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ELASTIC PHASE TRANSITIONS IN PLUTONIUMYu. Kh. Vekilov, O. M. Krasilnikov *State Tehnologial University �Mosow Institute of Steel and Alloys�119049, Mosow, RussiaReeived April 1, 2009The rih phase diagram of plutonium with a large number of di�erent transitions in a narrow temperature intervalhas been puzzling sientists for deades. We o�er a theoretial proof that most of the strutural transformationsin plutonium at temperatures exeeding the Debye temperature are the elasti phase transitions. The proof isgiven in the framework of the Landau theory of phase transitions and spae group theory with the anomalouslysmall value of the elasti shear onstants related to tetragonal and orthorhombi lattie deformations takinginto aount.PACS: 61.50.Ks, 63.20.-e, 64.70.K-1. INTRODUCTIONReent years have shown an inreasing interest instudying properties of Pu [1�11℄, one of the most un-usual elements in Nature. Its strutural behavior as afuntion of temperature is rather unique and involvesseveral phase transitions in a narrow temperature inter-val. The physial origin of suh a behavior is not fullyunderstood and it is a matter of debates. Plutoniumhas six rystalline phases at ambient pressure and tem-peratures up to melting. Some of these temperature-driven phase transitions are aompanied by a signif-iant hange of volume. In two of these phases, Æand Æ0, whih have the largest spei� volumes and re-spetively have the f (fae-entered ubi) and bt(body-entered tetragonal) strutures, plutonium hasnegative and low thermal expansion oe�ient, whilein the other phases, its thermal expansion oe�ient ispositive and high. The Æ-phase is very unstable, butplutonium an be stabilized in the Æ-phase by alloyingwith a trivalent metal, for example, with several mo-lar perents of gallium. Suh an alloy is stable in thetemperature range from �75 to 475 ÆC and has almostzero thermal expansion oe�ients.In the framework of the �rst-priniple density-funtional theory [5℄, the bond strengths have beenalulated between 12 nearest neighbors in pure Puand Pu-3.7 at.% of Ga, and it has been suggestedthat the bond strengths in Æ-Pu are anisotropi and*E-mail: omkras�mail.ru

this anisotropy orresponds not to the generally a-epted ubi spae group Fm�3m but to the monoliniCm spae group. Therefore, aording to Ref. [5℄, thetetragonal, orthorhombi, or monolini deformationof Æ-Pu an lead to the equilibrium (�-Pu, monolinispae group P21=m). By this, the authors of Ref. [5℄explain the sequene of temperature-driven polymor-phi transformations in Pu. Introdution of Ga reduesthe anisotropy of bond strengths, thereby stabilizingthe Æ-Pu f lattie [5℄. These results have been rit-iized in Ref. [6℄: the authors of Ref. [6℄ have shownthat for the alulational setup reported in Ref. [5℄,the anisotropy of bond strengths between the near-est neighbors in Æ-Pu annot exeed a numerial er-ror assoiated with the operation of the program al-gorithm and is atually three orders less than it wasobtained in Ref. [5℄. It is also impossible to agree withthe arguments given in Ref. [5℄ beause they ontra-dit Curie's priniple [12℄: the symmetry elements of arystal are also symmetry elements of any of its prop-erties, i. e., the rystal symmetry group either oinideswith the symmetry group of a property (for example,bond strengths) or is a subgroup of the property sym-metry group (but not onversely). The phase transitionÆ ! �0 (f! monolini) in alloys of plutonium withgallium and aluminum was onsidered in Ref. [10; 11℄using the Landau theory. The �0 phase has the samespae group as the monolini � phase of pure pluto-nium, exept that some of the Pu atoms are substi-tuted by alloying element. This transition was onsid-521



