ФИЗИЧЕСКИЕ МЕХАНИЗМЫ ДРОБНО-ФРАКТАЛЬНЫХ АСИМПТОТИК ДИСПЕРСИОННОГО ТРАНСПОРТА В НЕУПОРЯДОЧЕННЫХ СРЕДАХ

В. Е. Архинчеев*

Бурятский научный центр Сибирского отделения Российской академии наук 670047, Улан-Удэ, Россия

> Поступила в редакцию 14 июля 2008 г., после переработки 11 марта 2009 г.

Исследована задача дрейфа частиц в системах с аномальной диффузией. Установлены физические механизмы степенных фрактальных асимптотик в дисперсионном транспорте и физический смысл характерного времени смены асимптотик. Показано, что долговременные дробно-фрактальные асимптотики подвижности частиц в субдиффузионных задачах, соответствующие поведению переходных токов в неупорядоченных системах, т. е. имеющие разные степенные асимптотики на малых и больших временах, обусловлены захватом в ловушки (ребра гребешковой структуры).

PACS: 05.60.-k, 05.60.Cd

1. ВВЕДЕНИЕ

Интерес к исследованиям стохастического транспорта в неупорядоченных системах обусловлен, в первую очередь, особенностями переноса в неупорядоченных системах. Одним из наиболее известных примеров необычного поведения транспорта в классических неупорядоченных системах является изменение характера стохастического диффузионного транспорта, а именно, степенная субдиффузионная зависимость от времени среднеквадратичного смещения случайных блужданий на перколяционных кластерах [1–3]:

$$\langle x^2(t) \rangle \propto t^{2/d_w}.$$
 (1)

Здесь d_w — критический индекс аномальной диффузии $(d_w > 2)$. В работах [4–6] было показано, что для описания аномального стохастического транспорта необходимо использовать математический аппарат устойчивых распределений негауссового вида, а также аппарат производных и интегралов дробного порядка. В частности, были предложены эффективные диффузионные уравнения дробного порядка по времени [7,8]. В работе [9] в рамках гребешковой модели было выведено уравнение диффузии с дроб-

ной производной по времени порядка 1/2, описывающее диффузию вдоль оси гребешковой структуры. Дальнейшие обобщения и приложения метода уравнений дробного порядка к задачам транспорта были сделаны в работах [10, 11]. Обобщение закона Фика на случай аномальных субдиффузионных процессов было получено в работе [12].

Другой особенностью переноса в неупорядоченных средах является необычное поведение переходных токов в неупорядоченных (аморфных, сильно легированных и др.) полупроводниках. Обычно во «времяпролетных» экспериментах по определению дрейфовой подвижности носителей заряда электроны или дырки генерируются посредством лазерного импульса в образце. К электродам, прикрепленным к образцу, прикладывается электрическое поле, существенно превышающее поле неравновесных носителей. В однородных материалах носители формируют прямоугольный импульс фототока на временах, меньших времени пролета. Однако в неупорядоченных полупроводниках переходный ток J(t) носит существенно иной характер, а именно, состоит из двух степенных асимптотик [13–15]:

$$J(t) \propto \begin{cases} J_0 t^{-1+\alpha}, & t \ll T_f, \\ J_0 t^{-1-\alpha}, & t \gg T_f. \end{cases}$$
(2)

^{*}E-mail: varkhin@mail.ru

Здесь T_f — характерное время смены асимптотики, зависящее от приложенного электрического поля, α — критический индекс переходных токов, $\alpha < 1$. Экспериментально установлено, что время T_f зависит как от длины образца L, так и от приложенного напряжения U:

$$T_f \propto \left(\frac{L}{U}\right)^{1/\alpha}.$$
 (3)

Необходимость исследования задач с аномальной диффузией обусловлена также и различными приложениями. Так, наряду с исследованиями переходных токов в последнее время интенсивно исследуется тепло- и массоперенос в живых организмах, включая и механизмы роста раковых клеток. Эти исследования проводятся, в том числе, и с использованием гребешковой модели, см. работы [16–18].

В недавней работе [19] был выполнен анализ экспериментальных данных по переходным токам в различных неупорядоченных материалах и был сделан вывод об универсальности дробно-фрактального поведения переходных токов, которая в свою очередь обусловлена автомодельностью переходных процессов. На основе принципа автомодельности был развит феноменологический подход, в рамках которого и были выведены кинетические уравнения дробного порядка по времени. Тем не менее, важные вопросы о физических механизмах, приводящих к степенному фрактальному поведению и последующему изменению асимптотики, так же как и вопрос о появлении характерного времени смены асимптотик, которое зависит от приложенного поля, остаются открытыми.

