
ÆÝÒÔ, 2009, òîì 136, âûï. 4 (10), ñòð. 684�689  2009
RESONANCE REFLECTION BY THE ONE-DIMENSIONALROSEN�MORSE POTENTIAL WELLIN THE GROSS�PITAEVSKII PROBLEMH. A. Ishkhanyan, V. P. Krainov *Mosow Institute of Physis and Tehnology141700, Dolgoprudny, Mosow Region, RussiaReeived May 13, 2009We onsider the quantum above-barrier re�etion of a partile by the one-dimensional Rosen�Morse potentialwell, for the nonlinear Shrödinger equation (the Gross�Pitaevskii equation) with a small nonlinearity. The mostinteresting ase is realized in resonanes when the re�etion oe�ient is exatly equal to zero for the linearShrödinger equation. Then the re�etion is determined by only a small nonlinear term in the Gross�Pitaevskiiequation. The simple analyti expression is obtained for the re�etion oe�ient produed only by the non-linearity. The analyti ondition is found for the ommon ation of the potential well and the nonlinearity toprodue the zero re�etion oe�ient. The re�etion oe�ient is also derived analytially in the viinity of aresonane shifted by the nonlinearity.PACS: 05.30.Jp, 03.75.Lm, 03.75.Hh, 03.65.Ge1. INTRODUCTIONQuantum tunneling in physial systems is a hottopi. The most diret way to study these physi-al properties is to �nd the exat solutions of theShrödinger equation that dominates the system dy-namis. However, only in a few ases with the simplestpotentials, like a square well, the Shrödinger equationan be solved exatly. In most irumstanes, exatsolutions are di�ult to obtain due to not only the ef-fet of the external �eld exerted on partiles but alsothe interation of partiles. The most diret generaliza-tion of the single-partile ase is the tunnelling of themean �eld through a barrier in the Gross�Pitaevskii, orthe nonlinear Shrödinger equation [1℄. We emphasizethat this is a nonlinear tunneling problem in the mean-�eld approximation. There have been various theo-retial studies. From the theoretial standpoint, themain ompliation in the desription of a quasistationa-ry sattering proess of partiles obviously omes fromthe presene of the atom�atom interation. In leadingorder, the e�et of this interation is inluded in thenonlinear term in the Shrödinger-like Gross�Pitaevskiiequation for the wave funtion. The dynamis of solu-*E-mail: vpkrainov�mail.ru

tions of this equation is very omplex and rih. Thephenomena of oherene, marosopi tunneling, vor-tex formation, instabilities, fousing, and blowup areall onepts related to the nonlinear nature of the sys-tems.A onvenient theoretial approah is based on theone-dimensional Gross�Pitaevskii equationi~� (x; t)�t = �� ~22m �2�x2+V (x)+gj (x; t)j2� (x; t);whih desribes the dynamis in the mean-�eld approx-imation at low temperatures. Another important ap-pliation is the propagation of eletromagneti wavesin nonlinear media. The ansatz (x; t) = exp(�i�t=~) (x)redues the Gross�Pitaevskii equation to the or-responding time-independent (stationary) nonlinearShrödinger equation�� ~22m d2dx2 + V (x) + gj (x)j2� (x) = � (x) (1)with the hemial potential �.684