Yu. Kh. Vekilov, O. M. Krasilnikov ÆÝÒÔ, òîì 136, âûï. 3 (9), 2009ered as a martensiti-like phase transformation involv-ing a oherent, ontinuous motion of many atoms overshort distane without di�usion. The transformationmehanism was proposed that ombines strains of unitells and displaements of atoms and whih an pre-dit the softening signature or other anomalies seen inphonon dispersion experiments and temperature vari-ation of the elasti moduli. It has been demonstratedthat the Æ ! �0 transition an be desribed as a se-quene of displaive transformations that require spe-i� intermediate strutures (trigonal and hexagonal inpartiular).In this artile, we show using the Landau theoryof phase transitions and spae group theory (group�subgroup relations) that the sequene of polymorphitransitions in pure Pu at temperatures exeeding theDebye temperature are elasti phase transitions withorder parameters de�ned by homogeneous deforma-tions. 2. RESULTS AND DISCUSSIONThe fat that all polymorphi transitions inPu our at temperatures onsiderably exeedingthe Debye temperature (�D � 110 K) and thatthe lowest-temperature transition � ! � (simplemonolini ! base-entered monolini struture)orresponds to T = 398 K at ambient pressure leadsto the onlusion that the reason behind the phasetransitions is the anharmoniity of the rystal lattie.Together with the usual transitions aused by theequality of hemial potentials of two various stru-tures, strutural phase transitions of another type,aused by the instability of the rystal lattie undersmall homogeneous deformations, an our. Fordisplaive phase transitions, it is generally importantto onsider orrelation e�ets [13℄. But in our ase, forthree-dimensional systems, these e�ets are not veryessential and the Landau theory of the phase transi-tions an be used [14�16℄. The stability of a lattieunder small homogeneous deformations is harater-ized by a system of inequalities for seond-order elastionstants, following from the positive de�nitenessrequirement for the seond-order part of the rystalthermodynami potential. In the ase of the ubirystal, these inequalities are [14℄ C11 + 2C12 > 0,C11 �C12 > 0, and C44 > 0, where C�� are isothermalseond-order elasti onstants in the Voigt notation.These inequalities an be violated with a hange ofthermodynami parameters suh as the pressure andtemperature (P; T ) de�ning the rystal state. As a re-

sult, the transition into a spontaneously deformed stateours. The stability of this new state is determinedby the anharmoni ontribution to the expressionfor the thermodynami potential (i. e., by the thirdand fourth order elasti onstants). The deformationtensor omponents are the order parameters at suhtransitions. These transitions are alled the elastiphase transitions. In the ase of plutonium, in favor ofsuh transitions speaks the fat that the elasti shearonstant C 0 = (C11 � C12)=2 of Æ-Pu is anomalouslysmall ompared with shear onstant C44 [17℄.Using the results of the Bravais lattie symmetryanalysis [18℄, it an be shown that from six rystallinestrutures harateristi of Pu, �ve strutures are re-lated among themselves by a homogeneous deforma-tion. From this standpoint, we onsider the sequeneof polymorphi transformations in Pu.1. The high-temperature "-phase exists at472�640 ÆC and has the b struture, whih trans-forms into a bt lattie (=a = 1:33) by a distortion ofthe ube along one of its 4th-order axes (the so-alledÆ0-phase). The symmetry analysis shows that the Bra-vais lattie �� transforms into ��a ("! Æ0). The reasonfor this transition is the instability of the b lattieaused by the softening of the elasti shear onstantC 0 related to the deformation u33 = �2u22 = �2u11.2. The Æ0-phase is rather unstable (the temperatureinterval of its existene is 450�472 ÆC at ambient pres-sure) and under a further derease in temperature, atransition of the Æ0-phase into the Æ-phase ours thathas the f struture and exists at 310�450 ÆC. Thesetwo phases are related by a homogeneous deformation.Thus the lattie ��q transforms into �f (Æ0 ! Æ).The transitions "! Æ0 ! Æ (b! bt! f) are atypial Bain transformation. Bain originally desribedsuh a transformation by a ontinuous and oordinatedshift of one or more atoms in the unit ell in orderto understand the mehanism of the transition fromaustenite to martensite in iron. Both the ubi Bravaislatties (b and f) are regarded as speial ases ofthe more general bt unit ell (see Figure). If the height-to-width ratio of the lattie onstants is =a = 1, thenthe bt Bravais lattie oinides with the b lattie.On the other hand, a bt Bravais lattie with =a = p2fully mathes the f lattie, as is shematially shownin Figure.3. The Bravais parallelepiped for a ubi sys-tem an be redued to the Bravais parallelepiped forthe orthorhombi system (-phase). This means thatthe -phase has the fae-entered orthorhombi lat-tie, fo, by a shear deformation in the parallelepipedbase plane. It is aused by the softening of the shear522