Целью настоящей работы является установление физических механизмов степенных фрактальных асимптотик в рамках гребешковой модели перколяционных кластеров. Показано, что дробно-степенное или фрактальное поведение переходных токов связано с аномальным характером диффузии в неупорядоченных средах, а именно, с наличием ловушек в неупорядоченных средах, на которые попадают движущиеся под действием электрического поля частицы. При этом внешнее электрическое поле влияет на степень заполнения этих ловушек, поэтому и возникает характерное время смены асимптотик, зависящее от электрического поля.

Статья построена следующим образом. В разд. 2 кратко обсуждается гребешковая модель. В рамках модели выведено эффективное уравнение дробного порядка, построено решение для диффузии вдоль оси гребешковой структуры. Выведено эффективное уравнение диффузии для анизотропной диффу-

10 ЖЭТФ, вып. 3 (9)

Гребешковая модель: ось и ребра, прикрепленные к оси структуры

зии в многомерном случае. В разд. З исследован дрейф частиц в электрическом поле. Установлено, что наличие ловушек для диффундирующих частиц в неупорядоченных средах приводит к тому, что эффективная подвижность частиц зависит от времени степенным образом аналогично временным асимптотикам переходных токов в неупорядоченных средах. В Заключении дано краткое обсуждение полученных результатов и их сравнение с результатами, полученными ранее.

2. ДИФФУЗИЯ В МОДЕЛИ ГРЕБЕШКОВОЙ СТРУКТУРЫ И ОБОБЩЕННЫЙ ЗАКОН ФИКА

Напомним коротко структуру гребешковой модели. Впервые она была введена для описания субдиффузии на перколяционных кластерах [20, 21]. Она состоит из хорошо проводящей оси (аналог скелета перколяционного кластера) и ребер, прикрепленных к оси — см. рисунок. Особенность диффузии в гребешковой структуре состоит в возможности смещения по *x*-направлению только вдоль оси структуры (при y = 0). Это означает, что коэффициент диффузии D_{xx} отличен от нуля только при y = 0:

$$D_{xx} = D_1 \delta(y), \tag{4}$$

т. е. х-компонента диффузионного тока равна

$$J_x = -D_{xx} \frac{\partial N}{\partial x}.$$
 (5)

Диффузия вдоль осей структуры носит обычный характер: $D_{yy} = D_2$. Следовательно, случайные блуждания на гребешковой структуре описываются тензором диффузии

$$\hat{D} = \begin{pmatrix} D_1 \delta(y) & 0\\ 0 & D_2 \end{pmatrix}.$$
 (6)

Используя закон Фика для диффузионного тока,

$$\mathbf{J}_d = -\hat{D}\nabla N,$$

с тензором диффузии (6), получим диффузионное уравнение

$$\left(\frac{\partial}{\partial t} - D_1 \delta(y) \frac{\partial^2}{\partial x^2} - D_1 \delta(y) - D_2 \frac{\partial^2}{\partial y^2} \right) G(x, y, t) =$$
$$= \delta(x) \delta(y) \delta(t).$$
(7)

Здесь G(x, y, t) — функция Грина уравнения диффузии, в качестве начальных данных используется точечный источник $\delta(x)\delta(y)\delta(t)$. Для дальнейшего удобства сделаем преобразование Лапласа по времени и преобразование Фурье по *x*-координате:

$$\left[s + D_1 k^2 \delta(y) - D_2 \frac{\partial^2}{\partial y^2}\right] \hat{G}(s, k, y) = \delta(y).$$
(8)

Здесь $\hat{G}(s, k, y)$ — преобразованная по времени и координате функция Грина уравнения диффузии. Решение уравнения (8) с сингулярным коэффициентом будем искать в виде

$$\hat{G}(s,k,y) = g(s,k) \exp(-\lambda|y|), \qquad (9)$$

где λ — неизвестный параметр, а g(s, k) — неизвестная функция, которые необходимо определить. Подставляя решение (9) в уравнение (8), получим регулярное выражение и выражение с сингулярным коэффициентом $\delta(y)$:

$$[s - D_2 \lambda^2] \hat{G}(s, k, y) = 0,$$

$$[D_1 k^2 + 2\lambda D_2] \delta(y) g(s, k, y) = \delta(y).$$
(10)

Из первого уравнения мы определим значение параметра λ , а из второго уравнения (10) найдем выражение для функции g(s, k):

$$\lambda = \sqrt{\frac{s}{D_2}}, \quad g(s,k) = \frac{1}{2D_2\lambda + D_1k^2}.$$
 (11)

