intensity of the wave propagating inside thelayer is stri
tly zero, but the intensity of the wave prop-agating outside the layer is nonzero (although small).This means that the EM energy is leaking from thelayer through its surfa
es. Equation (16) implies theexpression Eout = �n��2LÆ � npLÆ (17)

for the leaking wave amplitude at the CLC layer sur-fa
e, where p is the CLC pit
h. Equation (17) showsthat the EM energy leakage is inversely proportional tothe squared layer thi
kness L and proportional to thesquared EM number n. Hen
e, the most long-lived isthe �rst EM in a CLC layer. If LÆ=p� 1, the leakingwave amplitude Eout is small (Eout < 1), as Eq. (17)shows.For a nonabsorbing CLC layer (whi
h is under 
on-sideration in this se
tion), the only sour
e of de
ay isthe energy leakage through its surfa
es; the de
rease inthe EM energy in unit time is equal to the energy �ow(2
=p"0 )jEoutj2 of the leaking waves, and therefore,using Eqs. (15)�(17), we easily obtain the EM lifetime�m as�m = Z jE(!EM ; z; t)j2dz ��� ddt Z jE(!EM ; z; t)j2dz��1 �� 516 Lp"0
 "1 + 45 �LÆpn�2# : (18)Under the 
ondition LÆ=pn� 1, Eq. (18) redu
es to�m � 14 Lp"0
 �LÆpn�2 : (19)Hen
e, for su�
iently thi
k CLC layers, as their thi
k-ness L in
reases, the EM lifetime �m in
reases as thethird power of the thi
kness and is inversely propor-tional to the square of the EM number n. We notethat the same dependen
e of the lifetime �m on n andL follows from Eq. (14):�m � 1Im!EM = L
 �LÆpn�2 : (20)5. EXCITATION OF EDGE MODESThe analysis of the lo
alized EM (solution of thehomogeneous system following from Eqs. (7)) in theprevious se
tions together with the solution of inhomo-geneous equations (7) found in the previous se
tionsallows dis
ussing the ways and e�
ien
y of the EM ex-
itation. Ex
itation of the EM in a nonamplifying CLClayer requires an external wave (waves) of the frequen
y
oin
iding with the EM frequen
y in
ident at the CLClayer. The general solution of the boundary value prob-lem found from system (7) in this 
ase may be repre-sented as a superposition of the parti
ular solution 
or-responding to the inhomogeneous system (7) and the802
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Fig. 6. The 
al
ulated squared amplitude of theEM 
lose to the four EM frequen
ies (Æ = 0:05,N = 350)solution 
orresponding to the homogeneous system (7),i. e., 
orresponding to the EM, with the 
oe�
ient tobe determined from the boundary 
onditions. One 
aneasily 
onstru
t su
h a repesentation of the boundaryvalue problem solution determined by Eqs. (12).For this, it is su�
ient to represent E+� in the formE+� = EEM� + Ep�, where EEM� and Ep� are the re-spe
tive amplitudes of eigenwaves in the EM and inthe parti
ular solution. Taking into a

ount that theamplitudes EEM� satisfy Eqs. (7) with zero right-handsides, we obtainEEM� = �E++ [1 + i tg(qL)℄ (21)for the frequen
ies 
lose to !EM . The EEM� values 
al-
ulated a

ording (21) are presented in Fig. 6. Com-paring Fig. 6 and Figs. 2 and 3 shows that for a suf-�
iently thi
k LC layer, the amplitudes E+� are a verygood approximation to EEM� .The above results relate to a stationary pro
ess ofEM ex
itation, i. e., to the situation of a plane wave ofa �xed amplitude in
ident on a CLC layer. The formu-las obtained 
an be used for �nding the probability ofEM ex
itation by a single photon. This probability isgiven byWEM == (1�R) Z ��EEM (!; z; t)��2 dzZ ��EEM (!; z; t)��2 dz + Z jEp(!; z; t)j2 dz ; (22)where the integration is taken over the CLC layer thi
k-ness and Ep(!; z; t) is a parti
ular solution of Eq. (6).