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The entered tetragonal unit ell with lattie parame-ters a, b, and  at speial ratios. Atoms belonging tothe onventional unit ell are indiated by solid dots;b: a = b, =a = 1, bt: a = b, 1 < =a < p2; f:a = b, =a = p2; fo: a 6= b 6= onstant C 0 that is aompanied by the deformationu22 = �u11; as a result, we obtain the lattie �fo(Æ ! , whih is stable in the temperature range 218�310 ÆC).4. From the Bravais orthorhombi system paral-lelepiped at the base deformation (hanging the anglebetween its edges), we obtain the Bravais monolinisystem parallelepiped (the �-phase, whih has a base-entered monolini struture (bm) with the existeneinterval 119�218 ÆC). The lattie �fo transforms into �bm( ! �).5. The symmetry analysis shows that the transitionfrom the �-phase into the �-phase (whih has the sim-ple monolini lattie) via a homogeneous deformationis impossible beause the lattie �bm is not related to�m by a homogeneous deformation.Hene, the phase transitions "(b) ! Æ0(bt) !! Æ(f)! (fo)! �(bm) are elasti phase transi-tions. They our owing to lattie instabilities relatedto shear deformations, whih are in turn related to theanomalously small value of the orresponding elastionstants.The harater of an elasti transition and the sta-bility of a new phase are determined by the third-orderterm in the deformation tensor omponent expansionof the thermodynami potential, and by the forth-orderterm [19℄. If the third-order invariant, whih involvesthe orresponding third-order elasti onstants, is equalto zero, then the transition is of the seond order; oth-erwise, it is of the �rst order. The stability requirementfor the new phase imposes ertain restritions on thethird and fourth-order elasti onstants. For the phasetransition " ! Æ0 (b ! bt), the expansion of thethermodynami potential F is given by

F = 34(C11�C12)u2+18(C111�3C112+2C123)u3++ 364(C1111 � 4C1112 + 3C1122)u4; (1)where C�� and C��Æ are the third and fourth-orderisothermal elasti onstants and u = u33 = �2u22 == �2u11. Beause the third-order invariant is notequal to zero (due to the rystal symmetry), we have a�rst-order phase transition. For the stability of the newphase, the fourth-order invariant should be positive.Under the phase transition Æ ! , the third-order term of the expansion tends to zero owing tospei� features of the order parameter omponents:u22 = �u11. However, if this relation is not satis�ed(we note that suh relations are not satis�ed due tovolume hanges under the transition), then the third-order invariant beomes nonzero and the transition isa �rst-order transition.In relation to the elasti phase transitions in Pu,we now disuss the temperature behavior of the elas-ti moduli. In Ref. [7℄, the elasti moduli for poly-rystalline Pu-2.4 at.% of Ga were measured by usingthe resonane-ultrasound spetrosopy in the tempera-ture range 300�500 K. Aording to Ref. [7℄, both thebulk modulus B and the shear modulus G dereasewith inreasing the temperature with a nearly lineartemperature dependene. But in this range of tem-peratures, the thermal expansion oe�ient is lose tozero, although the values of B and G sharply dereasewith temperature (by 25% in the interval 300�500 K).The Debye-Grüneisen model is typially used to ex-plain temperature dependenes of elasti onstants, inwhih the elasti softening should be related mainly tothe inrease in volume under thermal expansion. Thetwo-level model was therefore used for the explanationof the observable disrepany in Refs. [7; 8℄. This modelwas previously used for an invar alloy. The model isbased on the addition of the two-level eletron energystruture to the Debye model of a lattie. Togetherwith the normal Debye temperature and the Grüneisenlattie onstant, the model involves two additional pa-rameters: the di�erene in energy between two levels ofan atom and the Grüneisen eletroni onstant, whihhas a negative value depending on the onentration ofGa. With regard to nonmagneti Æ-Pu (there are noexperimental proofs of a long-range magneti order inany phase of plutonium [20℄), the above model appearsto be insu�iently justi�ed. In what follows, we showthat the temperature dependene on elasti onstantsand thermal expansion an be orretly desribed inthe quasiharmoni approximation.We express the bulk and shear moduli B and G523