ÆÝÒÔ, òîì 136, âûï. 4 (10), 2009 Resonane re�etion by the one-dimensional Rosen�Morse potential : : :To onsider solutions in a �nite trap, the Ro-sen�Morse potentialV (x) = U0h2 (�x) (2)is studied in this paper. This potential yields ana-lyti solutions, unlike harmoni traps. It also pro-vides a model for a �nite-depth trap. The treatmentof transport within this mean-�eld theory reveals newinteresting phenomena arising from the nonlinearity ofthe equation. As was already shown in Refs. [2; 3℄, aomplex solution of Eq. (1) with the one-dimensionalsquare-well potential is given in terms of the Jaobi el-lipti funtions dn(x). The Gross�Pitaevskii equationfor a one-dimensional �nite square-well potential wasstudied in Ref. [4℄ in terms of inoming and outgoingwaves. The transmission oe�ient T beomes equalto one periodially as a funtion of the hemial po-tential �. Thus, there is the total transpareny of thepotential barrier at resonanes.The resonane line shape was investigated in re-ent paper [5℄. The stationary nonlinear Shrödingerequation or the Gross�Pitaevskii equation for one-di-mensional potential sattering was studied in that pa-per. The nonlinear transmission funtion exhibits adistorted pro�le, whih di�ers from the Lorentzian onefound in the linear ase. This nonlinear pro�le funtionis analyzed and related to Siegert-type omplex reso-nanes. It is shown that the harateristi nonlinearpro�le funtion an be onveniently desribed in termsof skeleton funtions depending on a few parameters.These skeleton funtions also determine the deay be-havior of the underlying resonane state.Marosopi quantum tunneling of Bose�Einsteinondensates in a �nite potential well has been onsid-ered in Ref. [6℄. The nonlinearity, whih is propor-tional to both the number of atoms and the interationstrength, an transform bound states into quasiboundones. The latter have a �nite lifetime due to tunnelingthrough the barriers at the borders of the well. Theypredit the lifetime and stability properties for repul-sive and attrative ondensates in one, two, and threedimensions, for both the ground state and the exitedsoliton and vortex states.Resonane solutions of the nonlinear Shrödingerequation, the tunneling lifetime, and fragmentation oftrapped ondensates were investigated in Ref. [7℄. Itis shown there how the lifetimes and energies of reso-nane states an be alulated by applying the omplexsaling transformation to the nonlinear Shrödingerequation. It is essential to �rst apply the omplexsaling transformation to the full Hamiltonian and to

subsequently derive the orret omplex saled nonlin-ear Shrödinger equation from the result. The non-linear Shrödinger equation is physially relevant andamenable to numerial alulations. To analyze the re-sults obtained by solving this equation, it is neessaryto realize the lose assoiation of resonane phenomenawith fragmentation of the system.In Ref. [8℄, the hydrodynami representation of theGross�Pitaevskii and the nonlinear Shrödinger equa-tions was used to analyze the dynamis of marosopitunneling proesses. A tendeny toward wave break-ing and shok formation during the early stages of thetunneling proess was observed. A blip in the densitydistribution appears on the outskirts of the barrier andmay transform into a bright soliton under proper on-ditions.A partile moving through a lassially allowed re-gion an be re�eted by a potential without reahinga lassial turning point. Above-barrier re�etion alsoours when U0 < 0 and the hemial potential � > 0.In the linear problem (g = 0 in Eq. (1)) with poten-tial (2), the re�etion oe�ient R is determined by theexpression (see [9; 10℄)R = os2 �2r1� 8mU0~2�2 !sh2��k� �+ os2 �2r1� 8mU0~2�2 ! ; (3)where k = p2m�=~. The inequality 8mU0 < ~2�2is suggested for the above-barrier transmission andre�etion. We everywhere use the system of units~ = m = � = 1. It follows that in linear problem,R = 0 when 1 � 8U0 = (2n+ 1)2 with n = 1; 2; 3; : : :Hene, the re�etion oe�ient in this resonant ase isdetermined only by the nonlinearity.To avoid seular terms, we use the multiple-saleanalysis for the derivation of the resonant re�e-tion oe�ient. This approah was used in studyingBose�Einstein solitons in highly asymmetri traps [11℄.Quantum re�etion of an inident soliton by an attra-tive seh-squared-shape potentialV (x) = � Vh2(x=x0)(the Rosen�Morse potential) was analyzed numeriallyin [12℄. The predition was that quantum re�etion anour to a kind of marosopi quantum objets, atomimatter-wave bright solitons. The pronouned swithingbetween re�etion and transmission is a harateristibehavior that should be observable for su�iently well685