It turns out that if a plane wave (with unit am-plitude) is in
ident on the CLC layer, the eigenmodeamplitudes in the ex
ited EM are given by the expres-sions for EEM� above. But in this 
ase, it is impossibleto ex
ite the EM only. It is a

ompanied by the par-ti
ular solution of Eq. (6) with a nonzero amplitudedetermined by the relation E+� = EEM� + Ep�. Hen
e,the e�
ien
y of the EM ex
itation by one plane wave(the ratio of the squared EM amplitude to the squaredin
ident wave amplitude) for the spe
i�
 values of therelevant parameters may be estimated by the squaredE++ value in Figs. 2b and 3b. The values of EEM� 
loseto the EM frequen
ies are more a

urately determinedby Eq. (21) (see also Fig. 6).6. ABSORBING CLCWe now examine EMs in an absorbing CLC. Themotivation for this study, in parti
ular, is the DFBlasing in a CLC. It must be kept in mind that underlasing, a CLC is an essentially absorbing medium forthe pumping wave. We examine the formulas in theprevious se
tions in more detail with regard to theirappli
ation to the pumping wave. We assume for sim-pli
ity that the absorption in the CLC is isotropi
. Wede�ne the ratio of the imaginary part of the diele
tri

onstant to its real part as 
, i. e., " = "0(1 + i
).In a
tual situations, 
 � 1. In Figs. 7�9, the R, T ,and 1 � R � T frequen
y dependen
es are presentedfor several values of positive and negative 
 in
ludingits values 
lose to the threshold values for EMs (seeEq. (25) below). Due to the assumed isotropy of the ab-sorption, the frequen
y dependen
es of the 
al
ulated
hara
teristi
s are symmetri
 relative to the Bragg fre-quen
y (the middle point of the stop band), and there-fore only the frequen
ies above the Bragg frequen
y arepresented in the �gures.It is reasonable to 
omment here on the numeri-
al values of the parameters used in 
al
ulations. Thediele
tri
 anisotropy is taken as Æ = 0:05, whi
h 
or-responds to a typi
al value of this parameter. Thesame may be said about the layer thi
kness L. Be
ause� = 4�=p, where p is the 
holesteri
 pit
h, the numberof pit
hes N at the layer thi
kness L is equal to l=4�(l = L�) and hen
e the value l = 300 a

epted in 
al
u-lations 
orresponds to N 
lose to 30, i. e., to a numbervery 
ommon for experiments. All the mentioned quan-tities reveal frequen
y beats 
lose to the frequen
y edgeof the sele
tive re�e
tion band. The positions of the
orresponding maxima and minima are determined bythe layer thi
kness L, by Æ, and are slightly dependent803 12*
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Fig. 7. Cal
ulated frequen
y dependen
es (l = L� == 4�N = 300, Æ = 0:05) for absorption (a,b, and
), re�e
tion (d), and transmission (e) in 
ases of lowabsorption (a and b) and low ampli�
ation below thethreshold gain for the �rst lasing EM (
�e)on the value of 
. In an absorbing CLC, the sum ofthe intensities of the re�e
ted and transmitted beamsis less than the intensity of the in
ident beam, i. e.,R+T < 1. The equality holds only for a nonabsorbingCLC. As an example, the positions of minima of the