Чтобы получить обобщенное уравнение диффузии в двумерном случае, рассмотрим подробнее решение (9). Сделаем фурье-преобразование этого решения по координате *y*:

$$\hat{G}(s, k_x, k_y) = \frac{2\lambda}{(2D_2\lambda + D_1k_x^2)(\lambda^2 + k_x^2)}.$$
 (12)

Соответственно получим следующее уравнение диффузии для анизотропных случайных блужданий на гребешковой структуре для плотности диффундирующих частиц $\rho(s, k_x, k_y)$:

$$\left[(2D_2\lambda_y + D_1k_x^2) \left(\frac{\lambda}{2} + \frac{k_y^2}{2\lambda}\right) \right] \rho(s, k_x, k_y) = 0. \quad (13)$$

Пренебрегая в полученном уравнении произведением $k_x^2 k_y^2$ (это возможно на больших масштабах), получим следующее эффективное диффузионное уравнение:

$$\left(s + D_1 k_x^2 \sqrt{\frac{s}{D_2}} + D_2 k_y^2\right) \rho(s, k_x, k_y) \approx 0.$$
 (14)

Возвращаясь в обычное представление в координатах x, y, t, получим эффективное уравнение диффузии в виде

$$\left(\frac{\partial}{\partial t} - \frac{D_1}{2\sqrt{D_2}} \frac{\partial^2}{\partial x^2} \frac{\partial^{1/2}}{\partial t^{1/2}} - D_2 \frac{\partial^2}{\partial y^2}\right) \rho(t, x, y) = 0.$$
(15)

Представляя уравнение диффузии в виде стандартного уравнения непрерывности,

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \mathbf{j} = 0, \qquad (16)$$

получим операторное выражение для эффективного тензора диффузии в обобщенном законе Фика:

$$\hat{D} = \begin{pmatrix} \frac{D_1}{2\sqrt{D_2}} \frac{\partial^{1/2}}{\partial t^{1/2}} & 0\\ 0 & D_2 \end{pmatrix}.$$
 (17)

Таким образом, показано, что в задачах с аномальной субдиффузией закон Фика существенно модифицируется. Во-первых, коэффициент диффузии становится тензором, во-вторых, компоненты тензора диффузии приобретают операторный вид. В связи с существенным изменением закона Фика возникает вопрос о поведении подвижности частиц в постоянном электрическом поле.

3. ДИСПЕРСИОННЫЙ ТРАНСПОРТ В ГРЕБЕШКОВОЙ СТРУКТУРЕ С АНОМАЛЬНОЙ ДИФФУЗИЕЙ

Чтобы исследовать вопрос о подвижности частиц в задачах с аномальной субдиффузией ниже в настоящем параграфе рассмотрим перенос носителей заряда в гребешковой структуре под действием электрического поля E. Как и раньше, предположим, что дрейф вдоль *x*-направления возможен только при y = 0:

$$\mu_{xx} = \mu_1 \delta(y), \tag{18}$$

т. е. *х*-компонента диффузионного тока равна

$$J_x = q\rho\mu_1\delta(y)E_x.$$
(19)

Здесь q — заряд носителей тока, ρ — концентрация носителей. Дрейф вдоль ребер структур носит обычный характер: $V_y = \mu_{yy}E_y$ ($\mu_{yy} = \mu_2$). Следовательно, дрейф частиц под действием электрического поля описывается тензором подвижности:

$$\mu_{ij} = \begin{pmatrix} \mu_1 \delta(y) & 0\\ 0 & \mu_2 \end{pmatrix}.$$
 (20)

Соответственно получим уравнение для диффузии по гребешковой структуре в электрическом поле:

$$\begin{bmatrix} \frac{\partial}{\partial t} - \left(D_1 \frac{\partial^2}{\partial x^2} - \mu_1 E_x \frac{\partial}{\partial x} \right) \delta(y) - \\ - \left(D_2 \frac{\partial^2}{\partial^2 y} - \mu_2 E_y \frac{\partial}{\partial y} \right) \end{bmatrix} G(x, y, t; E) = \\ = \delta(x) \delta(y) \delta(t), \quad (21)$$

где G(x, y, t; E) — функция Грина диффузионного уравнения в электрическом поле. Повторяя приведенные выше рассуждения, получим новые уравнения для параметра λ :

 $s - D_2 \lambda^2 + \mu_2 E_y \lambda \theta(y) = 0,$

где

$$\theta(y) = \begin{cases} 1, & \text{если} \quad y > 0, \\ -1, & \text{если} \quad y < 0, \end{cases}$$

— единичная функция Хэвисайда.