Yu. Kh. Vekilov, O. M. Krasilnikov ÆÝÒÔ, òîì 136, âûï. 3 (9), 2009through the elasti onstants. For the ubi lattie [21℄,B = (C11+2C12)=3 and G = (C11�C12+3C44)=5. Thetemperature dependene of the elasti onstants in thequasiharmoni approximation is determined by the dis-persion of the mirosopi Grüneisen oe�ients [22℄.The expressions for the adiabati and isothermal elas-ti onstants obtained in the quasiharmoni approxi-mation, with the proesses of phonon visosity and thethermo-elastiity taken into aount, are [23℄Cadijkl = 1V0 �2�0�uij�ukl �� TC(T )V0 [hijkli � hijihkli℄ ; (2)and Cisijkl = 1V0 �2�0�uij�ukl � TC(T )V0 hijkli: (3)Here, V0 is the volume of the unstrained rystal, �0 isthe potential energy of the rystal when the atoms arein equilibrium positions,ij(k; �) = � 1!0(k; �) ��!(k; �)�uij �0are the mirosopi Gruneisen oe�ients, !(k; �) and!0(k; �) are the respetive frequenies of a phonon witha wave vetor k and polarization � in the deformedand undeformed rystal, and the averaging symbol h imeans hfi =Xk;� f(k; �)(k; �)=Xk;� (k; �);where (k; �) is the ontribution to the heat apaity ofthe mode (k; �), and C(T ) = Pk;� (k; �) is the heatapaity of the rystal. The temperature hanges ofthese onstants are aused by both the phonon visos-ity and thermo-elastiity proesses (the seond term insquare brakets in (2) haraterizes the hange in theelasti onstants due to thermo-elasti losses). The �rstterm in (2) and (3) inludes the hange in the elastionstants due to thermal expansion. The thermal ex-pansion tensor is equal to�ij = C(T )V Xk;l C�1ijklhkli:The linear expansion oe�ient of a ubi rystal is� = (C(T )=3V B), where  = h(k; �)i is the Grünei-sen parameter,(k; �) = �� ln(k; �)� lnV = 13Tr ij(k; �):

The quantities hijkli and , whih respetively deter-mine the temperature hanges of the elasti moduli andthermal expansion oe�ient, depend on the Grüneisenoe�ients ij(k; �) in di�erent ways and should di�eramong themselves. Suh behavior leads to essentialdi�erenes for the average values (taking the hange ofthe sign of ij(k; �) for various vibration modes intoaount): in the �rst ase, the average values shouldbe larger than in the seond one. Under ertain ondi-tions, the value  = h(k; �)i an be very small (for ex-ample, due to the ompensation of ontributions fromvarious vibration modes).Beause the Debye temperature of Æ-Pu is �D �� 110 K, the basi ontribution to (2) in the temper-ature range 300�500 K is due to the high-frequenymodes: longitudinal and transverse aousti phonons inthe neighborhood of the X point and the longitudinalmodes in the neighborhood of the L point [24℄. Beausethe thermal expansion oe�ient for Æ-Pu is very smallin this temperature range, the ontribution of the termin the square brakets in (2) to the hanges of Cadijklwith temperature is high. Sine the heat apaity atT > �D is pratially independent of the temperature,elasti onstants (2) hange linearly with the tempera-ture, exept near the phase transition. The Æ-phase isunstable under to the shear deformation related to theelasti onstant C 0 = (C11 � C12)=2. However, bothB and G have a pratially linear temperature depen-dene beause C 0 is seven times less than C44 [17℄.3. CONCLUSIONIt is shown based on the group theory analysisthat the sequene of temperature phase transitions("(b) ! Æ0(bt) ! Æ(f) ! (fo) ! �(bm)) ob-served in pure plutonium represents a sequene of elas-ti phase transitions, i. e., the transitions resulting fromthe instability of the rystal lattie with respet to uni-form deformations. In this ase, it is possible to usethe Landau theory, taking omponents of the defor-mation tensor as the order parameters. We have alsoshown that the negative sign of the thermal expansionoe�ient of Æ-Pu and a strong derease in the elastionstants of Æ-Pu with inreasing the temperature anbe explained within the quasiharmoni approximation.We believe that this result is important by itself (evenwith no relation to plutonium) and it is ruial for un-derstanding the onnetion of thermal expansion andtemperature dependene of elasti onstants in solidstate materials.524
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