re�e
tion 
oe�
ient R beats (following from Eq. (10))are given above in Fig. 2a for a nonabsorbing CLC, i. e.,for 
 = 0, whi
h 
orrespond toqL = �n; �� = 1 + (�n=a)2=2;n = 1; 2; 3; : : : ; � = 2(! � !B)=!BÆ;!B = 
�=2p"0 ; a = �LÆ=4: (23)In a typi
al situation, a� 1.The edges !e of the sele
tive re�e
tion band arerelated to the Bragg frequen
y !B as!e = !Bp1� Æ = 
�2p"0(1� Æ) : (24)Hen
e, � at the edges is given by �e == Æ=2 �p1� Æ � 1� � �1.For small 
 and L Im q � 1, the re�e
tion andtransmission 
oe�
ients (10) at frequen
ies (23) of there�e
tion minima be
omeR = (a3
)2[(n�)2 + a3
℄2 ;T = (n�)4[(n�)2 + a3
℄2 ;R+ T = 1� 2(n�)2a3
[(n�)2 + a3
℄2 : (25)It follows from Eqs. (23) and (25) that for ea
h n,the maximum absorption, i. e., maximum 1�R�T , o
-
urs for (n�)2 = a3
. This means that the maximumabsorption o

urs for a spe
ial relation between Æ, 
,and L and if this relation, i. e., (n�)2 = a3
, is ful�lled,then R = 1=4, T = 1=4, and 1�R�T = 1=2. Be
auseof the assumed smallness of 
, this result 
orrespondsto a strong enhan
ement of the absorption for weaklyabsorbing layers.As was shown in Refs. [9; 10℄, just at the frequen
yvalues determined by Eq. (23), the e�e
t of anoma-lously strong absorption reveals itself for an absorbingCLC (Figs. 7a,b) and the edge modes for an amplifyingCLC reveal themselves at lasing [1℄ (Fig. 8) (see similarresults for layered media in [14; 15℄). Hen
e, to mini-mize the intensity of the pumping wave that ensureslasing in a CLC, it is desirable to perform the pump-ing in 
onditions of the anomalously strong absorptione�e
t and realization of lasing in the EM. These op-tions were investigated in detail in Refs. [11; 12℄ and arebrie�y dis
ussed in the following se
tions. In the 
on-
lusion of this se
tion, the following observation shouldbe made (
f. Figs. 7�9): the absorption maxima in thefrequen
y dependen
es are not so sharp as the intensitymaxima for the lasing modes.804
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Fig. 8. Cal
ulated frequen
y dependen
es (l = 300, Æ = 0:05) for 
oe�
ients of re�e
tion (a and b) and transmission(
 and d) 
lose to the threshold gain for the �rst (a and 
) and the se
ond (b and d) lasing EMs7. AMPLIFYING CLCWe now assume that 
 < 0, whi
h means that theCLC is amplifying. If j
j is su�
iently small, the wavesemerging from the layer a

ording to Eqs. (7)�(10) ex-ist only in the presen
e of at least one external wavein
ident on the layer, and their amplitudes are deter-mined by the solution of Eqs. (7) and (9). In this 
ase(see Fig. 9
), R + T > 1 or 1� R � T < 0, whi
h just
orresponds to the de�nition of an amplifying medium.However, if the imaginary part of the diele
tri
 ten-sor, i. e., 
, rea
hes some 
riti
al negative value, thequantity R + T diverges and the amplitudes of wavesemerging from the layer are nonzero even for zero am-plitudes of the in
ident waves. This happens whenthe determinant of Eq. (7) vanishes. At this point,of 
ourse, the amplitudes of emerging waves are notdetermined by solution (9) of linear equations (1) (anonlinear problem should then be solved). But as wesaw above, the vanishing points of the determinantof Eq. (7) determine the EMs [1; 14; 15℄ and the 
or-responding values of the gain (or the negative imag-inary part of the diele
tri
 tensor), i. e., the mini-mum threshold gain at whi
h the lasing o

urs (see

the 
orresponding dis
ussion for s
alar periodi
 mediain Refs. [14; 15℄).Therefore, the equation determining the thresholdgain (
) at whi
h the lasing o

urs (zero value of the de-terminant of Eq. (7) or of the denominator in Eq. (10))turns out to 
oin
ide with Eq. (13). It must be solvednow not for the frequen
y but for the imaginary partof the diele
tri
 
