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The rich phase diagram of plutonium with a large number of different transitions in a narrow temperature interval
has been puzzling scientists for decades. We offer a theoretical proof that most of the structural transformations
in plutonium at temperatures exceeding the Debye temperature are the elastic phase transitions. The proof is
given in the framework of the Landau theory of phase transitions and space group theory with the anomalously
small value of the elastic shear constants related to tetragonal and orthorhombic lattice deformations taking

into account.

PACS: 61.50.Ks, 63.20.-e, 64.70.K-

1. INTRODUCTION

Recent years have shown an increasing interest in
studying properties of Pu [1-11], one of the most un-
usual elements in Nature. Its structural behavior as a
function of temperature is rather unique and involves
several phase transitions in a narrow temperature inter-
val. The physical origin of such a behavior is not fully
understood and it is a matter of debates. Plutonium
has six crystalline phases at ambient pressure and tem-
peratures up to melting. Some of these temperature-
driven phase transitions are accompanied by a signif-
icant change of volume. In two of these phases, §
and o', which have the largest specific volumes and re-
spectively have the fce (face-centered cubic) and bet
(body-centered tetragonal) structures, plutonium has
negative and low thermal expansion coefficient, while
in the other phases, its thermal expansion coefficient is
positive and high. The d-phase is very unstable, but
plutonium can be stabilized in the §-phase by alloying
with a trivalent metal, for example, with several mo-
lar percents of gallium. Such an alloy is stable in the
temperature range from —75 to 475 °C and has almost
zero thermal expansion coefficients.

In the framework of the first-principle density-
functional theory [5], the bond strengths have been
calculated between 12 nearest neighbors in pure Pu
and Pu-3.7 at.% of Ga, and it has been suggested
that the bond strengths in d-Pu are anisotropic and
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this anisotropy corresponds not to the generally ac-
cepted cubic space group Fm3m but to the monoclinic
C'm space group. Therefore, according to Ref. [5], the
tetragonal, orthorhombic, or monoclinic deformation
of §-Pu can lead to the equilibrium (@-Pu, monoclinic
space group P2;/m). By this, the authors of Ref. [5]
explain the sequence of temperature-driven polymor-
phic transformations in Pu. Introduction of Ga reduces
the anisotropy of bond strengths, thereby stabilizing
the §-Pu fec lattice [5]. These results have been crit-
icized in Ref. [6]: the authors of Ref. [6] have shown
that for the calculational setup reported in Ref. [5],
the anisotropy of bond strengths between the near-
est, neighbors in §-Pu cannot exceed a numerical er-
ror associated with the operation of the program al-
gorithm and is actually three orders less than it was
obtained in Ref. [5]. Tt is also impossible to agree with
the arguments given in Ref. [5] because they contra-
dict Curie’s principle [12]: the symmetry elements of a
crystal are also symmetry elements of any of its prop-
erties, i.e., the crystal symmetry group either coincides
with the symmetry group of a property (for example,
bond strengths) or is a subgroup of the property sym-
metry group (but not conversely). The phase transition
d — o' (fece — monoclinic) in alloys of plutonium with
gallium and aluminum was considered in Ref. [10, 11]
using the Landau theory. The o’ phase has the same
space group as the monoclinic a phase of pure pluto-
nium, except that some of the Pu atoms are substi-
tuted by alloying element. This transition was consid-
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ered as a martensitic-like phase transformation involv-
ing a coherent, continuous motion of many atoms over
short distance without diffusion. The transformation
mechanism was proposed that combines strains of unit
cells and displacements of atoms and which can pre-
dict the softening signature or other anomalies seen in
phonon dispersion experiments and temperature vari-
ation of the elastic moduli. It has been demonstrated
that the § — «' transition can be described as a se-
quence of displacive transformations that require spe-
cific intermediate structures (trigonal and hexagonal in
particular).

In this article, we show using the Landau theory
of phase transitions and space group theory (group—
subgroup relations) that the sequence of polymorphic
transitions in pure Pu at temperatures exceeding the
Debye temperature are elastic phase transitions with
order parameters defined by homogeneous deforma-
tions.

