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ELASTIC PHASE TRANSITIONS IN PLUTONIUMYu. Kh. Vekilov, O. M. Krasilnikov *State Te
hnologi
al University �Mos
ow Institute of Steel and Alloys�119049, Mos
ow, RussiaRe
eived April 1, 2009The ri
h phase diagram of plutonium with a large number of di�erent transitions in a narrow temperature intervalhas been puzzling s
ientists for de
ades. We o�er a theoreti
al proof that most of the stru
tural transformationsin plutonium at temperatures ex
eeding the Debye temperature are the elasti
 phase transitions. The proof isgiven in the framework of the Landau theory of phase transitions and spa
e group theory with the anomalouslysmall value of the elasti
 shear 
onstants related to tetragonal and orthorhombi
 latti
e deformations takinginto a

ount.PACS: 61.50.Ks, 63.20.-e, 64.70.K-1. INTRODUCTIONRe
ent years have shown an in
reasing interest instudying properties of Pu [1�11℄, one of the most un-usual elements in Nature. Its stru
tural behavior as afun
tion of temperature is rather unique and involvesseveral phase transitions in a narrow temperature inter-val. The physi
al origin of su
h a behavior is not fullyunderstood and it is a matter of debates. Plutoniumhas six 
rystalline phases at ambient pressure and tem-peratures up to melting. Some of these temperature-driven phase transitions are a

ompanied by a signif-i
ant 
hange of volume. In two of these phases, Æand Æ0, whi
h have the largest spe
i�
 volumes and re-spe
tively have the f

 (fa
e-
entered 
ubi
) and b
t(body-
entered tetragonal) stru
tures, plutonium hasnegative and low thermal expansion 
oe�
ient, whilein the other phases, its thermal expansion 
oe�
ient ispositive and high. The Æ-phase is very unstable, butplutonium 
an be stabilized in the Æ-phase by alloyingwith a trivalent metal, for example, with several mo-lar per
ents of gallium. Su
h an alloy is stable in thetemperature range from �75 to 475 ÆC and has almostzero thermal expansion 
oe�
ients.In the framework of the �rst-prin
iple density-fun
tional theory [5℄, the bond strengths have been
al
ulated between 12 nearest neighbors in pure Puand Pu-3.7 at.% of Ga, and it has been suggestedthat the bond strengths in Æ-Pu are anisotropi
 and*E-mail: omkras�mail.ru

this anisotropy 
orresponds not to the generally a
-
epted 
ubi
 spa
e group Fm�3m but to the mono
lini
Cm spa
e group. Therefore, a

ording to Ref. [5℄, thetetragonal, orthorhombi
, or mono
lini
 deformationof Æ-Pu 
an lead to the equilibrium (�-Pu, mono
lini
spa
e group P21=m). By this, the authors of Ref. [5℄explain the sequen
e of temperature-driven polymor-phi
 transformations in Pu. Introdu
tion of Ga redu
esthe anisotropy of bond strengths, thereby stabilizingthe Æ-Pu f

 latti
e [5℄. These results have been 
rit-i
ized in Ref. [6℄: the authors of Ref. [6℄ have shownthat for the 
al
ulational setup reported in Ref. [5℄,the anisotropy of bond strengths between the near-est neighbors in Æ-Pu 
annot ex
eed a numeri
al er-ror asso
iated with the operation of the program al-gorithm and is a
tually three orders less than it wasobtained in Ref. [5℄. It is also impossible to agree withthe arguments given in Ref. [5℄ be
ause they 
ontra-di
t Curie's prin
iple [12℄: the symmetry elements of a
rystal are also symmetry elements of any of its prop-erties, i. e., the 
rystal symmetry group either 
oin
ideswith the symmetry group of a property (for example,bond strengths) or is a subgroup of the property sym-metry group (but not 
onversely). The phase transitionÆ ! �0 (f

! mono
lini
) in alloys of plutonium withgallium and aluminum was 
onsidered in Ref. [10; 11℄using the Landau theory. The �0 phase has the samespa
e group as the mono
lini
 � phase of pure pluto-nium, ex
ept that some of the Pu atoms are substi-tuted by alloying element. This transition was 
onsid-521
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-like phase transformation involv-ing a 
oherent, 
ontinuous motion of many atoms overshort distan
e without di�usion. The transformationme
hanism was proposed that 
ombines strains of unit
ells and displa
ements of atoms and whi
h 
an pre-di
t the softening signature or other anomalies seen inphonon dispersion experiments and temperature vari-ation of the elasti
 moduli. It has been demonstratedthat the Æ ! �0 transition 
an be des
ribed as a se-quen
e of displa
ive transformations that require spe-
i�
 intermediate stru
tures (trigonal and hexagonal inparti
ular).In this arti
le, we show using the Landau theoryof phase transitions and spa
e group theory (group�subgroup relations) that the sequen
e of polymorphi
transitions in pure Pu at temperatures ex
eeding theDebye temperature are elasti
 phase transitions withorder parameters de�ned by homogeneous deforma-tions. 2. RESULTS AND DISCUSSIONThe fa
t that all polymorphi
 transitions inPu o