onstant (
). In the general 
ase, thisequation has to be solved numeri
ally. However, for avery small negative imaginary part of the diele
tri
 ten-sor, the EM frequen
ies are pinned to the frequen
ies ofzeros of the re�e
tion 
oe�
ient in its frequen
y beatsoutside the stop-band edge for the same layer with azero imaginary part of the diele
tri
 tensor [1; 9; 10℄.This is why the threshold values of the gain for theEMs 
an be represented by analyti
 expressions in thislimit 
ase.For small j
j and Lj Im qj � 1, the re�e
tion andtransmission 
oe�
ients in Eq. (10) at the frequen-
ies (23) of re�e
tion minima are redu
ed again to ex-pressions (25), although with negative 
.Hen
e, R and T may be divergent, and the pointsof their divergen
e 
orrespond to the lasing at the EMfrequen
ies and determine the 
orresponding values of805
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) 
al
ulated ver-sus the frequen
y (l = 300, Æ = 0:05) for 
 = �0:009,i. e., for the gain between the thresholds for the �rstand the se
ond lasing EMsthe threshold 
, i. e., a minimum j
j at whi
h the lasingo

urs for nth re�e
tion minimum:
 = � (n�)2a3 = � Æ(n�)2(�LÆ=4)3 : (26)As 
an be seen from Eq. (26), the threshold values ofj
j are inversely proportional to the third power of thelayer thi
kness and the minimum value of j
j 
orre-sponds to n = 1, i. e., to the edge lasing mode 
losest

to the sele
tive re�e
tion band edge (
f. analogous re-sults for s
alar layered media in [14; 15℄). The valuesof 
 given by Eq. (26) is 
onvenient to use for estimat-ing the threshold values of 
 in the general 
ase andas a zero approximation in the numeri
al solution ofEq. (13) for the threshold values. The frequen
y dis-tan
es between the 
onsequent EMs are equal to�n+1 � �n = 12 ��a�2 (2n+ 1);i. e., are inversely proportional to the se
ond power ofthe layer thi
kness (
f. the 
orresponding distan
e be-tween the lasing frequen
ies in a homogeneous layer,whi
h is inversely proportional to the layer thi
kness).It also follows from Fig. 8 that the di�erent thresh-old values of 
 
orrespond to the di�erent EMs (diver-gent R and T ) in Fig. 8. This means that separatelasing modes 
an be ex
ited by 
hanging the gain (
).If the value of 
 is between the 
onse
utive thresholdvalues of 
 for neighboring lasing modes, the lasing maynot be a
hieved and the layer may reveal only amplify-ing properties (see Fig. 9). This means that 
hangingthe pumping wave intensity allows a
hieving lasing atthe individual EM and that the lasing intensity is nota monotoni
 fun
tion of the pumping intensity. Be-
ause the lasing frequen
y is determined by the EMfrequen
ies, there is an option for some variation ofthe lasing frequen
y inside the width of the dye lineby 
hanging the CLC pit
h by means of temperaturevariations [6; 7℄ or by appli
ation of an external ele
-tri
 or magneti
 �eld to the layer [4℄. We note thatsmooth variations of the external agent may result injump-like variations of the lasing frequen
y [22℄ relatedto the jumps of the CLC pit
h, whi
h are sensitive tothe surfa
e an
horing [23℄.8. OPTIMIZATION OF PUMPINGThe formulas in the previous se
tions allow optimiz-ing the lasing threshold separately by rea
hing a 
oin-
iden
e of the lasing frequen
y with the frequen
y ofthe �rst EM and optimizing the pumping e�
ien
y byrea
hing a 
oin
iden
e of the pumping frequen
y withthe frequen
y of the �rst maximum in the anomalouslystrong absorption e�e
t [9℄. We note that the sameCLCs must simultaneously be an absorbing material atthe pumping frequen
y and amplifying one at the lasingfrequen
y. In the present se
tion, we dis
uss the possi-bilities to simultaneously rea
h the highest e�
ien
y ofthe pumping and the lowest value of the lasing thresh-old gain. The requirements of the highest e�
ien
y of806
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al edge modes in photoni
 liquid 
rystalsthe pumping and the lowest value of the lasing thresh-old gain are 
ontradi
tory for a 
ollinear geometry be-
ause they assume that the lasing frequen
y !l and thepumping frequen
y !p pra
ti
ally 
oin
ide with the fre-quen
y edges of the sele
tive re�e
tion band. However,the lasing frequen
y !l is less than the pumping fre-quen
y !p. We note that this 
ontradi
tion for the
ollinear geometry may be over
ame by a lu
ky 
han
eor by a very �ne tuning of the lasing parameters if thedi�eren
e !p � !l is small and !p 
oin
ides with thehigh-frequen
y edge of the re�e
tion band and !l 
o-in
ides with the low-frequen
y edge of the re�e
tionband, whi
h results in the following frequen
ies of thelasing and pumping waves:!p = 
�=2p"0p(1� Æp) ; !l = 
�=2p"0l(1 + Æl) ;!p!l =s "0l(1 + Æl)"0p(1� Æp) ; (27)where the diele
tri
 