H. A. Ishkhanyan, V. P. Krainov ÆÝÒÔ, òîì 136, âûï. 4 (10), 2009loalized and deep potential wells, suh as those re-ated by a strongly foused red-detuned laser beam ora seond, inoherent soliton.It was shown in [13℄ that the well-known absolutetransmission of the nonlinear system an our in theRosen�Morse potential. The authors investigated theatomi trap and transport of a Bose�Einstein onden-sate in one-dimensional waveguide with an obstale po-tential of the seh-squared form. By applying a non-balane ondition, they obtained exat solutions of thesystem, whih ontain the bound states and transmis-sion states.The nonlinearity is assumed to be small, i.e., g � �.It is then possible to �nd a simple analyti expressionby the multi-sale approah for the re�etion oe�ientfor the Rosen�Morse potential in the viinity of reso-nanes. Just this is the goal of our work.2. THE MODEL AND SOLUTIONSWe assume that a partile moves in the positive di-retion of the x axis. At x ! �1, there are bothinident and re�eting waves, and at x! +1, there isonly the transmitted wave. For simpliity, we onsideronly the �rst resonane, i.e., n = 1. Then U0 = �1.
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Fig. 1. The potential �1= h2 x for the �rst resonane(n = 1) provides total transmission

The potential orresponding to this resonane ase isshown in Fig. 1. When g = 0, Eq. (1) takes the form�12 d2 dx2 � 1h2 x = k22  : (4)The linearly independent solutions of Eq. (4) are 1(x) = ik � th xp2ik (k2 + 1) exp (ikx) ; 2(x) = ik + th xp2ik (k2 + 1) exp (�ikx) : (5)The Wronskian of these solutions is 02(x) 1(x) �  01(x) 2(x) = 1: (6)We hoose the unperturbed solution of Eq. (4) in theform  1(x). Then the transmission oe�ient isT = ���� 1 (+1) 1 (�1) ����2 = 1; (7)i.e., there is no re�etion at any value of k.We now onsider the ase g 6= 0. The di�erentialGross�Pitaevskii equation is of the formd2 dx2 + k2 + 2h2 x = 2gj j2 : (8)In the iteration sheme, we introdue (x) =  1(x) + Æ (x);where Æ (x)�  1(x):Then Eq. (8) implies the inhomogeneous linear di�er-ential equationd2Æ dx2 + k2Æ + 2h2 xÆ = 2gj 1j2 1 = f(x); (9)where we set f(x) = g k2 + th2 xk (k2 + 1) 1(x):The partiular solution of Eq. (9) is hosen asÆ (x) =  2(x) xZ1 f(x0) 1(x0) dx0 ��  1(x) xZ0 f(x0) 2(x0) dx0: (10)686



ÆÝÒÔ, òîì 136, âûï. 4 (10), 2009 Resonane re�etion by the one-dimensional Rosen�Morse potential : : :We now derive the �rst term in the right-hand sideJ (x) =  2(x) �1Z1 f(x0) 1(x0) dx0 == g (thx+ ik) exp(�ikx)k (k2 + 1) [2ik (k2 + 1)℄3=2 I(k); (11)where we setI(k) == 1Z�1 �th4 x� 2ik th3 x� 2ik3 th x� k4� exp(2ikx) dx:We note that when k 6= 0,1Z�1 exp(2ikx) dx = 0:We now evaluate the integrals ontained in I :1Z�1 th x exp(2ikx) dx = �ish(�k) ; (12)1Z�1 th3 x exp(2ikx) dx = �i �1� 2k2�sh(�k) ; (13)1Z�1 th4 x exp(2ikx) dx = 4�k �k2 � 2�3 sh(�k) : (14)Hene, the integral I isI(k) = �2�k �k2 + 1�3 sh (�k) (15)and aording to Eq. (11),J(x) = g 2�i (1� ik) exp(�ikx)3 [2ik (k2 + 1)℄3=2 sh(�k) : (16)The re�etion oe�ient is obtained from Eq. (5) andEq. (16) by letting x! �1:R(k) = ���� J(x) 1(x) ����2 = � �g3k (k2 + 1) sh (�k)�2 � 1: (17)The re�etion oe�ient rapidly dereases as k in-reases. The ondition of the appliability of this ap-proah is g � k2. The values k � 1 are also aeptablewhen g � k2.