ur at temperatures 
onsiderably ex
eedingthe Debye temperature (�D � 110 K) and thatthe lowest-temperature transition � ! � (simplemono
lini
 ! base-
entered mono
lini
 stru
ture)
orresponds to T = 398 K at ambient pressure leadsto the 
on
lusion that the reason behind the phasetransitions is the anharmoni
ity of the 
rystal latti
e.Together with the usual transitions 
aused by theequality of 
hemi
al potentials of two various stru
-tures, stru
tural phase transitions of another type,
aused by the instability of the 
rystal latti
e undersmall homogeneous deformations, 
an o

ur. Fordispla
ive phase transitions, it is generally importantto 
onsider 
orrelation e�e
ts [13℄. But in our 
ase, forthree-dimensional systems, these e�e
ts are not veryessential and the Landau theory of the phase transi-tions 
an be used [14�16℄. The stability of a latti
eunder small homogeneous deformations is 
hara
ter-ized by a system of inequalities for se
ond-order elasti

onstants, following from the positive de�nitenessrequirement for the se
ond-order part of the 
rystalthermodynami
 potential. In the 
ase of the 
ubi

rystal, these inequalities are [14℄ C11 + 2C12 > 0,C11 �C12 > 0, and C44 > 0, where C�� are isothermalse
ond-order elasti
 
onstants in the Voigt notation.These inequalities 
an be violated with a 
hange ofthermodynami
 parameters su
h as the pressure andtemperature (P; T ) de�ning the 
rystal state. As a re-

sult, the transition into a spontaneously deformed stateo

urs. The stability of this new state is determinedby the anharmoni
 
ontribution to the expressionfor the thermodynami
 potential (i. e., by the thirdand fourth order elasti
 
onstants). The deformationtensor 
omponents are the order parameters at su
htransitions. These transitions are 
alled the elasti
phase transitions. In the 
ase of plutonium, in favor ofsu
h transitions speaks the fa
t that the elasti
 shear
onstant C 0 = (C11 � C12)=2 of Æ-Pu is anomalouslysmall 
ompared with shear 
onstant C44 [17℄.Using the results of the Bravais latti
e symmetryanalysis [18℄, it 
an be shown that from six 
rystallinestru
tures 
hara
teristi
 of Pu, �ve stru
tures are re-lated among themselves by a homogeneous deforma-tion. From this standpoint, we 
onsider the sequen
eof polymorphi
 transformations in Pu.1. The high-temperature "-phase exists at472�640 ÆC and has the b

 stru
ture, whi
h trans-forms into a b
t latti
e (
=a = 1:33) by a distortion ofthe 
ube along one of its 4th-order axes (the so-
alledÆ0-phase). The symmetry analysis shows that the Bra-vais latti
e ��
 transforms into ��a ("! Æ0). The reasonfor this transition is the instability of the b

 latti
e
aused by the softening of the elasti
 shear 
onstantC 0 related to the deformation u33 = �2u22 = �2u11.2. The Æ0-phase is rather unstable (the temperatureinterval of its existen
e is 450�472 ÆC at ambient pres-sure) and under a further de
rease in temperature, atransition of the Æ0-phase into the Æ-phase o

urs thathas the f

 stru
ture and exists at 310�450 ÆC. Thesetwo phases are related by a homogeneous deformation.Thus the latti
e ��q transforms into �f
 (Æ0 ! Æ).The transitions "! Æ0 ! Æ (b

! b
t! f

) are atypi
al Bain transformation. Bain originally des
ribedsu
h a transformation by a 
ontinuous and 
oordinatedshift of one or more atoms in the unit 
ell in orderto understand the me
hanism of the transition fromaustenite to martensite in iron. Both the 
ubi
 Bravaislatti
es (b

 and f

) are regarded as spe
ial 
ases ofthe more general b
t unit 
ell (see Figure). If the height-to-width ratio of the latti
e 
onstants is 
=a = 1, thenthe b
t Bravais latti
e 
oin
ides with the b

 latti
e.On the other hand, a b
t Bravais latti
e with 
=a = p2fully mat
hes the f

 latti
e, as is s
hemati
ally shownin Figure.3. The Bravais parallelepiped for a 
ubi
 sys-tem 
an be redu
ed to the Bravais parallelepiped forthe orthorhombi
 system (
-phase). This means thatthe 
-phase has the fa
e-
entered orthorhombi
 lat-ti
e, f
o, by a shear deformation in the parallelepipedbase plane. It is 
aused by the softening of the shear522
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The 
entered tetragonal unit 
ell with latti
e parame-ters a, b, and 
 at spe
ial ratios. Atoms belonging tothe 
onventional unit 
ell are indi
ated by solid dots;b