onstant "0 and the anisotropy Æare marked by subs
ripts �p� and �l� relating to thefrequen
y dispersion of the diele
tri
 properties andmeaning that the respe
tive parameters are to be takenat the pumping and lasing frequen
ies. We note thata de
rease in the lasing threshold due to the anoma-lously strong absorption of the pumping wave in the
ollinear geometry was re
ently observed experimen-tally in Ref. [13℄.Another possibility to rea
h the lowest threshold inthe 
ollinear geometry may be realized by applying anexternal ele
tri
 (or magneti
) �eld to the LC material.It is known [10℄ that in this 
ase, due to the distortionof the LC helix, many di�ra
tion orders exist for lightpropagating along the helix axis and the pumping andlasing frequen
ies may be �tted to the frequen
ies ofdi�erent di�ra
tion orders. Nevertheless, the �ttingagain requires a very �ne tuning of the lasing parame-ters.However, there is a regular way to optimize thepumping intensity (under the assumption that the las-ing o

urs along the heli
al axis). There is an option touse a non
ollinear pumping without any tuning of thelasing parameters, i. e., with the pumping wave propa-gating at an angle to the heli
al axis, whi
h allows thepumping wave to satisfy the 
onditions of the anoma-lously strong absorption e�e
t. A rough estimate de-rived from the fa
t that the lasing and pumping wavesexperien
e Bragg s
attering gives the following value

of the angle � between the pumping wave propagationdire
tion and the heli
al axis:� = ar

os(!l=!p): (28)To obtain a more a

urate expression for the pump-ing wave propagation dire
tion, one has to solve theMaxwell equations for light propagating at an angleto the heli
al axis and �nd the angle � 
orrespondingto the 
onditions of the anomalously strong absorptione�e
t [9; 10℄. Unfortunately, no exa
t analyti
 solu-tion of the Maxwell equations is known in this 
aseand therefore a numeri
al approa
h has to be used.The full power of the numeri
al approa
h manifests it-self if the frequen
y dispersion of the diele
tri
 
on-stant and of the LC diele
tri
 anisotropy are takeninto a

ount. However, these quantities are usually notvery well known, and hen
e in the experiment, even ifthe 
al
ulated angle � is known, the a
tual angle ofthe anomalously strong absorption e�e
t is sought by
hanging the pumping wave propagation dire
tion dueto the mentioned un
ertainties.Under these 
ir
umstan
es, an approximate expres-sion for � more a

urate than (28) may be quite useful.The 
orresponding expression was found [11; 12℄ in theframework of the dynami
al theory of di�ra
tion ap-plied to the 
ase of light propagating at an angle tothe heli
al axis [10; 21; 24℄. The diele
tri
 anisotropy Æplays the role of a small parameter in this theory. Be-
ause the diele
tri
 anisotropy Æ is quite small in manypra
ti
al 
ases (Æ < 0:1), the a