Таким образом, для верхней (+) и нижней (-) полуплоскостей получаем разные значения параметра λ:

$$\lambda^{\pm} = \sqrt{\frac{s}{D_2} + \left(\frac{\mu_2 E_y}{D_2}\right)^2} \pm \frac{\mu_2 E_y}{D_2}, \qquad (23)$$

и выражение для функции g:

$$g(s,k,E) = \frac{1}{2D_2(\lambda^+ + \lambda^-) + D_1k^2 + ik_x\mu_1E_x}.$$
 (24)

Совершая обратное фурье-преобразование по координате *y*, получим

$$G(s, k_x, k_y; E) = (\lambda^+ + \lambda^-) \times \\ \times \left(2D_2(\lambda^+ + \lambda^-) + D_1k_x^2 + ik_x\mu_1E_x\right)^{-1} \times \\ \times \left(\lambda^+\lambda^- + ik_y(\lambda^+ - \lambda^-) + k_y^2\right)^{-1}.$$
(25)

В результате имеем следующее эффективное диффузионное уравнение для концентрации частиц во внешнем электрическом поле:

$$\left(s + (D_1 k_x^2 + i k_x \mu_1 E_x) \sqrt{\frac{(s/D_2)^2}{s/D_2 + (V_y/2D_2)^2}} + D_2 k_y^2 + i k_y \mu_2 E_y\right) \rho(s, k_x, k_y; E) \approx 0. \quad (26)$$

Таким образом, при включении электрического поля получаем, что лапласовский образ *x*-компоненты эффективной подвижности равен

$$\mu_{xx}^{e}(s) = \frac{\mu_1}{2\sqrt{D_2}} \frac{s}{\sqrt{s + V_y^2/4D_2}}.$$
 (27)

Полученный результат означает, что эффективная подвижность частиц вдоль оси структуры μ_{xx}^e меняется со временем и зависит также от поперечной компоненты поля E_y :

$$\mu_{xx}^{e}(t) = \frac{\mu_{1}}{2\sqrt{D_{2}}} \int \frac{s \exp(st) \, ds}{\sqrt{s + V_{y}^{2}/4D_{2}}} = \frac{\mu_{1}}{2\sqrt{D_{2}}} \frac{\exp(-t/t_{Ey})}{\sqrt{t^{3}}} f\left(\frac{t}{t_{Ey}}\right). \quad (28)$$

Здесь $t_{Ey} = 4D_2/V_y^2$ — время, определяемое *у*-компонентой электрического поля E_y вдоль ребер гребешковой структуры, функция f(z) = 1 + 2z имеет следующие предельные значения:

$$f(z) = \begin{cases} 1, & \text{если} \quad z \ll 1, \\ 2z, & \text{если} \quad z \gg 1. \end{cases}$$

Компонента $\mu_{yy}^e = \mu_2$ имеет обычный вид. Следовательно, эффективная подвижность на гребешковой структуре имеет тензорный вид:

$$\mu^e = \begin{pmatrix} \mu_{xx}(t) & 0\\ 0 & \mu_{yy} \end{pmatrix}.$$
 (29)

Зависимость x-компоненты эффективной подвижности от t связана с изменением характера диффузии от обычного к субдиффузионному за счет тупиков или «мертвых концов» на токонесущих путях.

Необходимо отметить, что установленная выше временная зависимость эффективной подвижности $\mu_{xx}^e(t)$ соответствует дисперсионному транспорту с известными асимптотиками переходных токов в неупорядоченных и аморфных системах [13–15] см. формулу (2). Экспоненциальное уменьшение обусловлено эффективным уменьшением числа частиц на оси структуры (снос под действием поля). В исследованном нами случае T_f — характерное время смены асимптотики, зависящее от приложенного электрического поля, — соответствует времени диффузии вдоль ребер $t_{Ey} = 4D_2/V_y^2$ на расстояние порядка «полевой длины» $L_E = kT/qE$. Значение критического индекса равно $\alpha = 1/2$.

(22)

10*

4. ЗАКЛЮЧЕНИЕ

Таким образом, показано, что аномальное случайное блуждание на гребешковой структуре в асимптотическом пределе больших времен (больших масштабов) описывается эффективными диффузионными уравнениями, содержащими помимо обычных пространственных производных также и производные по времени дробного порядка. Иными словами, эффективный тензор диффузии в законе Фика приобретает операторный вид — см. формулу (17). Такое необычное представление для тензора диффузии связано с аномальным субдиффузионным характером случайных блужданий на гребешковой структуре. Наши результаты существенно отличаются от результатов работ [23, 24], в которых исследование аномальных случайных блужданий на гребешковой структуре основано на использовании коэффициента диффузии, зависящего как от координат, так и от времени степенным образом. Этот подход, впервые предложенный в работе [25], на наш взгляд представляется неточным, поскольку нарушает симметрию и однородность среды — появляются сингулярные точки, связанные с началом блуждания, в которых коэффициент диффузии обращается в бесконечность. Авторы считают, что усреднение по ансамблю начальных точек и времен блужданий снимает это возражение, но мы полагаем, что симметрия должна исходно содержаться в эффективных уравнениях, а не привносится извне путем дополнительного усреднения.