2. RESULTS AND DISCUSSION

The fact that all polymorphic transitions in
Pu occur at temperatures considerably exceeding
the Debye temperature (fp 110 K) and that
the lowest-temperature transition a@ — S (simple
monoclinic — base-centered monoclinic  structure)
corresponds to 7' = 398 K at ambient pressure leads
to the conclusion that the reason behind the phase
transitions is the anharmonicity of the crystal lattice.
Together with the usual transitions caused by the
equality of chemical potentials of two various struc-
tures, structural phase transitions of another type,
caused by the instability of the crystal lattice under
small homogeneous deformations, can occur. For
displacive phase transitions, it is generally important
to consider correlation effects [13]. But in our case, for
three-dimensional systems, these effects are not very
essential and the Landau theory of the phase transi-
tions can be used [14-16]. The stability of a lattice
under small homogeneous deformations is character-
ized by a system of inequalities for second-order elastic
constants, following from the positive definiteness
requirement for the second-order part of the crystal
thermodynamic potential. In the case of the cubic
crystal, these inequalities are [14] Ci1 + 2C15 > 0,
C11 — Ci2 > 0, and Cyq > 0, where C, 3 are isothermal
second-order elastic constants in the Voigt notation.
These inequalities can be violated with a change of
thermodynamic parameters such as the pressure and
temperature (P, T) defining the crystal state. As a re-
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sult, the transition into a spontaneously deformed state
occurs. The stability of this new state is determined
by the anharmonic contribution to the expression
for the thermodynamic potential (i.e., by the third
and fourth order elastic constants). The deformation
tensor components are the order parameters at such
transitions. These transitions are called the elastic
phase transitions. In the case of plutonium, in favor of
such transitions speaks the fact that the elastic shear
constant C' = (C1; — C42)/2 of 4-Pu is anomalously
small compared with shear constant Cyq [17].

Using the results of the Bravais lattice symmetry
analysis [18], it can be shown that from six crystalline
structures characteristic of Pu, five structures are re-
lated among themselves by a homogeneous deforma-
tion. From this standpoint, we consider the sequence
of polymorphic transformations in Pu.

1. The high-temperature e-phase exists at
472-640°C and has the bece structure, which trans-
forms into a bet lattice (¢/a = 1.33) by a distortion of
the cube along one of its 4th-order axes (the so-called
0'-phase). The symmetry analysis shows that the Bra-
vais lattice T'Y transforms into T'” (¢ — §'). The reason
for this transition is the instability of the bce lattice
caused by the softening of the elastic shear constant
C" related to the deformation uzs = —2usy = —2u1;.

2. The ¢'-phase is rather unstable (the temperature
interval of its existence is 450-472°C at ambient pres-
sure) and under a further decrease in temperature, a
transition of the §’-phase into the §-phase occurs that
has the fce structure and exists at 310-450 °C. These
two phases are related by a homogeneous deformation.
Thus the lattice I'y transforms into Tl (8" = 6).

The transitions € — §' —  (bec — bet — fee) are a
typical Bain transformation. Bain originally described
such a transformation by a continuous and coordinated
shift of one or more atoms in the unit cell in order
to understand the mechanism of the transition from
austenite to martensite in iron. Both the cubic Bravais
lattices (bce and fec) are regarded as special cases of
the more general bet unit cell (see Figure). If the height-
to-width ratio of the lattice constants is ¢/a = 1, then
the bct Bravais lattice coincides with the bee lattice.
On the other hand, a bet Bravais lattice with ¢/a = /2
fully matches the fcc lattice, as is schematically shown
in Figure.

3. The Bravais parallelepiped for a cubic sys-
tem can be reduced to the Bravais parallelepiped for
the orthorhombic system (vy-phase). This means that
the y-phase has the face-centered orthorhombic lat-
tice, fco, by a shear deformation in the parallelepiped
base plane. It is caused by the softening of the shear
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The centered tetragonal unit cell with lattice parame-
ters a, b, and ¢ at special ratios. Atoms belonging to
the conventional unit cell are indicated by solid dots;
bee: a =b,c/la=1,bet: a=b,1<cla< V2, fee:
a=>b,c/a=+2 fco: a#b#c

constant C" that is accompanied by the deformation
U2 = —upp; as a result, we obtain the lattice Fg
(6 — v, which is stable in the temperature range 218—
310°C).