: a = b, 
=a = 1, b
t: a = b, 1 < 
=a < p2; f

:a = b, 
=a = p2; f
o: a 6= b 6= 

onstant C 0 that is a

ompanied by the deformationu22 = �u11; as a result, we obtain the latti
e �fo(Æ ! 
, whi
h is stable in the temperature range 218�310 ÆC).4. From the Bravais orthorhombi
 system paral-lelepiped at the base deformation (
hanging the anglebetween its edges), we obtain the Bravais mono
lini
system parallelepiped (the �-phase, whi
h has a base-
entered mono
lini
 stru
ture (b
m) with the existen
einterval 119�218 ÆC). The latti
e �fo transforms into �bm(
 ! �).5. The symmetry analysis shows that the transitionfrom the �-phase into the �-phase (whi
h has the sim-ple mono
lini
 latti
e) via a homogeneous deformationis impossible be
ause the latti
e �bm is not related to�m by a homogeneous deformation.Hen
e, the phase transitions "(b

) ! Æ0(b
t) !! Æ(f

)! 
(f
o)! �(b
m) are elasti
 phase transi-tions. They o

ur owing to latti
e instabilities relatedto shear deformations, whi
h are in turn related to theanomalously small value of the 
orresponding elasti

onstants.The 
hara
ter of an elasti
 transition and the sta-bility of a new phase are determined by the third-orderterm in the deformation tensor 
omponent expansionof the thermodynami
 potential, and by the forth-orderterm [19℄. If the third-order invariant, whi
h involvesthe 
orresponding third-order elasti
 
onstants, is equalto zero, then the transition is of the se
ond order; oth-erwise, it is of the �rst order. The stability requirementfor the new phase imposes 
ertain restri
tions on thethird and fourth-order elasti
 
onstants. For the phasetransition " ! Æ0 (b

 ! b
t), the expansion of thethermodynami
 potential F is given by

F = 34(C11�C12)u2+18(C111�3C112+2C123)u3++ 364(C1111 � 4C1112 + 3C1122)u4; (1)where C��
 and C��
Æ are the third and fourth-orderisothermal elasti
 
onstants and u = u33 = �2u22 == �2u11. Be
ause the third-order invariant is notequal to zero (due to the 
rystal symmetry), we have a�rst-order phase transition. For the stability of the newphase, the fourth-order invariant should be positive.Under the phase transition Æ ! 
, the third-order term of the expansion tends to zero owing tospe
i�
 features of the order parameter 
omponents:u22 = �u11. However, if this relation is not satis�ed(we note that su
h relations are not satis�ed due tovolume 
hanges under the transition), then the third-order invariant be
omes nonzero and the transition isa �rst-order transition.In relation to the elasti
 phase transitions in Pu,we now dis
uss the temperature behavior of the elas-ti
 moduli. In Ref. [7℄, the elasti
 moduli for poly-
rystalline Pu-2.4 at.% of Ga were measured by usingthe resonan
e-ultrasound spe
tros
opy in the tempera-ture range 300�500 K. A

ording to Ref. [7℄, both thebulk modulus B and the shear modulus G de
reasewith in
reasing the temperature with a nearly lineartemperature dependen
e. But in this range of tem-peratures, the thermal expansion 
oe�
ient is 
lose tozero, although the values of B and G sharply de
reasewith temperature (by 25% in the interval 300�500 K).The Debye-Grüneisen model is typi
ally used to ex-plain temperature dependen
es of elasti
 
onstants, inwhi
h the elasti
 softening should be related mainly tothe in
rease in volume under thermal expansion. Thetwo-level model was therefore used for the explanationof the observable dis
repan
y in Refs. [7; 8℄. This modelwas previously used for an invar alloy. The model isbased on the addition of the two-level ele
tron energystru
ture to the Debye model of a latti
e. Togetherwith the normal Debye temperature and the Grüneisenlatti
e 
onstant, the model involves two additional pa-rameters: the di�eren
e in energy between two levels ofan atom and the Grüneisen ele
troni
 
onstant, whi
hhas a negative value depending on the 
on
entration ofGa. With regard to nonmagneti
 Æ-Pu (there are noexperimental proofs of a long-range magneti
 order inany phase of plutonium [20℄), the above model appearsto be insu�
iently justi�ed. In what follows, we showthat the temperature dependen
e on elasti
 
onstantsand thermal expansion 
an be 
orre
tly des
ribed inthe quasiharmoni
 approximation.We express the bulk and shear moduli B and G523
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onstants. For the 
ubi
 latti
e [21℄,B = (C11+2C12)=3 and G = (C11�C12+3C44)=5. Thetemperature dependen
e of the elasti
 