В связи с существенным изменением закона Фика возникает также вопрос о подвижности части в электрическом поле. В статье исследован дрейф на гребешковой структуре. Показано, что из-за аномального характера диффузии и вследствие захвата в ловушки подвижность частиц убывает со временем степенным образом с двумя характерными асимптотиками. Как уже отмечалось выше, такая временная зависимость эффективной подвижности $\mu_{xx}^{e}(t)$ соответствует асимптотическому поведению переходных токов в неупорядоченных и аморфных системах. Полученный на основании исследования дрейфа в системах с аномальной диффузией результат (28) позволяет понять общий механизм возникновения переходных токов в неупорядоченных и аморфных системах. Степенные асимптотики переходных токов обусловлены наличием ловушек или тупиков на токонесущих путях в этих системах. (В гребешковой модели они моделируются ребрами, прикрепленными к одномерному скелету модели.) Необходимо подчеркнуть, что в реальных неупорядоченных системах перколяционного типа всегда есть ловушки для носителей заряда. В качестве ловушек выступают как тупики или «мертвые концы» на токонесущих путях, так и участки проводящих путей, направленных против направления электрического поля. При этом степень заполнения этих ловушек регулируется включением внешнего электрического поля. В очень слабых электрических полях частицы уходят в ловушки и почти с той же вероятностью возвращаются, в более сильных полях возврат частиц из ловушек становится затруднительным. Это и приводит к различным временным асимптотикам переходных токов. Отсюда же возникает и зависимость переходного времени T_f от электрического поля.

Работа выполнена при частичной финансовой поддержке РФФИ (грант № 08-02-98010).

ЛИТЕРАТУРА

- 1. M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).
- 2. J. Klafter and R. Metzler, Phys. Rep. 339, 1 (2000).
- R. Metzler and J. Klafter, Adv. Chem. Phys. 116, 223 (2001).
- 4. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordond and Breach, Amsterdam (1993).
- Applications of Fractional Calculus in Physics, ed. by R. Hilfer, World Sci. (2000).
- 6. В. В. Учайкин, ЖЭТФ 97, 810 (2003).
- 7. R. Nigmatullin, Phys. Stat. Sol. 133, 425 (1986).
- 8. Р. Р. Нигматуллин, ТМФ 90, 354 (1992).
- В. Е. Архинчеев, Э. М. Баскин, ЖЭТФ 73, 161 (1991).
- 10. К. В. Чукбар, ЖЭТФ 109, 1335 (1996).
- **11**. В. Ю. Забурдаев, К. В. Чукбар, ЖЭТФ **121**, 299 (2002).
- **12**. В. Е. Архинчеев, Письма в ЖЭТФ **86**, 580 (2007).
- И. П. Звягин, Кинетические явления в неупорядоченных системах, Изд-во МГУ, Москва (1984).
- 14. H. Scher and E. W. Montroll, Phys. Rev. B 12, 2445 (1975).
- **15**. A. K. Joncher, Universal Relaxation Law, Chelsea Dielectric Press, London (1996).

- 16. E. Baskin and A. Iomin, Phys. Rev. Lett. 93, 120603 (2004).
- 17. A. Iomin and E. Baskin, Phys. Rev. E 71, 061101 (2005).
- 18. A. Iomin, J. Phys. 7, 57 (2005).
- 19. В. В. Учайкин, Письма в ЖЭТФ 86, 584 (2007).
- ${\bf 20.}\,$ S. White and M. Barma, J. Phys. A ${\bf 17},\,2995$ (1984).
- 21. G. Weiss and S. Havlin, Physica A 134, 474 (1986).

- 22. I. M. Sokolov, Phys. Rev. E 63, 011104 (2000).
- 23. D. Campos, V. Mander, and J. Fort, Phys. Rev. E 69, 031115 (2004).
- 24. S. Sellers and J. A. Barker, Phys. Rev. E 74, 061103 (2006).
- 25. B. O'Shaughnessy and I. Procaccia, Phys. Rev. A 32, 3073 (1985).