We now onsider the seond term in Æ ; Eq. (10):K(x) = � 1(x) xZ0 f(x0) 2(x0) dx0: (18)As x! �1, the quantity K(x) is determined by largevalues of x0 � 1. Hene, thx0 � 1 in the integrand ofEq. (18). We obtain the seular termK(x) = g ik � 12ik2p2ik (k2 + 1)x exp(ikx): (19)On the other hand, it follows from Gross�Pitaevskiiequation (8) as x! �1 thatd2 dx2 + k2 = 2gj j2 : (20)The solution of this equation in the form of a transmit-ted wave is (see Eq. (5))~ 1(x) = ik � thxp2ik (k2 + 1) exp (ik0x) ;where k0 =pk2 � g=k � k � g=2k2;exp(ik0x) � exp(ikx) h1� i gx2k2 i :The seular term in the transmitted wave at jxj � 1 isÆ ~ 1(x) = ~ 1(x)�  1(x) == g ik � 12ik2p2ik (k2 + 1)x exp (ikx) : (21)This is just the same seular term as in Eq. (19) [14℄.The seular term does not in�uene the re�etion oef-�ient R(k) in (17).Hene, the total wave funtion of the nonlinearproblem at the �rst resonane (U0 = �1) has the form (x) = ~ 1(x) + g 2�(ik � 1) exp(�ikx)3 [2ik (k2 + 1)℄3=2 sh(�k) : (22)The reason for the ourene of seular terms is thatas x ! �1, the inhomogeneous term exp(ikx) is si-multaneously a solution of the homogeneous di�erentialequation. In the re�eting wave exp(�ikx), the valueof k also hanges beause of seular terms, but this doesnot a�et the re�etion oe�ient in the terms of the�rst order in the small parameter g=k2 � 1. Analo-gously, the ondition T + R = 1 is satis�ed with theauray of terms linear in this parameter.687



H. A. Ishkhanyan, V. P. Krainov ÆÝÒÔ, òîì 136, âûï. 4 (10), 20093. TRANSMISSION RESONANCES IN THEGROSS�PITAEVSKII EQUATIONWe now onsider the viinity of the �rst resonane,when U0 = �1+ with  � 1. In this ase, the Gross�Pitaevskii equation takes the form (see Eq. (8))d2 dx2 + k2 + 2� 2h2 x  = 2gj j2 : (23)In the iteration sheme for solution of this equation, wewrite  (x) =  1(x) + � (x);where � (x) �  1(x):The inhomogeneous linear di�erential equation for� (x) is d2� dx2 + k2� + 2h2 x� = F (x) (24)where we setF (x) = 2gj 1j2 1 + 2h2 x 1: (25)Substituting  1(x) from Eq. (5) in Eq. (25), we obtainF (x) = �g k2 + th2 xk (k2 + 1) + 2h2 x��� ik � thxp2ik (k2 + 1) exp (ikx) : (26)The solution of Eq. (24) is given by (see Eq. (10))� (x) =  2(x) xZ1 F (x0) 1(x0) dx0 ��  1(x) xZ0 F (x0) 2(x0) dx0: (27)As x ! �1, the �rst term in this equation an berepresented in the form (see Eq. (18))M(x) =  2(x) �1Z1 F (x0) 1(x0) dx0 == J(x) + 2(1� ik) exp(�ikx)[2ik (k2 + 1)℄3=2 L(k) (28)where L(k) = 1Z�1 (thx� ik)2h2 x exp(2ikx) dx: (29)
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Fig. 2. The dependene of the re�etion oe�ientR(k) derived in aordane with Eq. (32) on k; g = 0:2, = 0 (1 ) and 0:05 (2 )This integral an be evaluated similarly to I(k):L(k) = 2�k �k2 + 1�3 sh(�k) : (30)Hene,M(x) = 2�i(1� ik) exp(�ikx)3 sh(�k)p2ik (k2 + 1) �� � g2k (k2 + 1) � � : (31)The re�etion oe�ient is (see Eq. (18))R(k) = ����M(x) 1(x) ����2 = "� �g � 2k �k2 + 1��3k (k2 + 1) sh (�k) #2 � 1:(32)The re�etion oe�ient R(k) is zero under the ondi-tion g = 2k �k2 + 1� : (33)In Fig. 2, the re�etion oe�ient R(k) derived in a-ordane with Eq. (32) is represented as a funtion ofk in the example where g = 0:2,  = 0 and 0:05.4. CONCLUSIONThe sattering of Bose�Einstein ondensate by theRosen�Morse potential has been disussed in termsof stationary states of the Gross�Pitaevskii equation.Negleting the mean-�eld interation outside thepotential, the inoming and outgoing waves and the688
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