onstants in thequasiharmoni
 approximation is determined by the dis-persion of the mi
ros
opi
 Grüneisen 
oe�
ients [22℄.The expressions for the adiabati
 and isothermal elas-ti
 
onstants obtained in the quasiharmoni
 approxi-mation, with the pro
esses of phonon vis
osity and thethermo-elasti
ity taken into a

ount, are [23℄Cadijkl = 1V0 �2�0�uij�ukl �� TC(T )V0 [h
ij
kli � h
ijih
kli℄ ; (2)and Cisijkl = 1V0 �2�0�uij�ukl � TC(T )V0 h
ij
kli: (3)Here, V0 is the volume of the unstrained 
rystal, �0 isthe potential energy of the 
rystal when the atoms arein equilibrium positions,
ij(k; �) = � 1!0(k; �) ��!(k; �)�uij �0are the mi
ros
opi
 Gruneisen 
oe�
ients, !(k; �) and!0(k; �) are the respe
tive frequen
ies of a phonon witha wave ve
tor k and polarization � in the deformedand undeformed 
rystal, and the averaging symbol h imeans hfi =Xk;� f(k; �)
(k; �)=Xk;� 
(k; �);where 
(k; �) is the 
ontribution to the heat 
apa
ity ofthe mode (k; �), and C(T ) = Pk;� 
(k; �) is the heat
apa
ity of the 
rystal. The temperature 
hanges ofthese 
onstants are 
aused by both the phonon vis
os-ity and thermo-elasti
ity pro
esses (the se
ond term insquare bra
kets in (2) 
hara
terizes the 
hange in theelasti
 
onstants due to thermo-elasti
 losses). The �rstterm in (2) and (3) in
ludes the 
hange in the elasti

onstants due to thermal expansion. The thermal ex-pansion tensor is equal to�ij = C(T )V Xk;l C�1ijklh
kli:The linear expansion 
oe�
ient of a 
ubi
 
rystal is� = (C(T )=3V B)
, where 
 = h
(k; �)i is the Grünei-sen parameter,
(k; �) = �� ln(k; �)� lnV = 13Tr 
ij(k; �):

The quantities h
ij
kli and 
, whi
h respe
tively deter-mine the temperature 
hanges of the elasti
 moduli andthermal expansion 
oe�
ient, depend on the Grüneisen
oe�
ients 
ij(k; �) in di�erent ways and should di�eramong themselves. Su
h behavior leads to essentialdi�eren
es for the average values (taking the 
hange ofthe sign of 
ij(k; �) for various vibration modes intoa

ount): in the �rst 
ase, the average values shouldbe larger than in the se
ond one. Under 
ertain 
ondi-tions, the value 
 = h
(k; �)i 
an be very small (for ex-ample, due to the 
ompensation of 
ontributions fromvarious vibration modes).Be
ause the Debye temperature of Æ-Pu is �D �� 110 K, the basi
 
ontribution to (2) in the temper-ature range 300�500 K is due to the high-frequen
ymodes: longitudinal and transverse a
ousti
 phonons inthe neighborhood of the X point and the longitudinalmodes in the neighborhood of the L point [24℄. Be
ausethe thermal expansion 
oe�
ient for Æ-Pu is very smallin this temperature range, the 
ontribution of the termin the square bra
kets in (2) to the 
hanges of Cadijklwith temperature is high. Sin
e the heat 
apa
ity atT > �D is pra
ti
ally independent of the temperature,elasti
 
onstants (2) 
hange linearly with the tempera-ture, ex
ept near the phase transition. The Æ-phase isunstable under to the shear deformation related to theelasti
 
onstant C 0 = (C11 � C12)=2. However, bothB and G have a pra
ti
ally linear temperature depen-den
e be
ause C 0 is seven times less than C44 [17℄.3. CONCLUSIONIt is shown based on the group theory analysisthat the sequen
e of temperature phase transitions("(b

) ! Æ0(b
t) ! Æ(f

) ! 
(f
o) ! �(b
m)) ob-served in pure plutonium represents a sequen
e of elas-ti
 phase transitions, i. e., the transitions resulting fromthe instability of the 
rystal latti
e with respe
t to uni-form deformations. In this 
ase, it is possible to usethe Landau theory, taking 
omponents of the defor-mation tensor as the order parameters. We have alsoshown that the negative sign of the thermal expansion
oe�
ient of Æ-Pu and a strong de
rease in the elasti

onstants of Æ-Pu with in
reasing the temperature 
anbe explained within the quasiharmoni
 approximation.We believe that this result is important by itself (evenwith no relation to plutonium) and it is 
ru
ial for un-derstanding the 
onne
tion of thermal expansion andtemperature dependen
e of elasti
 
onstants in solidstate materials.524
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