ura
y of the resultsfound in the framework of the dynami
al theory maybe su�
ient to des
ribe the experimental results.9. CALCULATION RESULTSTo obtain the gain 
 that 
orresponds to the onsetof lasing in an CLC layer, we investigated the behav-ior of the R (re�e
tion) and T (transmission) 
oe�-
ients. The divergen
e of R and T 
orresponds to thelasing threshold value of 
. These divergen
es o

urat the vanishing point of the determinant of Eq. (7).This 
ondition gives a dire
t way to �nd the EM fre-quen
y 
orresponding to the solution of Eq. (13). InFig. 10, the analyti
ally found and numeri
ally 
al
u-lated threshold gains for the �rst three EMs are pre-sented for several values of the parameter LÆ=p. The
omparison demonstrates that the larger the parameterLÆ=p is, the 
loser the analyti
ally found and numeri-
ally 
al
ulated threshold gains are. For an amplifying807
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 (�) solutionsof EM dispersion equation (13) for the parame-ter LÆ=p = 0:9, Æ = 0:03 (a), LÆ=p = 1:193,Æ = 0:05 (b), and LÆ=p = 4:5, Æ = 0:03 (
); a �
1 = �0:00676, 
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4 = �0:02009; b � 
1 = �0:0057, 
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al solutions of EM dispersion equa-tion (13) for the gain normalized by Æ for LÆ=p = 0:9(�), 1:193 (�), 4:5 (?). The found values of 
are also given for Æ = 0:05 (� � 
1 = 0:0057,
2 = �0:01305, 
3 = �0:01775, and 
4 = �0:02075)and Æ = 0:03 (? � 
1 = �0:000096, 
2 = �0:000352,
3 = �0:000696, and 
4 = �0:001066; � �
1 = �0:00676, 
2 = �0:01369, 
3 = �0:01761, and
4 = �0:02009)CLC, the numeri
al solutions for the gain values nor-malized by Æ (solutions of Eq. (13)) are presented inFig. 11 for several values of the parameter LÆ=p (thespe
i�
 values of 
 are also presented in Fig. 11 forÆ = 0:05 and Æ = 0:03). Zero values of the determi-nant of Eq. (7) o

ur at dis
rete values of 
 and Re!.Their values are found for several �rst EMs; 
al
ula-tions of R and T were also performed to 
ontrol thesolution pro
edure using the initial value of 
 given byanalyti
 expression (26). The �nal values of !i and 
iwere found by a graphi
al solution of the problem. Thegain values normalized by Æ for the �xed value of theparameter LÆ=p, presented in Fig. 11, allow re
al
ula-ting 
 for various values of Æ and L 
orresponding tothe same value of LÆ=p.The !i values are very 
lose to their values 
orre-sponding to zeros of the re�e
tion 
oe�
ient R for anonabsorbing CLC, determined by Eq. (14). The val-ues of 
i are 
lose to the ones given by analyti
 expres-sion (26) only for a su�
iently large parameter LÆ=p.On the whole, there is a general trend in the di�eren
eof the analyti
 and numeri
al solutions. The values ofRe!i found numeri
ally are smaller than the analyti
ones and the numeri
ally found j
ij are larger than theanalyti
 ones (see Eq. (26)).808
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al edge modes in photoni
 liquid 
rystals10. CONCLUSIONThe performed analyti
 and numeri
al theoreti
alexamination of the EMs in an LC allows representingthe physi
s of these lo
alized modes more 
learly. Wealso note that the results obtained here for spiral me-dia are relevant to any periodi
 media, and hen
e thequalitative des
ription of the EMs in these media is thesame as for the CLC and the analyti
 formula presentedabove may be used as a useful guide in studying otherperiodi
 media.As regards the CLC, in parti
ular, it turns out thatthere are some real possibilities related to these lo-
alized modes for rea
hing a higher e�
ien
y of theDFB lasing in the CLC. Namely, possibilities of furtherredu
tion of the lasing threshold relative to the onealready a
hieved were predi
ted [11; 12℄ and partiallyexperimentally observed [13℄ as well as possibilities ofvarying the lasing frequen
y in this kind of lasing. Itshould be mentioned that an advantage of the CLCs
ompared to solid media 
onsists in the fa
t that theirparameters are easily variable. Hen
e, the CLC may be
onsidered a 
onvenient model obje
t for studying thelasing in any periodi
 media, even in three-dimensionalperiodi
 stru
tures (see Ref. [25℄ on lasing in the LCblue phase). Another fortunate 
ir
umstan
e from thetheoreti
al standpoint is the availability of an exa
t an-alyti
 solution of the Maxwell equations for light propa-gating along the heli
al axis. For other periodi
 media,no exa
t analyti
 solution is known and the 
oupledwave approximation is usually applied to the problem[14; 15℄.We note that the equations in the previous se
tionsformally assuming a frequen
y-independent diele
tri
sus
eptibility and its isotropy may be easily generalizedto the experimentally realizable 
ase of the frequen
y-dependent diele
tri
 sus
eptibility and its anisotropy.For this, the 
orresponding parameters in the equationsare to be 
onsidered some fun
tions of frequen
y. How-ever, the question of the expli
it expressions for thesefun
tions arises. It seems that the most pragmati
 wayto determine the 
orresponding frequen
y dependen
esis to obtain them from experimental measurements.An essential point for the experimental observationof the examined anomalously strong absorption e�e
tof the pumping wave is that the periodi
 stru
ture beperfe
t enough for observing beats of the re�e
tion 
o-e�
ient at the edges of the re�e
tion band. Insu�
ientperfe
tion of the periodi
 stru
ture leads to a de
reasein the anomalously strong absorption. A similar de-
rease in the anomalously strong absorption is relatedto a �nite frequen
y width of the pumping wave. The