4. From the Bravais orthorhombic system paral-
lelepiped at the base deformation (changing the angle
between its edges), we obtain the Bravais monoclinic
system parallelepiped (the S-phase, which has a base-
centered monoclinic structure (bem) with the existence
interval 119-218 °C). The lattice '] transforms into I'5,
(v = B).

5. The symmetry analysis shows that the transition
from the [-phase into the a-phase (which has the sim-
ple monoclinic lattice) via a homogeneous deformation
is impossible because the lattice I'®, is not related to
I, by a homogeneous deformation.

Hence, the phase transitions e(bcc) — 0'(bet) —
— §(fee) = v(feco) — B(bem) are elastic phase transi-
tions. They occur owing to lattice instabilities related
to shear deformations, which are in turn related to the
anomalously small value of the corresponding elastic
constants.

The character of an elastic transition and the sta-
bility of a new phase are determined by the third-order
term in the deformation tensor component expansion
of the thermodynamic potential, and by the forth-order
term [19]. If the third-order invariant, which involves
the corresponding third-order elastic constants, is equal
to zero, then the transition is of the second order; oth-
erwise, it is of the first order. The stability requirement
for the new phase imposes certain restrictions on the
third and fourth-order elastic constants. For the phase
transition ¢ — &' (bce — bet), the expansion of the
thermodynamic potential F' is given by
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F= Z(Cn—012)U2+§(0111—30112+20123)U3+
3
+ a(cnn —4Ch112 + 3C1)ut, (1)

where Cy3, and Cyp45 are the third and fourth-order
isothermal elastic constants and u = uzz = —2usy =
= —2uj;;. Because the third-order invariant is not
equal to zero (due to the crystal symmetry), we have a
first-order phase transition. For the stability of the new
phase, the fourth-order invariant should be positive.

Under the phase transition § — +, the third-
order term of the expansion tends to zero owing to
specific features of the order parameter components:
Uss = —uy1. However, if this relation is not satisfied
(we note that such relations are not satisfied due to
volume changes under the transition), then the third-
order invariant becomes nonzero and the transition is
a first-order transition.

In relation to the elastic phase transitions in Pu,
we now discuss the temperature behavior of the elas-
tic moduli. In Ref. [7], the elastic moduli for poly-
crystalline Pu-2.4 at. % of Ga were measured by using
the resonance-ultrasound spectroscopy in the tempera-
ture range 300-500 K. According to Ref. [7], both the
bulk modulus B and the shear modulus G decrease
with increasing the temperature with a nearly linear
temperature dependence. But in this range of tem-
peratures, the thermal expansion coefficient is close to
zero, although the values of B and G sharply decrease
with temperature (by 25 % in the interval 300-500 K).
The Debye-Griineisen model is typically used to ex-
plain temperature dependences of elastic constants, in
which the elastic softening should be related mainly to
the increase in volume under thermal expansion. The
two-level model was therefore used for the explanation
of the observable discrepancy in Refs. [7, 8]. This model
was previously used for an invar alloy. The model is
based on the addition of the two-level electron energy
structure to the Debye model of a lattice. Together
with the normal Debye temperature and the Griineisen
lattice constant, the model involves two additional pa-
rameters: the difference in energy between two levels of
an atom and the Griineisen electronic constant, which
has a negative value depending on the concentration of
Ga. With regard to nonmagnetic 6-Pu (there are no
experimental proofs of a long-range magnetic order in
any phase of plutonium [20]), the above model appears
to be insufficiently justified. In what follows, we show
that the temperature dependence on elastic constants
and thermal expansion can be correctly described in
the quasiharmonic approximation.