orresponding redu
tion of the absorption is the resultof averaging the expressions presented above over thefrequen
y width of the pumping wave line [9; 10℄. Asimilar in�uen
e of the sample perfe
tion on the de-
rease in the threshold lasing gain also takes pla
e. Wealso note that the assumption a

epted above regardingthe absen
e of diele
tri
 re�e
tion on the boundaries ofthe CLC layer (the equality of the external diele
tri
and average diele
tri
 
onstant of the CLC) requires aspe
ial experimental 
are. If this assumption is not metin an experiment, the re�e
tion at the boundaries 
on-verts the di�ra
ting polarization into the nondi�ra
tingone, whi
h also de
reases the anomalously strong ab-sorption and 
hanges the polarization properties of thephenomenon.Another a

epted simpli�
ation of the problem isrelated to the assumption that the absorption in theCLC is isotropi
. In some 
ases, this assumption may
orrespond to the real situation. But in the general
ase, the lo
al absorption anisotropy in a CLC may benoti
eable. Hen
e, the study of the problem in the 
aseof anisotropi
 absorption is quite urgent.And �nally, as was already mentioned, be
ause ofthe insu�
iently pre
ise knowledge of the CLC param-eters, a pra
ti
al way to observe the theoreti
ally pre-di
ted e�e
ts in the experiment is a sear
h for the e�e
tby small variations of experimental parameters (propa-gation dire
tion, temperature, et
.) around the values
al
ulated a

ording to formulas in the previous se
-tions.It should also be kept in mind that the EMs studiedhere reveal themselves not only in lasing but also inother opti
al phenomena. For example, the nonlinearopti
al harmoni
 generation [26℄ and Cherenkov ra-diation [27℄ in a periodi
 medium is enhan
ed at theEM frequen
ies (see also Figs. 29 and 32 in [10℄ andFigs. 5.10 and 6.2 in [21℄ related to the nonlinear op-ti
al harmoni
 generation and Cherenkov radiation inCLCs).This work was supported by the RFBR (grant� 09-02-90417-Ukr�f�a).REFERENCES1. V. I. Kopp, Z.-Q. Zhang, and A. Z. Gena
k, Progr.Quant. Ele
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hishin, E. A. Tikhonov, V. G. Tish
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