We express the bulk and shear moduli B and G
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through the elastic constants. For the cubic lattice [21],
B = (011 +2012)/3 and G = (011 —012+3C44)/5. The
temperature dependence of the elastic constants in the
quasiharmonic approximation is determined by the dis-
persion of the microscopic Griineisen coefficients [22].
The expressions for the adiabatic and isothermal elas-
tic constants obtained in the quasiharmonic approxi-
mation, with the processes of phonon viscosity and the
thermo-elasticity taken into account, are [23]

Ou‘d _ i 82¢0 .
ijkt = VO 8uijauk[

TC(T

~TD) i) — il (@)
0
and
W 1 38, TC(T)

9K Bugoum T (VijVeL)- (3)

Here, V4 is the volume of the unstrained crystal, ®q is
the potential energy of the crystal when the atoms are
in equilibrium positions,

(%),

are the microscopic Gruneisen coefficients, w(k, \) and
wo(k, \) are the respective frequencies of a phonon with
a wave vector k and polarization A in the deformed
and undeformed crystal, and the averaging symbol ()
means

1
wo(kv )‘)

dw(k, \)
8’ui]'

Yij(k,A) = —

(f)y = flkNek,N)/ D ek, ),
k,\ k,\

where c(k, ) is the contribution to the heat capacity of
the mode (k,A), and C(T) = >, ) c(k, ) is the heat
capacity of the crystal. The temperature changes of
these constants are caused by both the phonon viscos-
ity and thermo-elasticity processes (the second term in
square brackets in (2) characterizes the change in the
elastic constants due to thermo-elastic losses). The first
term in (2) and (3) includes the change in the elastic
constants due to thermal expansion. The thermal ex-
pansion tensor is equal to

c(T) _
ij = 77 ;Oiﬂiﬂ%ﬂ‘

The linear expansion coefficient of a cubic crystal is
a = (C(T)/3VB)y, where v = (y(k, \)) is the Griinei-
sen parameter,

1

= -Tr
3

_Oln(k, \)

1A = -5

"yij (k7 )\)
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The quantities (v;;vw) and v, which respectively deter-
mine the temperature changes of the elastic moduli and
thermal expansion coefficient, depend on the Griineisen
coefficients 7;;(k, A) in different ways and should differ
among themselves. Such behavior leads to essential
differences for the average values (taking the change of
the sign of v;;(k,\) for various vibration modes into
account): in the first case, the average values should
be larger than in the second one. Under certain condi-
tions, the value v = (y(k, A)) can be very small (for ex-
ample, due to the compensation of contributions from
various vibration modes).

Because the Debye temperature of §-Pu is 0p
~ 110 K, the basic contribution to (2) in the temper-
ature range 300-500 K is due to the high-frequency
modes: longitudinal and transverse acoustic phonons in
the neighborhood of the X point and the longitudinal
modes in the neighborhood of the L point [24]. Because
the thermal expansion coefficient for §-Pu is very small
in this temperature range, the contribution of the term
in the square brackets in (2) to the changes of C’i“jdkl
with temperature is high. Since the heat capacity at
T > 0p is practically independent of the temperature,
elastic constants (2) change linearly with the tempera-
ture, except near the phase transition. The d-phase is
unstable under to the shear deformation related to the
elastic constant C' = (C11 — C12)/2. However, both
B and G have a practically linear temperature depen-
dence because C' is seven times less than Cyy [17].

~

3. CONCLUSION

It is shown based on the group theory analysis
that the sequence of temperature phase transitions
(e(bce) — &' (bet) — 6(fee) = v(fco) — B(bem)) ob-
served in pure plutonium represents a sequence of elas-
tic phase transitions, i. e., the transitions resulting from
the instability of the crystal lattice with respect to uni-
form deformations. In this case, it is possible to use
the Landau theory, taking components of the defor-
mation tensor as the order parameters. We have also
shown that the negative sign of the thermal expansion
coefficient of 0-Pu and a strong decrease in the elastic
constants of §-Pu with increasing the temperature can
be explained within the quasiharmonic approximation.
We believe that this result is important by itself (even
with no relation to plutonium) and it is crucial for un-
derstanding the connection of thermal expansion and
temperature dependence of elastic constants in solid
state materials.
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